Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (83)

Search Parameters:
Keywords = compressive strain relaxation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7553 KB  
Article
Effect of Mass Reduction of 3D-Printed PLA on Load Transfer Capacity—A Circular Economy Perspective
by Aneta Liber-Kneć and Sylwia Łagan
Materials 2025, 18(14), 3262; https://doi.org/10.3390/ma18143262 - 10 Jul 2025
Viewed by 556
Abstract
(1) Background: Optimizing infill density in 3D-printed PLA parts reduces material usage, cost, and waste. This study examines mechanical behavior in the initial and hydration stages. The findings provide valuable data for numerical simulations and engineering applications in additive manufacturing. (2) Methods: PLA [...] Read more.
(1) Background: Optimizing infill density in 3D-printed PLA parts reduces material usage, cost, and waste. This study examines mechanical behavior in the initial and hydration stages. The findings provide valuable data for numerical simulations and engineering applications in additive manufacturing. (2) Methods: PLA specimens were printed with infill densities of 100%, 75%, and 25%. Mechanical tests, including tensile and compression tests, and one-hour stress-relaxation at 2% strain were conducted. The digital image correlation method was used to obtain the strain fields on the samples’ surface under tensile loading. Mechanical properties, including the elastic modulus, strength values, and Poisson’s ratio, were assessed. Hydrolytic degradation effects over one month were also evaluated. (3) Results: Lowering the PLA infill density reduced the ultimate tensile strength (from 60.04 ± 2.24 MPa to 26.24 ± 0.77 MPa), Young’s modulus (from 2645.05 ± 204.15 MPa to 1245.41 ± 83.79 MPa), compressive strength (from 26.59 ± 0.80 MPa to 21.83 ± 1.01 MPa), and Poisson’s ratio (from 0.32 to 0.30). A 40% mass reduction (form 100% to 25% infill density) resulted in a 56% decrease in tensile strength and a 53% decrease in Young’s modulus. A 31% mass reduction was observed for compression samples. Stress relaxation decreased significantly from 100% to 75% density, with further reductions having minimal impact. Hydrated samples showed no mechanical changes compared to baseline specimens. (4) Conclusions: Optimizing infill density in 3D-printed PLA parts helps to balance mechanical performance with material efficiency. The best mechanical properties are typically achieved with an infill density of 100%, but results show that decreasing the mass of the part by a reduction in infill density from 75% to 25% does not significantly affect the ability to transfer tensile and compression loads. PLA’s biodegradability makes it a viable alternative to stable polymers. By minimizing material waste and enabling the efficient use of resources, additive manufacturing aligns with the principles of a closed-loop economy, supporting sustainable development. Full article
(This article belongs to the Special Issue Recent Researches in Polymer and Plastic Processing)
Show Figures

