Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (355)

Search Parameters:
Keywords = confocal laser scanning microscope

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 12134 KB  
Article
Dispersed and Co-Continuous Morphologies of Epoxy Asphalt Bond Coats and Their Effects on Mechanical Performance
by Suzhou Cao, Haocheng Yang, Xinpeng Cui, Zhonghua Xi, Jun Cai, Junsheng Zhang and Hongfeng Xie
Molecules 2025, 30(17), 3513; https://doi.org/10.3390/molecules30173513 - 27 Aug 2025
Viewed by 428
Abstract
The co-continuous microstructure represents an ideal configuration for polymer-modified asphalts. Consequently, determining the optimum polymer content hinges on establishing this critical network between polymer and bitumen. In this study, epoxy asphalt bond coats (EABCs) exhibiting three distinct morphologies (epoxy-dispersed, co-continuous, and bitumen-dispersed) were [...] Read more.
The co-continuous microstructure represents an ideal configuration for polymer-modified asphalts. Consequently, determining the optimum polymer content hinges on establishing this critical network between polymer and bitumen. In this study, epoxy asphalt bond coats (EABCs) exhibiting three distinct morphologies (epoxy-dispersed, co-continuous, and bitumen-dispersed) were prepared. Phase structure evolution and the final cured morphology were analyzed using a laser scanning confocal microscope (LSCM). Rotational viscosity–time characteristics, tensile properties, single-lap shear strength, and pull-off adhesion strength were characterized using various techniques. Results indicated that the viscosity of EABCs at the late stage of the curing reaction increased with increasing epoxy resin (ER) concentration, whereas the time required for EABCs to reach a viscosity of 5 Pa·s decreased. LSCM analysis revealed that EABCs exhibited three distinct morphologies dependent on ER concentration: (1) a bitumen-continuous morphology with dispersed epoxy domains (41–42 vol.% ER) formed via a nucleation and growth mechanism; (2) a co-continuous structure (43–45 vol.% ER); and (3) an epoxy-continuous structure with dispersed bitumen domains (46 vol.% ER). Furthermore, the EABC with 42 vol.% exhibited a transitional morphology between bitumen-continuous and co-continuous structures. A significant improvement in mechanical properties occurred during the transition from the bitumen-continuous (41 vol.% ER) to the co-continuous morphology (43 vol.% ER): tensile strength, elongation at break, and toughness increased by 524%, 1298%, and 2732%, respectively. Simultaneously, pull-off adhesion strength and single-lap shear strength rose by 61% and 99%, respectively. In contrast, mechanical properties increased only gradually during the co-continuous phase and the subsequent transition to an epoxy-continuous morphology (45–46 vol.% ER). Considering cost, rotational viscosity–time dependence, and mechanical performance, an ER concentration of 43 vol.% (within the co-continuous region) is optimal for EABC production. Full article
Show Figures

Figure 1

10 pages, 2816 KB  
Field Guide
Morphometric Characterization of Bacteria Associated with Bacteremia
by Ladees Al Hafi and Evangelyn C. Alocilja
Encyclopedia 2025, 5(3), 130; https://doi.org/10.3390/encyclopedia5030130 - 27 Aug 2025
Viewed by 1012
Abstract
Among the leading causes of bacteremia are Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus. E. coli and K. pneumoniae are increasingly exhibiting resistance to last-resort antibiotics, such as carbapenems. Rapid and accurate identification of these pathogens is critical for timely [...] Read more.
Among the leading causes of bacteremia are Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus. E. coli and K. pneumoniae are increasingly exhibiting resistance to last-resort antibiotics, such as carbapenems. Rapid and accurate identification of these pathogens is critical for timely treatment and infection control. This paper aimed to develop a computer-aided bacterial morphometric technique for identifying and classifying wild-type E. coli, K. pneumoniae, and S. aureus in a field guide fashion. A 3D laser scanning confocal microscope was used to gather key parameters of each organism: length (L, µm), circular diameter (CD, µm), volume (V, µm3), surface area-to-cross-sectional area ratio (SA/CSA, unitless), surface uniformity ratio (Str), and surface texture ratio (Sdr). Microscope images and measurement results showed that S. aureus was spherical with the shortest length (1.08 µm) and smallest volume (0.52 µm3). E. coli and K. pneumoniae were rod-shaped with lengths >2.0 µm and volumes >1.0 µm3. Carbapenem-resistant (CR) strains exhibited larger volumes than their wild-type counterparts. Surface parameters further differentiated strains: wild-type E. coli had a greater surface texture or a less smooth surface (larger Sdr) than K. pneumoniae (lower Sdr) did. CR E. coli had more surface uniformity (lower Str) than CR K. pneumoniae did. A dichotomous key based on shape, circular diameter, volume, length, and surface characteristics was developed to classify the species using a series of paired, contrasting features. This morphometric analysis can aid researchers in quickly identifying bacteria, leading to faster diagnosis of life-threatening diseases and improved treatment decisions. Full article
Show Figures

