Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,588)

Search Parameters:
Keywords = concrete durability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2696 KB  
Article
Thermal and Electrical Properties of Cement-Based Materials Reinforced with Nano-Inclusions
by Spyridoula G. Farmaki, Panagiota T. Dalla, Dimitrios A. Exarchos, Konstantinos G. Dassios and Theodore E. Matikas
Nanomanufacturing 2025, 5(3), 13; https://doi.org/10.3390/nanomanufacturing5030013 - 1 Sep 2025
Abstract
This study explores the influence of various nano-inclusions on the electrical and thermal properties of cement-based materials. Specifically, it investigates the incorporation of Multi-Walled Carbon Nanotubes (MWCNTs) and Graphene Nanoplatelets (GNPs) as reinforcement materials in cement composites. These advanced nanomaterials enhance the mechanical [...] Read more.
This study explores the influence of various nano-inclusions on the electrical and thermal properties of cement-based materials. Specifically, it investigates the incorporation of Multi-Walled Carbon Nanotubes (MWCNTs) and Graphene Nanoplatelets (GNPs) as reinforcement materials in cement composites. These advanced nanomaterials enhance the mechanical strength, durability, and functional properties of cementitious matrices. A series of experimental tests was conducted to evaluate the thermal and electrical behavior of nano-reinforced concrete, employing nondestructive evaluation techniques, such as Infrared Thermography (IRT) and Electrical Resistivity measurements. The results indicate that increasing the concentration of nanomaterials significantly improves both the thermal and electrical conductivity of the composites. Optimum performance was observed at a CNT dosage of 0.6% and a GNP dosage of 1.2% by weight of cement in cement paste, while in concrete, both nanomaterials showed a significant decrease in resistivity beginning at 1.0%, with optimal performance at 1.2%. The study also emphasizes the critical role of proper dispersion techniques, such as ultrasonication, in achieving a homogeneous distribution of nanomaterials within the cement matrix. These findings highlight the potential of carbon nanotubes (CNTs) and GNPs to enhance the multifunctional properties of cement-based materials, paving the way for their application in smart and energy-efficient construction applications. Full article
16 pages, 2351 KB  
Article
Use of Expansive Agents to Increase the Sustainability and Performance of Heat-Cured Concretes
by José Luis García Calvo and Pedro Carballosa
Buildings 2025, 15(17), 3128; https://doi.org/10.3390/buildings15173128 - 1 Sep 2025
Abstract
Heat-curing processes are often used to ensure the production rate of precast concrete elements, as this process increases the early strength of the material. However, the increase in curing temperature can negatively affect the final mechanical properties since cracking, and especially high porosity, [...] Read more.
Heat-curing processes are often used to ensure the production rate of precast concrete elements, as this process increases the early strength of the material. However, the increase in curing temperature can negatively affect the final mechanical properties since cracking, and especially high porosity, may occur under these conditions. In order to compensate for the expected loss in mechanical and durability-related properties, the cement content is typically increased. This solution raises the cost of the final product and reduces its sustainability. Thus, in this study, the development of expansive self-compacting concretes (SCCs) is proposed to achieve higher final mechanical properties without increasing cement contents. The mechanical properties, expansive performance, and porous microstructure have been evaluated under different curing regimes. The obtained results show that it is possible to obtain similar or even better mechanical performance in expansive concretes cured at high temperatures than in those cured in standard conditions, particularly when using ettringite-based expansive agents (EAs). Moreover, the use of limestone filler (LF) proved to be more suitable than the use of fly ashes in the working conditions evaluated in the present study. In this sense, the compressive strength at 28 days of SCC with LF and ettringite-based EAs is 4.3% higher than the one obtained under standard curing; moreover, the total porosity is reduced (5%), and the drying shrinkage is also limited. These aspects have not been previously reported in non-expansive heat-cured concretes and represent a unique opportunity to reduce the cement content and, therefore, the carbon footprint of precast concretes without reducing their mechanical properties. When using CaO-based EAs, the results are also better than those of non-expansive SCC, although the improvement is less pronounced than in the previous case. Full article
Show Figures