Figure 1

23 pages, 81584 KB  
Article
GNSS-Based Models of Displacement, Stress, and Strain in the SHETPENANT Region: Impact of Geodynamic Activity from the ORCA Submarine Volcano
by Belén Rosado, Vanessa Jiménez, Alejandro Pérez-Peña, Rosa Martín, Amós de Gil, Enrique Carmona, Jorge Gárate and Manuel Berrocoso
Remote Sens. 2025, 17(14), 2370; https://doi.org/10.3390/rs17142370 - 10 Jul 2025
Viewed by 499
Abstract
The South Shetland Islands and Antarctic Peninsula (SHETPENANT region) constitute a geodynamically active area shaped by the interaction of major tectonic plates and active magmatic systems. This study analyzes GNSS time series spanning from 2017 to 2024 to investigate surface deformation associated with [...] Read more.
The South Shetland Islands and Antarctic Peninsula (SHETPENANT region) constitute a geodynamically active area shaped by the interaction of major tectonic plates and active magmatic systems. This study analyzes GNSS time series spanning from 2017 to 2024 to investigate surface deformation associated with the 2020–2021 seismic swarm near the Orca submarine volcano. Horizontal and vertical displacement velocities were estimated for the preseismic, coseismic, and postseismic phases using the CATS method. Results reveal significant coseismic displacements exceeding 20 mm in the horizontal components near Orca, associated with rapid magmatic pressure release and dike intrusion. Postseismic velocities indicate continued, though slower, deformation attributed to crustal relaxation. Stations located near the Orca exhibit nonlinear, transient behavior, whereas more distant stations display stable, linear trends, highlighting the spatial heterogeneity of crustal deformation. Stress and strain fields derived from the velocity models identify zones of extensional dilatation in the central Bransfield Basin and localized compression near magmatic intrusions. Maximum strain rates during the coseismic phase exceeded 200 νstrain/year, supporting a scenario of crustal thinning and fault reactivation. These patterns align with the known structural framework of the region. The integration of GNSS-based displacement and strain modeling proves essential for resolving active volcano-tectonic interactions. The findings enhance our understanding of back-arc deformation processes in polar regions and support the development of more effective geohazard monitoring strategies. Full article
(This article belongs to the Special Issue Antarctic Remote Sensing Applications (Second Edition))
Show Figures

Figure 1

14 pages, 2819 KB  
Article
Band Gap Energy and Lattice Distortion in Anatase TiO2 Thin Films Prepared by Reactive Sputtering with Different Thicknesses
by Cecilia Guillén
Materials 2025, 18(10), 2346; https://doi.org/10.3390/ma18102346 - 18 May 2025
Cited by 2 | Viewed by 788
Abstract
TiO2 is an abundant material on Earth, essential for the sustainable and cost-effective development of various technologies, with anatase being the most effective polymorph for photocatalytic and photovoltaic applications. Bulk crystalline anatase TiO2 exhibits a band gap energy EgA = [...] Read more.
TiO2 is an abundant material on Earth, essential for the sustainable and cost-effective development of various technologies, with anatase being the most effective polymorph for photocatalytic and photovoltaic applications. Bulk crystalline anatase TiO2 exhibits a band gap energy EgA = 3.2 eV, for tetragonal lattice parameters aA = 0.3785 nm and cA = 0.9514 nm, but these characteristics vary for amorphous or polycrystalline thin films. Reactive magnetron sputtering has proven suitable for the preparation of TiO2 coatings on glass fiber substrates, with structural and optical characteristics that change during growth. Below a minimum thickness (t < 0.2 μm), the films have an amorphous nature or extremely small crystallite sizes not observable by X-ray diffraction. Afterwards, compressed quasi-randomly orientated crystallites are detected (volume strain ΔV = −0.02 and stress σV = −3.5 GPa for t = 0.2 μm) that evolve into relaxed and preferentially (004) orientated crystallites, reaching the standard anatase values at t ~ 1.4 μm with σV = 0.0 GPa. The band gap energy increases with lattice distortion according to the relation ∆Eg (eV) = −6∆V, and a further increase is observed for the thinnest coatings (∆Eg = 0.24 eV for t = 0.05 μm). Full article
Show Figures