Figure 1

13 pages, 1761 KB  
Article
3D Measurement of Neutron-Induced Tracks Using Confocal Microscopy
by Gavin K. Gillmore, David Wertheim, Alan Flowers, Maria Dugdale, Jonathan S. Eakins and Kerry Olssen
Sensors 2025, 25(17), 5256; https://doi.org/10.3390/s25175256 - 23 Aug 2025
Viewed by 598
Abstract
Using a 3D microscope imaging technique that we pioneered for alpha-track imaging of Solid-State Nuclear Track Detectors (SSNTDs), here, we present results from imaging of neutron-induced recoil proton tracks formed by exposing CR39-based detectors to an 241Am(Be) neutron source. Detectors were arranged [...] Read more.
Using a 3D microscope imaging technique that we pioneered for alpha-track imaging of Solid-State Nuclear Track Detectors (SSNTDs), here, we present results from imaging of neutron-induced recoil proton tracks formed by exposing CR39-based detectors to an 241Am(Be) neutron source. Detectors were arranged at zero, thirty, and sixty degrees to the source to assess any variation in the tracks according to source orientation. An Olympus (Olympus Corporation Japan) LEXT laser scanning confocal microscope was used to image the SSNTDs. Depth and cross-sectional size measurements were made on nine tracks, with a median (range) of 3.07 μm in depth (min 0.98 μm to max 8.34 μm), width in plan view of 7.49 μm (min 4.00 μm to 14.89 μm max), and breadth in plan view of 8.41 μm (min 4.17 μm to max 11.80 μm). In this study, we have shown our confocal microscopy approach can successfully image the 3D surface of neutron-induced tracks in SSNTDs; the imaging method thus enables the measurement of track cross-sectional dimensions and depth, as well as the identification of angled tracks. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