Figure 1

23 pages, 8928 KB  
Article
Dynamic Fracture Strength Prediction of HPFRC Using a Feature-Weighted Linear Ensemble Approach
by Xin Cai, Yunmin Wang, Yihan Zhao, Liye Chen and Jifeng Yuan
Materials 2025, 18(17), 4097; https://doi.org/10.3390/ma18174097 (registering DOI) - 1 Sep 2025
Abstract
Owing to its excellent crack resistance and durability, High-Performance Fiber-Reinforced Concrete (HPFRC) has been extensively applied in engineering structures exposed to extreme loading conditions. The Mode I dynamic fracture strength of HPFRC under high-strain-rate conditions exhibits significant strain-rate sensitivity and nonlinear response characteristics. [...] Read more.
Owing to its excellent crack resistance and durability, High-Performance Fiber-Reinforced Concrete (HPFRC) has been extensively applied in engineering structures exposed to extreme loading conditions. The Mode I dynamic fracture strength of HPFRC under high-strain-rate conditions exhibits significant strain-rate sensitivity and nonlinear response characteristics. However, existing experimental methods for strength measurement are limited by high costs and the absence of standardized testing protocols. Meanwhile, conventional data-driven models for strength prediction struggle to achieve both high-precision prediction and physical interpretability. To address this, this study introduces a dynamic fracture strength prediction method based on a feature-weighted linear ensemble (FWL) mechanism. A comprehensive database comprising 161 sets of high-strain-rate test data on HPFRC fracture strength was first constructed. Key modeling variables were then identified through correlation analysis and an error-driven feature selection approach. Subsequently, six representative machine learning models (KNN, RF, SVR, LGBM, XGBoost, MLPNN) were employed as base learners to construct two types of ensemble models, FWL and Voting, enabling a systematic comparison of their performance. Finally, the predictive mechanisms of the models were analyzed for interpretability at both global and local scales using SHAP (SHapley Additive exPlanations) and LIME (Local Interpretable Model-agnostic Explanations) methods. The results demonstrate that the FWL model achieved optimal predictive performance on the test set (R2 = 0.908, RMSE = 2.632), significantly outperforming both individual models and the conventional ensemble method. Interpretability analysis revealed that strain rate and fiber volume fraction are the primary factors influencing dynamic fracture strength, with strain rate demonstrating a highly nonlinear response mechanism across different ranges. The integrated prediction framework developed in this study offers the combined advantages of high accuracy, robustness, and interpretability, providing a novel and effective approach for predicting the fracture behavior of HPFRC under high-strain-rate conditions. Full article
Show Figures

Figure 1

23 pages, 1070 KB  
Review
Waste By-Products in Asphalt Concrete Pavement Construction: A Review
by Nuha S. Mashaan, Daniel O. Oguntayo and Chathurika Dassanayake
Materials 2025, 18(17), 4092; https://doi.org/10.3390/ma18174092 (registering DOI) - 1 Sep 2025
Abstract
The use of mining by-products in bitumen and asphalt mixture modification has drawn a lot of interest lately since it can improve pavement performance while advancing the goals of the circular economy and environmental sustainability. Mining by-products such as steel slag, red mud, [...] Read more.
The use of mining by-products in bitumen and asphalt mixture modification has drawn a lot of interest lately since it can improve pavement performance while advancing the goals of the circular economy and environmental sustainability. Mining by-products such as steel slag, red mud, silica fume, and fly ash have demonstrated good results as sustainable materials for improving the chemical, mechanical, durability, and rheological properties of asphalt binders and mixtures while also reducing the environmental degradation brought about by the disposal of these by-products. This study reviews research efforts on mining by-products (specifically steel slag, silica fume, red mud, and fly ash) in asphalt concrete pavement construction, analyzing the existing research, with emphasis on their various applications in asphalt concrete, their benefits as sustainable asphalt concrete materials, and limitations connected to their use. This review concludes by providing future directions in the utilization of these mining by-products in asphalt concrete production. This review contributes to the development of cost-effective, eco-friendly, and high-performance road construction materials, helping the transition to sustainable infrastructure. Full article
Show Figures