Figure 1

23 pages, 15364 KB  
Article
Non-Stationary Viscoelastic Modeling of Compression Creep Behavior in Composite Bolted Joints
by Jingwen Yang, Shuai Wang, Hongli Lu, Zhiwei Yuan, Xiaokai Mu, Qingchao Sun and Bo Yuan
Polymers 2025, 17(10), 1382; https://doi.org/10.3390/polym17101382 - 17 May 2025
Viewed by 646
Abstract
Fiber-reinforced polymer (FRP) composites are widely utilized in aerospace and shipbuilding due to their outstanding mechanical properties and lightweight nature. During prolonged service, the mechanical performance of composite bolted joints has drawn increasing attention. This study integrates experimental, theoretical, and numerical methods to [...] Read more.
Fiber-reinforced polymer (FRP) composites are widely utilized in aerospace and shipbuilding due to their outstanding mechanical properties and lightweight nature. During prolonged service, the mechanical performance of composite bolted joints has drawn increasing attention. This study integrates experimental, theoretical, and numerical methods to simulate compressive creep and clarify preload relaxation mechanisms in these joints. A non-stationary Burgers model is proposed to describe the compressive creep behavior of FRP composites and metals, implemented in ABAQUS, which improves fitting accuracy by approximately 10% in R2 compared to the classical model. Two types of creep tests were conducted to examine the effects of initial load and material type on creep behavior, with model accuracy validated against experimental data. Finite element analysis (FEA) was further employed to assess the impact of localized loading and structural parameters on strain. The results demonstrate that the viscoelastic behavior of materials is the dominant factor contributing to preload relaxation in composite bolted joints. Under localized loading conditions, the maximum creep strain can be reduced by more than 60%, effectively mitigating preload loss. This study provides a robust framework for predicting preload relaxation, offering valuable insights for composite bolted joint design. Full article
(This article belongs to the Collection Polymers and Polymer Composites: Structure-Property Relationship)
Show Figures

Graphical abstract

20 pages, 13462 KB  
Article
Anisotropy in the Creep–Fatigue Behaviors of a Directionally Solidified Ni-Based Superalloy: Damage Mechanisms and Life Assessment
by Anping Long, Xiaoshan Liu, Lei Xiao, Gaoxiang Zhang, Jiangying Xiong, Ganjiang Feng, Jianzheng Guo and Rutie Liu
Crystals 2025, 15(5), 429; https://doi.org/10.3390/cryst15050429 - 30 Apr 2025
Viewed by 415
Abstract
Aero-engine turbine vanes made from directionally solidified nickel-based superalloys often fail with crack formation from the external wall of cooling channels. Therefore, this study simulates the compressive load on the external wall of the vane and conducts a sequence of creep–fatigue evaluations at [...] Read more.
Aero-engine turbine vanes made from directionally solidified nickel-based superalloys often fail with crack formation from the external wall of cooling channels. Therefore, this study simulates the compressive load on the external wall of the vane and conducts a sequence of creep–fatigue evaluations at 980 °C to investigate the creep–fatigue damage mechanisms of a directionally solidified superalloy and to assess its life. It is found that at low strain ranges, creep damage is dominant, with creep cavities forming inside the specimen and fatigue sources mostly distributed in the specimen interior. As the strain range increases, the damage mechanism transitions from creep-dominated to creep–fatigue coupled damage, with cracks nucleating preferentially on the surface and exhibiting a characteristic of multiple fatigue sources. In the longitudinal (L) specimen, dislocations in multiple orientations of the {111}<110> slip system are activated simultaneously, interacting within the γ channels to form dislocation networks, and dislocations shear through the γ′ phase via antiphase boundary (APB) pairs. In the transverse (T) specimen, stacking intrinsic stacking faults (SISFs) accumulate within the limited {111}<112> slip systems, subsequently forming a dislocation slip band. The modified creep–fatigue life prediction model, incorporating strain energy dissipation and stress relaxation mechanisms, demonstrates an accurate fatigue life prediction under creep–fatigue coupling, with a prediction accuracy within an error band of 1.86 times. Full article
Show Figures