19 pages, 6624 KB  
Article
Visual Observation of Polystyrene Microplastics/Nanoplastics in Peanut Seedlings and Their Effects on Growth and the Antioxidant Defense System
by Yuyang Li, Xinyi Huang, Qiang Lv, Zhanqiang Ma, Minhua Zhang, Jing Liu, Liying Fan, Xuejiao Yan, Nianyuan Jiao, Aneela Younas, Muhammad Shaaban, Jiakai Gao, Yanfang Wang and Ling Liu
Agronomy 2025, 15(8), 1895; https://doi.org/10.3390/agronomy15081895 - 6 Aug 2025
Viewed by 376
Abstract
Peanut cultivation is widely practiced using plastic mulch film, resulting in the accumulation of microplastics/nanoplastics (MPs/NPs) in agricultural soils, potentially negatively affecting peanut growth. To investigate the effects of two polystyrene (PS) sizes (5 μm, 50 nm) and three concentrations (0, 10, and [...] Read more.
Peanut cultivation is widely practiced using plastic mulch film, resulting in the accumulation of microplastics/nanoplastics (MPs/NPs) in agricultural soils, potentially negatively affecting peanut growth. To investigate the effects of two polystyrene (PS) sizes (5 μm, 50 nm) and three concentrations (0, 10, and 100 mg L−1) on peanut growth, photosynthetic efficiency, and physiological characteristics, a 15-day hydroponic experiment was conducted using peanut seedlings as the experimental material. The results indicated that PS-MPs/NPs inhibited peanut growth, reduced soil and plant analyzer development (SPAD) values (6.7%), and increased levels of malondialdehyde (MDA, 22.0%), superoxide anion (O2, 3.8%) superoxide dismutase (SOD, 16.1%) and catalase (CAT, 12.1%) activity, and ascorbic acid (ASA, 12.6%) and glutathione (GSH, 9.1%) contents compared to the control. Moreover, high concentrations (100 mg L−1) of PS-MPs/NPs reduced the peanut shoot fresh weight (16.1%) and SPAD value (7.2%) and increased levels of MDA (17.1%), O2 (5.6%), SOD (10.6%), POD (27.2%), CAT (7.3%), ASA (12.3%), and GSH (6.8%) compared to low concentrations (10 mg L−1) of PS-MPs/NPs. Notably, under the same concentration, the impact of 50 nm PS-NPs was stronger than that of 5 μm PS-MPs. The peanut shoot fresh weight of PS-NPs was lower than that of PS-MPs by an average of 7.9%. Additionally, we found that with an increasing exposure time of PS-MPs/NPs, the inhibitory effect of low concentrations of PS-MPs/NPs on the fresh weight was decreased by 2.5%/9.9% (5 d) and then increased by 7.7%/2.7% (15 d). Conversely, high concentrations of PS-MPs/NPs consistently reduced the fresh weight. Correlation analysis revealed a clear positive correlation between peanut biomass and both the SPAD values as well as Fv/Fm, and a negative correlation with MDA, SOD, CAT, ASA, and GSH. Furthermore, the presence of PS-MPs/NPs in roots, stems, and leaves was confirmed using a confocal laser scanning microscope. The internalization of PS-MPs/NPs within peanut tissues negatively impacted peanut growth by increasing the MDA and O2 levels, reducing the SPAD values, and inhibiting the photosynthetic capacity. In conclusion, the study demonstrated that the effects of PS on peanuts were correlated with the PS size, concentration, and exposure time, highlighting the potential risk of 50 nm to 5 μm PS being absorbed by peanuts. Full article
(This article belongs to the Collection Crop Physiology and Stress)
Show Figures

Figure 1

13 pages, 4232 KB  
Article
Three-Dimensional Structure of Biofilm Formed on Glass Surfaces Revealed Using Scanning Ion Conductance Microscopy Combined with Confocal Laser Scanning Microscopy
by Nobumitsu Hirai, Yuhei Miwa, Shunta Hattori, Hideyuki Kanematsu, Akiko Ogawa and Futoshi Iwata
Microorganisms 2025, 13(8), 1779; https://doi.org/10.3390/microorganisms13081779 - 30 Jul 2025
Viewed by 541
Abstract
Biofilms cause a variety of problems, such as food spoilage, food poisoning, infection, tooth decay, periodontal disease, and metal corrosion, so knowledge on biofilm prevention and removal is important. A detailed observation of the three-dimensional structure of biofilms on the nanoscale is expected [...] Read more.
Biofilms cause a variety of problems, such as food spoilage, food poisoning, infection, tooth decay, periodontal disease, and metal corrosion, so knowledge on biofilm prevention and removal is important. A detailed observation of the three-dimensional structure of biofilms on the nanoscale is expected to provide insight into this. In this study, we report on the successful in situ nanoscale observations of a marine bacterial biofilm on glass in phosphate buffer solution (PBS) using both scanning ion conductance microscopy (SICM) and confocal laser scanning microscopy (CLSM) over the same area. By observing the same area by SICM and CLSM, we were able to clarify the three-dimensional morphology of the biofilm, the arrangement of bacteria within the biofilm, and the difference in local ion conductivity within the biofilm simultaneously, which could not be achieved by observation using a microscope alone. Full article
(This article belongs to the Special Issue Marine Microbes, Biocontamination and Bioremediation)
Show Figures