Figure 1

11 pages, 1915 KB  
Article
Thermal Effect on Fiber-Reinforced Concrete Link Slab with Existing Bearing Modification
by Kuang-Yuan Hou, Yifan Zhu, Naiyi Li and Chung C. Fu
Infrastructures 2025, 10(9), 229; https://doi.org/10.3390/infrastructures10090229 - 31 Aug 2025
Abstract
This paper analyzes the long-term thermal effect of newly applied fiber-reinforced concrete link slabs on an existing steel bridge for a rehabilitation project of the Maryland Transportation Authority. To enhance structural resilience, thermal movement is one of the major concerns in concrete link [...] Read more.
This paper analyzes the long-term thermal effect of newly applied fiber-reinforced concrete link slabs on an existing steel bridge for a rehabilitation project of the Maryland Transportation Authority. To enhance structural resilience, thermal movement is one of the major concerns in concrete link slab design. To accommodate the global thermal expansion of a full bridge, the existing fixed bearings were modified to expansion bearings to release the longitudinal thermal movement of the super-structure. Their movements were measured by the installed LVDT devices. In this pilot study for the Maryland Transportation Authority (MDTA), engineered cementitious composite (ECC) and ultra-high-performance concrete (UHPC) were selected as candidate materials for link slabs to replace traditional steel expansion joints. To evaluate the performances of ECC and UHPC, built-in strain gauges were implemented for long-term field monitoring to ensure the durability of link slabs. For comparison, the measured data were collected over two full years to study their thermal effects in order to evaluate their sustainability. The novelty of the study is in comparing the performance of different materials side-by-side using true sensor measurements and numerical simulation. Thermal movement performance, including thermal cracking, will be one of the major selection criteria for the link slab material. Full article
Show Figures

Figure 1

19 pages, 3164 KB  
Article
Deteriorated Cyclic Behaviour of Corroded RC Framed Elements: A Practical Proposal for Their Modelling
by José Barradas-Hernández, Dariniel Barrera-Jiménez, Irving Ramírez-González, Franco Carpio-Santamaría, Alejandro Vargas-Colorado, Sergio Márquez-Domínguez, Rolando Salgado-Estrada, José Piña-Flores and Abigail Zamora-Hernández
Buildings 2025, 15(17), 3110; https://doi.org/10.3390/buildings15173110 - 29 Aug 2025
Viewed by 91
Abstract
Corrosion is a phenomenon that significantly impacts the durability of reinforced concrete (RC) structures, particularly in highly corrosive environments like coastal regions. The existing numerical modelling often relies on complex approaches that are impractical for structural assessment. For this reason, this study proposes [...] Read more.
Corrosion is a phenomenon that significantly impacts the durability of reinforced concrete (RC) structures, particularly in highly corrosive environments like coastal regions. The existing numerical modelling often relies on complex approaches that are impractical for structural assessment. For this reason, this study proposes a simplified numerical modelling approach to simulate the cyclic behaviour of existing RC framed structures with corrosion levels (η) below 25%. The proposed modelling employs concentrated plasticity hinges for beams and fiber sections for columns, incorporating corrosion-induced degradation through modified backbone curves and material properties based on the corrosion level of the structural element. The modelling approach was validated against experimental results from the literature; the proposed model adequately captures hysteretic energy, lateral load, and deformation capacities, with maximum errors of 11% for maximum lateral load, 12% for ultimate load, and 33% for dissipated energy in RC frames. For isolated columns, the errors were 11, 12, and 22%, respectively. In addition, a maximum difference of 7% was found in the lateral load capacity of the corroded frames associated with the Life Safety limit state. Finally, it was concluded that the proposed methodology is suitable for representing the cyclic behaviour of corroded RC columns and frames and provides engineers with a tool to evaluate the behaviour of corroded structures without resorting to complex models. Full article
(This article belongs to the Special Issue Seismic Performance and Durability of Engineering Structures)
Show Figures