Figure 1

14 pages, 6296 KB  
Communication
Double Domes of Mesoscopic Localized Anisotropic Lattice Strain in HCP–Ag75Al25 Under Uniaxial Compression
by Zhexin Sun, Mingtao Li, Nana Li and Wenge Yang
Materials 2025, 18(7), 1650; https://doi.org/10.3390/ma18071650 - 3 Apr 2025
Viewed by 520
Abstract
The anisotropic strain development and releasing process in materials is largely related to their intrinsic mechanical properties and mesoscale grain interactions. Uniaxial compression can induce a large amount activation energy in a system, which builds up anisotropic elastic strain. This is especially common [...] Read more.
The anisotropic strain development and releasing process in materials is largely related to their intrinsic mechanical properties and mesoscale grain interactions. Uniaxial compression can induce a large amount activation energy in a system, which builds up anisotropic elastic strain. This is especially common in a hexagonal close-packed (HCP) system. Utilizing the X-ray diffraction technique, we investigated the double-dome shaped evolution of its anomalous anisotropic strain when compressing a polycrystalline HCP–silver–aluminum (Ag75Al25) alloy up to 40 GPa. Analysis of the pressure-dependent grain size showed that the anisotropic strain relaxation was accompanied with grain-size refinement. This was a strong indication of microscopic structural anisotropy impacting both the mesoscopic mechanical properties and the macroscopic fracture behavior under uniaxial compression. Our findings provide valuable novel insights for further studies on materials with anisotropic mechanical properties. Full article
Show Figures

Figure 1

17 pages, 7483 KB  
Article
Characterization and Modelling of Microstructure Evolution and Flow Stress of Single-Phase Austenite and Ferrite Phases in Duplex Stainless Steels
by Holger Brüggemann, Shunsuke Sasaki, Maximilian Röder, Tatsuro Katsumura and David Bailly
Metals 2025, 15(2), 130; https://doi.org/10.3390/met15020130 - 27 Jan 2025
Viewed by 861
Abstract
This paper presents an experimental and modeling study to investigate and predict the microstructure evolution for single-phase austenite and ferrite steels with the chemistry of the corresponding phases in a duplex stainless steel SUS329J4L under hot forming conditions. For steels with the compositions [...] Read more.
This paper presents an experimental and modeling study to investigate and predict the microstructure evolution for single-phase austenite and ferrite steels with the chemistry of the corresponding phases in a duplex stainless steel SUS329J4L under hot forming conditions. For steels with the compositions corresponding to both austenite and ferrite phases, single-pass hot uniaxial compression tests, stress relaxation tests, and heat treatment tests have been conducted for a temperature range of 1000–1250 °C and strain rates ranging from 0.3 to 30 s−1. The dynamic and static recrystallization mechanisms, as well as the grain growth behavior, were studied, and the material parameters of each mechanism were identified for a semi-empirical microstructure model called StrucSim. Double-compression tests in the same temperature and strain rate range were performed to validate the model, and a good correlation of the flow stress between the experiment and simulation was observed. Full article
Show Figures

Figure 1

13 pages, 3729 KB  
Article
Quasi-Static Mechanical Biomimetics Evaluation of Car Crash Dummy Skin
by Yurun Li, Zhixin Liu, Cuiru Sun, Xiaoya Zheng, Guorui Du, Xiaoshuang Wang, Songchen Wang and Weidong Liu
Biomimetics 2024, 9(12), 762; https://doi.org/10.3390/biomimetics9120762 - 15 Dec 2024
Viewed by 1163
Abstract
Accurate replication of soft tissue properties is essential for the development of car crash test dummy skin to ensure the precision of biomechanical injury data. However, the intricacy of multi-layer soft tissue poses challenges in standardizing the development and testing of dummy skin [...] Read more.
Accurate replication of soft tissue properties is essential for the development of car crash test dummy skin to ensure the precision of biomechanical injury data. However, the intricacy of multi-layer soft tissue poses challenges in standardizing the development and testing of dummy skin materials to emulate soft tissue properties. This study presents a comprehensive testing and analysis of the compressive mechanical properties of both single and multi-layered soft tissues and car crash dummy skin materials, aiming to enhance the biofidelity of dummy skin. We presented one-term Ogden hyperelastic models and generalized Maxwell viscoelastic models for single-layer and multi-layer soft tissues, as well as dummy skin materials. The comparative analysis results indicate that the existing dummy skin material fails to fully consider the strain-rate-dependent characteristic of soft tissue. Furthermore, dummy skin materials exhibited ~3 times shorter relaxation times and ~2–3 times lower stress decay rates compared to soft tissues, suggesting a less viscous nature. This study provides an accurate representation of the mechanics of soft tissue and dummy skin under quasi-static compressive loading. The findings are instrumental for the development of novel bionic skin materials or structures to more precisely replicate the biomechanical properties of soft tissues, thereby enhancing the accuracy and reliability of car crash test dummies. Full article
Show Figures