Figure 1

18 pages, 3415 KB  
Article
Study on the Modification of Dietary Fiber and Degradation of Zearalenone in Corn Germ Meal by Solid-State Fermentation with Bacillus subtilis K6
by Jiahao Li, Kailong Li, Langwen Tang, Chun Hua, Na Chen, Chenxian Yang, Ying Xin and Fusheng Chen
Foods 2025, 14(15), 2680; https://doi.org/10.3390/foods14152680 - 30 Jul 2025
Viewed by 539
Abstract
Although corn germ meal is a rich source of dietary fiber, it contains a relatively low proportion of soluble dietary fiber (SDF) and is frequently contaminated with high levels of zearalenone (ZEN). Solid-state fermentation has the dual effects of modifying dietary fiber (DF) [...] Read more.
Although corn germ meal is a rich source of dietary fiber, it contains a relatively low proportion of soluble dietary fiber (SDF) and is frequently contaminated with high levels of zearalenone (ZEN). Solid-state fermentation has the dual effects of modifying dietary fiber (DF) and degrading mycotoxins. This study optimized the solid-state fermentation process of corn germ meal using Bacillus subtilis K6 through response surface methodology (RSM) to enhance SDF yield while efficiently degrading ZEN. Results indicated that fermentation solid-to-liquid ratio and time had greater impacts on SDF yield and ZEN degradation rate than fermentation temperature. The optimal conditions were determined as temperature 36.5 °C, time 65 h, and solid-to-liquid ratio 1:0.82 (w/v). Under these conditions, the ZEN degradation rate reached 96.27 ± 0.53%, while the SDF yield increased from 9.47 ± 0.68% to 20.11 ± 1.87% (optimizing the SDF/DF ratio from 1:7 to 1:3). Scanning electron microscopy (SEM) and confocal laser scanning microscope (CLSM) revealed the structural transformation of dietary fiber from smooth to loose and porous forms. This structural modification resulted in a significant improvement in the physicochemical properties of dietary fiber, with water-holding capacity (WHC), oil-holding capacity (OHC), and water-swelling capacity (WSC) increasing by 34.8%, 16.4%, and 15.2%, respectively. Additionally, the protein and total phenolic contents increased by 23.0% and 82.61%, respectively. This research has achieved efficient detoxification and dietary fiber modification of corn germ meal, significantly enhancing the resource utilization rate of corn by-products and providing technical and theoretical support for industrial production applications. Full article
Show Figures

Figure 1

15 pages, 6193 KB  
Article
Microscopy Study of (Ti,Nb)(C,N) Precipitation in Microalloyed Steels Under Continuous Casting Conditions
by Fangyong Xu, Daoyao Liu, Wei Wang, Brian G. Thomas, Tianxu Wu, Kun Xu and Zhan Zhang
Materials 2025, 18(15), 3445; https://doi.org/10.3390/ma18153445 - 23 Jul 2025
Viewed by 393
Abstract
The continuous casting of Ti-Nb microalloyed steel was simulated with high temperature confocal laser scanning microscopy (HTCLSM). Evolution of the sample surface morphology was observed in-situ, during cooling conditions chosen to represent different locations in a cast slab. Calculations with a thermodynamics model [...] Read more.
The continuous casting of Ti-Nb microalloyed steel was simulated with high temperature confocal laser scanning microscopy (HTCLSM). Evolution of the sample surface morphology was observed in-situ, during cooling conditions chosen to represent different locations in a cast slab. Calculations with a thermodynamics model of carbonitride precipitate formation agreed with the transmission electron microscopy (TEM) analysis that fine reliefs observed on the sample surface were actually caused by interior precipitation of (Ti,Nb)(C,N). Precipitation and the resulting reliefs changed with location beneath the slab surface, simulated casting speed, and steel composition. With the same casting speed and steel composition, reliefs in the simulated slab surface sample appeared earlier and were larger than in the slab center. With increased casting speed, reliefs were observed later and decreased in size. With increased titanium or niobium content, reliefs appeared earlier and increased in number. TEM measurement showed that the precipitate diameters were mainly smaller than 4 nm, with a few between 4 and 8 nm. The property of surface reliefs observed via HTCLSM correlated qualitatively with the number and size of internal precipitates measured with TEM, showing this to be an effective tool for indirectly characterizing nanoscale secondary phase precipitation inside the sample. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