Figure 1

18 pages, 1103 KB  
Article
Optimizing Carbon Footprint and Strength in High-Performance Concrete Through Data-Driven Modeling
by Saloua Helali, Shadiah Albalawi, Maer Alanazi, Bashayr Alanazi and Nizar Bel Hadj Ali
Sustainability 2025, 17(17), 7808; https://doi.org/10.3390/su17177808 (registering DOI) - 29 Aug 2025
Viewed by 126
Abstract
High-performance concrete (HPC) is an essential construction material used for modern buildings and infrastructure assets, recognized for its exceptional strength, durability, and performance under harsh situations. Nonetheless, the HPC production process frequently correlates with elevated carbon emissions, principally attributable to the high quantity [...] Read more.
High-performance concrete (HPC) is an essential construction material used for modern buildings and infrastructure assets, recognized for its exceptional strength, durability, and performance under harsh situations. Nonetheless, the HPC production process frequently correlates with elevated carbon emissions, principally attributable to the high quantity of cement utilized, which significantly influences its carbon footprint. In this study, data-driven modeling and optimization strategies are employed to minimize the carbon footprint of high-performance concretes while keeping their performance properties. Starting from an experimental dataset, artificial neural networks (ANNs), ensemble techniques (ETs), and Gaussian process regression (GPR) are employed to yield predictive models for compressive strength of HPC mixes. The model’s input variables are the various components of HPC: cement, water, superplasticizer, fly ash, blast furnace slag, and coarse and fine aggregates. Models are trained using a dataset of 356 records. Results proved that the GPR-based model exhibits excellent accuracy with a determination coefficient of 0.90. The prediction model is used in a double objective optimization task formulated to identify mix configurations that allow for high mechanical performance aligned with a reduced carbon emission. The multi-objective optimization task is undertaken using genetic algorithms (GAs). Promising results are obtained when the machine learning prediction model is associated with GA optimization to identify strong yet sustainable mix configurations. Full article
(This article belongs to the Special Issue Advancements in Concrete Materials for Sustainable Construction)
Show Figures

Figure 1

17 pages, 957 KB  
Article
Experimental Investigation of the Effect of Nano Silica Fume on Durability of Concrete with Close-Packing Aggregate
by Zilong Ye, Xin Qu, Jiajun Li, Tianhao Ye, Gengying Li and Haiyang Wang
Materials 2025, 18(17), 4061; https://doi.org/10.3390/ma18174061 - 29 Aug 2025
Viewed by 106
Abstract
Achieving the close packing and interlocking of coarse aggregates in concrete enhances the elastic modulus, thereby reducing deformation, and can improve the overall stiffness of concrete structures. This study focuses on reinforcing and toughening concrete with close-packing aggregate with silica fume and micro-steel [...] Read more.
Achieving the close packing and interlocking of coarse aggregates in concrete enhances the elastic modulus, thereby reducing deformation, and can improve the overall stiffness of concrete structures. This study focuses on reinforcing and toughening concrete with close-packing aggregate with silica fume and micro-steel fibers, and investigates its durability properties, including long-term mechanical performance, water absorption, and sulfate erosion resistance under dry–wet cyclic exposure. The experimental results indicate that the 360-day long-term compressive strength of the concrete reaches up to 109.3 MPa, and the 360-day flexural strength reaches 11.62 MPa. The addition of silica fume effectively reduces the water absorption of concrete with close-packing aggregate and improves its sulfate erosion resistance under dry–wet cycles. The lowest 28-day water absorption rate is 2.41%, and after 150 cycles of sulfate erosion, the compressive strength corrosion resistance coefficient of the concrete can be maintained at up to 68.4%, while the sulfate erosion resistance grade reaches up to KS120. The concrete overall exhibits excellent durability properties. Moreover, this is beneficial for enhancing the concrete’s performance under dry–wet cycles and its resistance to the effects of sulfate attack. Full article
Show Figures

Figure 1

22 pages, 3246 KB  
Article
Effects of Recycled and Supplemented Cementitious Materials on Corrosion Resistance and Mechanical Properties in Reinforced Concrete
by Abdulrahman Al Fuhaid
J. Compos. Sci. 2025, 9(9), 457; https://doi.org/10.3390/jcs9090457 - 29 Aug 2025
Viewed by 252
Abstract
Reinforced concrete is the most widely utilized building material for bridges, buildings, and other infrastructure components, and its longevity is significantly influenced by corrosion or rust. Corrosion shortens reinforced concrete’s service life and safety, which raises maintenance expenses. Concrete is a porous material [...] Read more.
Reinforced concrete is the most widely utilized building material for bridges, buildings, and other infrastructure components, and its longevity is significantly influenced by corrosion or rust. Corrosion shortens reinforced concrete’s service life and safety, which raises maintenance expenses. Concrete is a porous material that allows air and water to pass through, and corrosion begins when the air and water reach the steel. This study evaluated the mechanical and corrosion resistance properties of reinforced concrete containing recycled and supplemented cementitious materials. The results showed that mixtures containing fine glass aggregate, glass powder, slag, fly ash, or silica fume significantly improved the compressive, tensile, and flexural strengths, but the 10% slag mix, and 5% glass aggregate with 10% glass powder with 10% fly ash mix produced the best results overall. In addition, the mixture containing 15% fly ash produced the best result against corrosion. The corrosion tests revealed that mixtures with 10% slag and 20% glass powder also significantly enhanced the corrosion resistance of steel with the same results, confirming their effectiveness in reducing the permeability and increasing the durability of reinforced concrete. Full article
Show Figures