Figure 1

14 pages, 2814 KB  
Article
Elastic Recovery In-Die During Cyclic Loading of Solid Anaerobic Digestate
by Grzegorz Łysiak and Ryszard Kulig
Materials 2024, 17(23), 5976; https://doi.org/10.3390/ma17235976 - 6 Dec 2024
Viewed by 646
Abstract
Anaerobic digestate represents a valuable organic by-product, with one of the main challenges being its enhanced utilization. Pelletization offers potential benefits by improving the digestate’s storability, facilitating transport, and significantly expanding its application as a fertilizer or biofuel. Understanding the mechanisms of densification [...] Read more.
Anaerobic digestate represents a valuable organic by-product, with one of the main challenges being its enhanced utilization. Pelletization offers potential benefits by improving the digestate’s storability, facilitating transport, and significantly expanding its application as a fertilizer or biofuel. Understanding the mechanisms of densification and their impact on the final product quality is essential and served as the inspiration for this research. Its primary focus was stress relaxation and the subsequent elongation of pellets within the compaction chamber (in-die). It investigated the hypothesis that elastic recovery, resulting from internal stress relaxation once the compressive force is removed, has direct implications for pellet quality. The investigations were conducted using a Zwick universal machine. Samples of digestate with varied moisture levels, i.e., 10, 13, 16, 19, and 22%, were loaded with amplitudes of 8, 11, 14, 17, and 20 kN. Ten loading and unloading cycles were employed. Elastic recovery (in-die) (ERin-die) in the investigated digestate increased with rising MC and compaction pressure but decreased with increasing cycle number. There was little correlation between ERin-die and pellet strength. Permanent strain energy exerted the greatest influence on pellet quality. Permanent strain energy had the greatest influence on pellet quality. Examining hysteresis loop behavior emerged as a promising area for further research to better understand springback phenomena. Full article
Show Figures

Figure 1

22 pages, 7670 KB  
Article
Structural, Magnetic, and Dielectric Properties of Laser-Ablated CoFe2O4/BaTiO3 Bilayers Deposited over Highly Doped Si(100)
by João Oliveira, Bruna M. Silva, Tiago Rebelo, Pedro V. Rodrigues, Rosa M. F. Baptista, Manuel J. L. F. Rodrigues, Michael Belsley, Neenu Lekshmi, João P. Araújo, Jorge A. Mendes, Francis Leonard Deepak and Bernardo G. Almeida
Materials 2024, 17(23), 5707; https://doi.org/10.3390/ma17235707 - 22 Nov 2024
Cited by 1 | Viewed by 1154
Abstract
Laser ablation was used to successfully fabricate multiferroic bilayer thin films, composed of BaTiO3 (BTO) and CoFe2O4 (CFO), on highly doped (100) Si substrates. This study investigates the influence of BaTiO3 layer thickness (50–220 nm) on the films’ [...] Read more.
Laser ablation was used to successfully fabricate multiferroic bilayer thin films, composed of BaTiO3 (BTO) and CoFe2O4 (CFO), on highly doped (100) Si substrates. This study investigates the influence of BaTiO3 layer thickness (50–220 nm) on the films’ structural, magnetic, and dielectric properties. The dense, polycrystalline films exhibited a tetragonal BaTiO3 phase and a cubic spinel CoFe2O4 layer. Structural analysis revealed compression of the CoFe2O4 unit cell along the growth direction, while the BaTiO3 layer showed a tetragonal distortion, more pronounced in thinner BTO layers. These strain effects, attributed to the mechanical interaction between both layers, induced strain-dependent wasp-waisted behavior in the films’ magnetic hysteresis cycles. The strain effects gradually relaxed with increasing BaTiO3 thickness. Raman spectroscopy and second harmonic generation studies confirmed BTO’s non-centrosymmetric ferroelectric structure at room temperature. The displayed dielectric permittivity dispersion was modeled using the Havriliak–Negami function combined with a conductivity term. This analysis yielded relaxation times, DC conductivities, and activation energies. The observed BTO relaxation time behavior, indicative of small-polaron transport, changed significantly at the BTO ferroelectric Curie temperature (Tc), presenting activation energies Eτ in the 0.1–0.3 eV range for T < Tc and Eτ > 0.3 eV for T > Tc. The BTO thickness-dependent Tc behavior exhibited critical exponents ν ~ 0.82 consistent with the 3D random Ising universality class, suggesting local disorder and inhomogeneities in the films. This was attributed to the composite structure of BTO grains, comprising an inner bulk-like structure, a gradient strained layer, and a disordered surface layer. DC conductivity analysis indicated that CoFe2O4 conduction primarily occurred through hopping in octahedral sites. These findings provide crucial insights into the dynamic dielectric behavior of multiferroic bilayer thin films at the nanoscale, enhancing their potential for application in emerging Si electronics-compatible magneto-electric technologies. Full article
Show Figures