Figure 1

18 pages, 3364 KB  
Article
Mitigation of Carbonation-Induced Corrosion in Alkali-Activated Slag Concrete Using Calcined Mg–Al Hydrotalcite: Electrochemical and Microstructural Evaluations
by Willian Aperador, Jonnathan Aperador and J. C. Caicedo
Corros. Mater. Degrad. 2025, 6(3), 40; https://doi.org/10.3390/cmd6030040 - 27 Aug 2025
Viewed by 152
Abstract
This study investigates the effectiveness of calcined magnesium–aluminium layered double hydroxide (CLDH) as a functional additive for mitigating carbonation-induced corrosion in alkali-activated slag concrete (AASC). Mixtures incorporating different CLDH contents (0%, 2%, 4%, 6%, and 8%) were evaluated under accelerated CO2 exposure [...] Read more.
This study investigates the effectiveness of calcined magnesium–aluminium layered double hydroxide (CLDH) as a functional additive for mitigating carbonation-induced corrosion in alkali-activated slag concrete (AASC). Mixtures incorporating different CLDH contents (0%, 2%, 4%, 6%, and 8%) were evaluated under accelerated CO2 exposure (3%, 65% RH, 25 °C) for 90 days. Mechanical characterisation was carried out through 28-day compressive strength tests to assess the potential impact of CLDH on the structural performance of the material. Performance characterisation included electrochemical impedance spectroscopy (EIS) to assess the corrosion of embedded steel, phenolphthalein spraying to determine the carbonation depth, and complementary techniques such as X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and scanning electron microscopy (SEM/EDX) for assessments of the microstructural evolution. The results demonstrate that CLDH significantly enhances resistance to CO2 ingress, increasing the polarisation resistance (Rp) to over 55 kΩ·cm2 (at 6% CLDH) and reducing the carbonation depth by more than 50% compared to the reference mix. These improvements are attributed to the memory effect-induced regeneration of LDH-type lamellar phases, controlled release of OH and CO32− anions, and progressive densification of the microstructure, thereby limiting the ingress of aggressive agents. The optimal dosage was identified as 6%, as higher contents offered no further improvement and evidenced the formation of residual phases such as MgO. This work highlights the potential of CLDH as an effective and sustainable strategy to enhance the durability of alkali-activated cementitious materials against degradation processes driven by carbonation and corrosion. Full article
Show Figures

Figure 1

34 pages, 10007 KB  
Review
Mechanical and Durability Properties of Concrete Prepared with Coal Gangue: A Review
by Xiaorui Jia, Weitao Li, Xin Dong, Bo Liu, Juannong Chen, Jiayue Li and Guowei Ni
Buildings 2025, 15(17), 3048; https://doi.org/10.3390/buildings15173048 - 26 Aug 2025
Viewed by 376
Abstract
Coal gangue, an industrial byproduct of coal mining, was traditionally utilized in concrete production as a coarse aggregate. However, recent advancements have expanded its application by processing it into fine powder for use as a supplementary cementitious material (SCM), partially replacing cement. This [...] Read more.
Coal gangue, an industrial byproduct of coal mining, was traditionally utilized in concrete production as a coarse aggregate. However, recent advancements have expanded its application by processing it into fine powder for use as a supplementary cementitious material (SCM), partially replacing cement. This approach not only enhances the sustainable reuse of coal gangue but also contributes to reducing cement consumption and associated carbon emissions. Nevertheless, the incorporation of coal gangue may adversely affect the mechanical strength and long-term durability of concrete. This review provides a systematic analysis of recent research on coal gangue-modified concrete. It begins by classifying the functional roles of coal gangue in concrete mixtures, followed by a critical evaluation of its impact on mechanical properties and durability—both as an aggregate an as a mineral admixture. When 30% of the aggregate is replaced with activated coal gangue, the average compressive strength of concrete increases by 15%. When coal gangue replaces less than 20% of the cement, the compressive strength of concrete can reach 95% of the reference strength. Second, the review evaluates the modification effects of various mineral admixtures, elucidating their mechanisms for enhancing mechanical properties and durability in coal gangue-based concrete. Finally, it examines the underlying interaction mechanisms between these admixtures and coal gangue, while identifying key future research directions for optimizing admixture formulations. By providing a comprehensive and critical analysis of current research, this paper serves as a valuable reference for developing high-performance coal gangue concrete with increased substitution rates and tailored admixture systems. Ultimately, this work advances the design of sustainable, low-cement concrete using industrial byproducts, enabling performance-driven applications and supporting next-generation green construction materials. Full article
Show Figures

Graphical abstract

11 pages, 1928 KB  
Article
Development and Performance Analysis of a Modified Polyurea Hydrophobic Coating for Improving Water Conveyance Efficiency in Concrete Channel Linings
by Ling-Yun Feng, Qi-Hui Chai, Chun-Li Liu and Jing-Jing Liu
Water 2025, 17(17), 2535; https://doi.org/10.3390/w17172535 - 26 Aug 2025
Viewed by 354
Abstract
To overcome the shortcomings of traditional concrete coatings, such as high roughness and poor frost resistance, this study developed and evaluated a new hydrophobic coating—modified polyurea hydrophobic coating (MPHC). MPHC features strong adhesion, high hydrophobicity and excellent durability. The coating performance was evaluated [...] Read more.
To overcome the shortcomings of traditional concrete coatings, such as high roughness and poor frost resistance, this study developed and evaluated a new hydrophobic coating—modified polyurea hydrophobic coating (MPHC). MPHC features strong adhesion, high hydrophobicity and excellent durability. The coating performance was evaluated through contact angle measurement, tensile bond strength test, and assessment of environmental durability under several aging conditions including immersion, heat resistance and freeze–thaw cycles. The experimental results showed that the surface contact angle of MPHC reached 131.2°, demonstrating strong hydrophobicity. After durability testing, there was no significant decrease in contact angle and bond strength, confirming the robustness of the coating. The coating combines a “dual structure” formed by polydimethylsiloxane and microsilica powder, thereby creating a hydrophobic rough surface. This structure minimizes the fluid–solid interface area and adhesion, thereby enhancing drag reduction performance. In drag reduction tests on channel model linings, compared with ordinary concrete, MPHC reduced the roughness coefficient by 10.0–11.6%, and by 7.4–7.5% compared with ordinary polyurea coatings. The outstanding hydrophobicity, durability and drag reduction performance of MPHC make it a promising solution for improving the water conveyance efficiency of concrete-lined channels. Full article
(This article belongs to the Special Issue Risk Assessment and Mitigation for Water Conservancy Projects)
Show Figures

Figure 1

12 pages, 2832 KB  
Article
Study of Mechanical and Fracture Properties of Concrete with Different Lengths of Polypropylene Fibers
by Kristýna Hrabová, Jaromír Láník and Petr Lehner
Buildings 2025, 15(17), 3041; https://doi.org/10.3390/buildings15173041 - 26 Aug 2025
Viewed by 261
Abstract
This study investigates the effect of polypropylene fibers of different lengths (54 mm, 38 mm, 19 mm) on the mechanical and fracture properties of high-strength concrete. Unlike most existing research focusing on a single fiber length, this work evaluates a fixed hybrid ratio [...] Read more.
This study investigates the effect of polypropylene fibers of different lengths (54 mm, 38 mm, 19 mm) on the mechanical and fracture properties of high-strength concrete. Unlike most existing research focusing on a single fiber length, this work evaluates a fixed hybrid ratio of 4:1:1, thereby addressing the synergistic action of macro- and microfibers. Three dosages were tested and compared to a reference mixture without fibers. Validation was performed by repeated testing of multiple specimens and statistical evaluation of mean values and standard deviations. The results showed that the optimal hybrid mixture (2.0/0.5/0.5 kg/m3) increased compressive strength by 28.7% and splitting tensile strength by 30.1% relative to the reference. Fracture toughness and specific fracture energy also improved significantly, demonstrating enhanced crack resistance and energy absorption. The main contribution of this work is to provide experimental evidence that a hybrid combination of polypropylene fibers at a fixed ratio can improve both mechanical strength and fracture resistance, with direct implications for durability and service life. Full article
Show Figures