Graphical abstract

22 pages, 10255 KB  
Article
Experimental and Numerical Insights into the Multi-Impact Response of Cork Agglomerates
by Guilherme J. Antunes e Sousa, Afonso J. C. Silva, Gabriel F. Serra, Fábio A. O. Fernandes, Susana P. Silva and Ricardo J. Alves de Sousa
Materials 2024, 17(19), 4772; https://doi.org/10.3390/ma17194772 - 28 Sep 2024
Viewed by 1112
Abstract
Due to their extraordinary qualities, including fire resistance, excellent crashworthiness, low thermal conductivity, permeability, non-toxicity, and reduced density, cellular materials have found extensive use in various engineering applications. This study uses a finite element analysis (FEA) to model the dynamic compressive behaviour of [...] Read more.
Due to their extraordinary qualities, including fire resistance, excellent crashworthiness, low thermal conductivity, permeability, non-toxicity, and reduced density, cellular materials have found extensive use in various engineering applications. This study uses a finite element analysis (FEA) to model the dynamic compressive behaviour of agglomerated cork to ascertain how its material density and stress relaxation behaviour are related. Adding the Mullins effect into the constitutive modelling of impact tests, its rebound phase and subsequent second impact were further examined and simulated. Quasi-static and dynamic compression tests were used to evaluate the mechanical properties of three distinct agglomerated cork composite samples to feed the numerical model. According to the results, agglomerated cork has a significant capacity for elastic rebound, especially under dynamic strain rates, with minimal permanent deformation. For instance, the minimum value of its bounce-back energy is 11.8% of the initial kinetic energy, and its maximum permanent plastic deformation is less than 10%. The material’s model simulation adequately depicts the agglomerated cork’s response to initial and follow-up impacts by accurately reproducing the material’s dynamic compressive behaviour. In terms of innovation, this work stands out since it tackles the rebounding phenomena, which was not previously investigated in this group’s prior publication, either numerically or experimentally. Thus, this group has expanded the research on cork materials’ attributes. Full article
Show Figures

Figure 1

15 pages, 3848 KB  
Article
Intrinsic Conductance of Ferroelectric Charged Domain Walls
by Feng Yang
Physics 2024, 6(3), 1083-1097; https://doi.org/10.3390/physics6030067 - 29 Aug 2024
Viewed by 2071
Abstract
Ferroelectric charged domain walls offer a revolutionary path for next-generation ferroelectric devices due to their exceptional conductivity within an otherwise insulating matrix. However, quantitative understanding of this “giant conductivity” has remained elusive due to the lack of robust models describing carrier behavior within [...] Read more.
Ferroelectric charged domain walls offer a revolutionary path for next-generation ferroelectric devices due to their exceptional conductivity within an otherwise insulating matrix. However, quantitative understanding of this “giant conductivity” has remained elusive due to the lack of robust models describing carrier behavior within CDWs. The current paper bridges this critical knowledge gap by employing a first-principles approach that incorporates Boltzmann transport theory and the relaxation time approximation. This strategy enables the calculation of carrier concentration, mobility, and conductivity for both head-to-head and tail-to-tail domain wall configurations within a stabilized periodic structure. The comprehensive transport analysis given here reveals that the accumulation of charge carriers, particularly their concentration, is the dominant factor governing domain wall conductance. Interestingly, observed conductance differences between head-to-head and tail-to-tail walls primarily arise from variations in carrier mobility. Additionally, this study demonstrates a significantly reduced domain wall width compared to previous reports. This miniaturization is attributed to the presence of compressive strain, which lowers the energy barrier for electron–hole pair generation. Furthermore, the findings here suggest that reducing the band gap presents a viable strategy for stabilizing charged domain walls. These results pave the way for the optimization and development of domain wall devices across a spectrum of ferroelectric materials. Full article
(This article belongs to the Section Applied Physics)
Show Figures

Figure 1

28 pages, 2843 KB  
Article
Theoretical Model of Structural Phase Transitions in Al-Cu Solid Solutions under Dynamic Loading Using Machine Learning
by Natalya Grachyova, Eugenii Fomin and Alexander Mayer
Dynamics 2024, 4(3), 526-553; https://doi.org/10.3390/dynamics4030028 - 12 Jul 2024
Cited by 1 | Viewed by 1526
Abstract
The development of dynamic plasticity models with accounting of interplay between several plasticity mechanisms is an urgent problem for the theoretical description of the complex dynamic loading of materials. Here, we consider dynamic plastic relaxation by means of the combined action of dislocations [...] Read more.
The development of dynamic plasticity models with accounting of interplay between several plasticity mechanisms is an urgent problem for the theoretical description of the complex dynamic loading of materials. Here, we consider dynamic plastic relaxation by means of the combined action of dislocations and phase transitions using Al-Cu solid solutions as the model materials and uniaxial compression as the model loading. We propose a simple and robust theoretical model combining molecular dynamics (MD) data, theoretical framework and machine learning (ML) methods. MD simulations of uniaxial compression of Al, Cu and Al-Cu solid solutions reveal a relaxation of shear stresses due to a combination of dislocation plasticity and phase transformations with a complete suppression of the dislocation activity for Cu concentrations in the range of 30–80%. In particular, pure Al reveals an almost complete phase transition from the FCC (face-centered cubic) to the BCC (body-centered cubic) structure at a pressure of about 36 GPa, while pure copper does not reveal it at least till 110 GPa. A theoretical model of stress relaxation is developed, taking into account the dislocation activity and phase transformations, and is applied for the description of the MD results of an Al-Cu solid solution. Arrhenius-type equations are employed to describe the rates of phase transformation. The Bayesian method is applied to identify the model parameters with fitting to MD results as the reference data. Two forward-propagation artificial neural networks (ANNs) trained by MD data for uniaxial compression and tension are used to approximate the single-valued functions being parts of constitutive relation, such as the equation of state (EOS), elastic (shear and bulk) moduli and the nucleation strain distance function describing dislocation nucleation. The developed theoretical model with machine learning can be further used for the simulation of a shock-wave structure in metastable Al-Cu solid solutions, and the developed method can be applied to other metallic systems, including high-entropy alloys. Full article
Show Figures