Figure 1

26 pages, 3305 KB  
Review
AAR-Reactive Fillers in Concrete: Current Understanding and Knowledge Gaps
by Yane Coutinho, Rennan Medeiros, Leandro Sanchez and Arnaldo Carneiro
Buildings 2025, 15(17), 3025; https://doi.org/10.3390/buildings15173025 - 25 Aug 2025
Viewed by 233
Abstract
The depletion of natural resources and the increasing interest in reducing CO2 emissions have heightened the demand for alternative materials in concrete production. A viable approach is to lower the clinker-to-cementitious materials ratio by partially replacing clinker with supplementary cementitious materials (SCMs) [...] Read more.
The depletion of natural resources and the increasing interest in reducing CO2 emissions have heightened the demand for alternative materials in concrete production. A viable approach is to lower the clinker-to-cementitious materials ratio by partially replacing clinker with supplementary cementitious materials (SCMs) and/or alternative materials such as aggregate mineral fillers (AMFs). As the availability of SCMs is expected to decline, AMFs have been increasingly explored, including those derived from aggregate processing and susceptible to alkali-aggregate reaction (AAR). However, the behaviour of AAR-reactive AMFs in concrete remains poorly understood. This paper summarizes the current state of the art and identifies knowledge gaps concerning the use of AAR-reactive AMFs, focusing on the roles of mineralogy, particle size, replacement content, and the test methods used to assess AAR-induced development and associated microscopic and mechanical deterioration. A consistent terminology is also proposed to support future research. Finally, a theoretical foundation to understand the role of AAR-reactive AMFs in mortar and concrete is provided, and the key knowledge gaps are discussed. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

20 pages, 4719 KB  
Article
Experimental Investigation on the Bonding Performance of Steel Bars in Desert Sand Concrete After Freeze–Thaw Cycles
by Min Li, Zhiqiang Li and Jian Jiao
Materials 2025, 18(17), 3971; https://doi.org/10.3390/ma18173971 - 25 Aug 2025
Viewed by 481
Abstract
Desert sand (DS) serves as a sustainable alternative to river sand in concrete production, delivering environmental and economic benefits. Furthermore, the durability of concrete structures in cold regions is severely affected by freeze–thaw (F-T) cycles. Therefore, this study employed a central pull-out test [...] Read more.
Desert sand (DS) serves as a sustainable alternative to river sand in concrete production, delivering environmental and economic benefits. Furthermore, the durability of concrete structures in cold regions is severely affected by freeze–thaw (F-T) cycles. Therefore, this study employed a central pull-out test to examine the bond performance between desert sand concrete (DSC) and steel bars subjected to F-T cycles, considering the effects of the number of F-T cycles, DS replacement ratios (i.e., the replacement ratio of river sand by DS), and the type of reinforcement. The F-T cycle numbers tested were 0, 25, 50, and 75 cycles. The DS replacement ratios were varied at 0%, 20%, 40%, 60%, 80%, and 100%. The plain and threaded steel bars (PSBs and TSBs) were selected for the experiment. The results indicate a decrease in bond strength for both PSB and TSB specimens with increasing F-T cycle numbers. Regarding the DS replacement ratios, bond strength initially decreased, with an increasing replacement rate, then increased, and eventually reduced again. Notably, significantly improved bonding was observed for steel reinforcement in DSC containing 40% or 60% DS compared to plain concrete. Additionally, the bond strengths of PSB specimens were lower than those of TSB specimens under identical conditions. A calculation formula for the bond–slip characteristic was derived using statistical regression, which considered multiple factors. Eventually, a bond–slip constitutive model was developed for the interface between DSC and reinforced steel, showing a high degree of consistency with the experimental data. Full article
Show Figures

Figure 1

Back to TopTop