Figure 1

20 pages, 8046 KB  
Article
Gelatin-Based Scaffolds with Carrageenan and Chitosan for Soft Tissue Regeneration
by Chiara Pasini, Federica Re, Federica Trenta, Domenico Russo and Luciana Sartore
Gels 2024, 10(7), 426; https://doi.org/10.3390/gels10070426 - 28 Jun 2024
Cited by 8 | Viewed by 1910
Abstract
Motivated by the enormous potential of hydrogels in regenerative medicine, new biocompatible gelatin-based hybrid hydrogels were developed through a green process using poly(ethylene glycol) diglycidyl ether as a cross-linking agent, adding carrageenan and chitosan polysaccharides to the network to better mimic the hybrid [...] Read more.
Motivated by the enormous potential of hydrogels in regenerative medicine, new biocompatible gelatin-based hybrid hydrogels were developed through a green process using poly(ethylene glycol) diglycidyl ether as a cross-linking agent, adding carrageenan and chitosan polysaccharides to the network to better mimic the hybrid composition of native extracellular matrix. Overall, the hydrogels show suitable structural stability, high porosity and pore interconnectivity, good swellability, and finally, biocompatibility. Their mechanical behavior, investigated by tensile and compression tests, appears to be characterized by nonlinear elasticity with high compliance values, fast stress-relaxation, and good strain reversibility with no sign of mechanical failure for compressive loading–unloading cycles at relatively high deformation levels of 50%. Degradation tests confirm the hydrogel bioresorbability by gradual hydrolysis, during which the structural integrity of both materials is maintained, while their mechanical behavior becomes more and more compliant. Human Umbilical Cord-derived Mesenchymal Stem Cells (hUC-MSCs) were used to test the hydrogels as potential carriers for cell delivery in tissue engineering. hUC-MSCs cultured inside the hydrogels show a homogenous distribution and maintain their growth and viability for at least 21 days of culture, with an increasing proliferation trend. Hence, this study contributes to a further understanding of the potential use of hybrid hydrogels and hUC-MSCs for a wide range of biomedical applications, particularly in soft tissue engineering. Full article
(This article belongs to the Special Issue Design and Development of Gelatin-Based Materials)
Show Figures

Figure 1

16 pages, 2617 KB  
Article
Agarose as a Tissue Mimic for the Porcine Heart, Kidney, and Liver: Measurements and a Springpot Model
by Aadarsh Mishra and Robin O. Cleveland
Bioengineering 2024, 11(6), 589; https://doi.org/10.3390/bioengineering11060589 - 8 Jun 2024
Cited by 2 | Viewed by 2956
Abstract
Agarose gels are often used as a tissue mimic. The goal of this work was to determine the appropriate agarose concentrations that result in mechanical properties that match three different porcine organs. Strain tests were carried out with an amplitude varying from 0.01% [...] Read more.
Agarose gels are often used as a tissue mimic. The goal of this work was to determine the appropriate agarose concentrations that result in mechanical properties that match three different porcine organs. Strain tests were carried out with an amplitude varying from 0.01% to 10% at a frequency of 1 Hz on a range of agarose concentrations and porcine organs. Frequency sweep tests were performed from 0.1 Hz to a maximum of 9.5 Hz at a shear strain amplitude of 0.1% for agarose and porcine organs. In agarose samples, the effect of pre-compression of the samples up to 10% axial strain was considered during frequency sweep tests. The experimental measurements from agarose samples were fit to a fractional order viscoelastic (springpot) model. The model was then used to predict stress relaxation in response to a step strain of 0.1%. The prediction was compared to experimental relaxation data, and the results agreed within 12%. The agarose concentrations (by mass) that gave the best fit were 0.25% for the liver, 0.3% for the kidney, and 0.4% for the heart. At a frequency of 0.1 Hz and a shear strain of 0.1%, the agarose concentrations that best matched the shear storage modulus of the porcine organs were 0.4% agarose for the heart, 0.3% agarose for the kidney, and 0.25% agarose for the liver. Full article
(This article belongs to the Special Issue Biomechanics Analysis in Tissue Engineering)
Show Figures

Graphical abstract

Back to TopTop