16 pages, 1657 KB  
Article
Impact of Apple Pulp on Textural Characteristics, Microstructure, Volatile Profile, and Sensory Acceptance of Yogurts
by Dimitra Dimitrellou, Thomas Moschakis and Panagiotis Kandylis
Foods 2025, 14(14), 2453; https://doi.org/10.3390/foods14142453 - 12 Jul 2025
Cited by 1 | Viewed by 2857
Abstract
Fresh apple pulp from the Granny Smith variety was used at different levels (5–15% w/w) for yogurt production. Color, texture, microstructure, aroma, and sensory analyses were used to evaluate the effect of the apple pulp on the main characteristics of [...] Read more.
Fresh apple pulp from the Granny Smith variety was used at different levels (5–15% w/w) for yogurt production. Color, texture, microstructure, aroma, and sensory analyses were used to evaluate the effect of the apple pulp on the main characteristics of yogurt. Yogurts with apple pulp presented a lower brightness (L*) and an increased redness (a*) and yellowness (b*), which were significantly affected by the apple pulp concentration. The texture analysis revealed an improved consistency and reduced syneresis, leading to a creamier and more stable product. The aroma profile of yogurts was enriched, presenting higher ester contents. Confocal laser scanning microscopy showed that the incorporation of modest quantities of apple pulp resulted in the formation of initially denser networks, while at elevated levels, an enhanced microscopic phase separation occurred. A 5% apple pulp addition achieved a balance between enhancing flavor and texture retention while maintaining high overall acceptability, as was also confirmed by the sensory evaluation. Full article
(This article belongs to the Special Issue Food Bioactives: Innovations, Mechanisms, and Future Applications)
Show Figures

Figure 1

21 pages, 3852 KB  
Article
PCSK9 Inhibitor Inclisiran Attenuates Cardiotoxicity Induced by Sequential Anthracycline and Trastuzumab Exposure via NLRP3 and MyD88 Pathway Inhibition
by Vincenzo Quagliariello, Massimiliano Berretta, Irma Bisceglia, Martina Iovine, Matteo Barbato, Raffaele Arianna, Maria Laura Canale, Andrea Paccone, Alessandro Inno, Marino Scherillo, Stefano Oliva, Christian Cadeddu Dessalvi, Alfredo Mauriello, Carlo Maurea, Celeste Fonderico, Anna Chiara Maratea, Domenico Gabrielli and Nicola Maurea
Int. J. Mol. Sci. 2025, 26(14), 6617; https://doi.org/10.3390/ijms26146617 - 10 Jul 2025
Viewed by 707
Abstract
Cardiotoxicity related to anthracyclines and trastuzumab represents a significant clinical challenge in cancer therapy, often limiting treatment efficacy and patient survival. The underlying mechanisms of cardiotoxicity involve the activation of NLRP3 and the MyD88-dependent signaling pathway. Proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i), [...] Read more.
Cardiotoxicity related to anthracyclines and trastuzumab represents a significant clinical challenge in cancer therapy, often limiting treatment efficacy and patient survival. The underlying mechanisms of cardiotoxicity involve the activation of NLRP3 and the MyD88-dependent signaling pathway. Proprotein convertase subtilisin/kexin type 9 inhibitors (PCSK9i), such as inclisiran, are known for their lipid-lowering effects, but emerging data indicate that they may also exert pleiotropic benefits beyond cholesterol reduction. This study investigates whether inclisiran can mitigate the cardiotoxic effects of anthracyclines and trastuzumab through reduction of NLRP3 activation and MyD88 signaling, independently of its effects on dyslipidemia. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) were exposed to subclinical concentrations of doxorubicin (1 µM) and trastuzumab in sequential therapy (200 nM), alone or in combination with inclisiran (100 nM) for 24 h. After the incubation period, we performed the following tests: determination of cardiomyocytes apoptosis, analysis of intracellular reactive oxygen species, lipid peroxidation products (including malondialdehyde and 4-hydroxynonenal), intracellular mitofusin-2 and Ca++ levels. Troponin and BNP were quantified through selective ELISA methods. A confocal laser scanning microscope was used to study cardiomyocyte morphology and F-actin staining after treatments. Moreover, pro-inflammatory studies were also performed, including the intracellular expression of NLRP-3, MyD-88 and twelve cytokines/growth factors involved in cardiotoxicity (IL-1α, IL-1β, IL-2, IL-4, IL-6, IL-10, IL-12, IL17-α, IFN-γ, TNF-α, G-CSF, GM-CSF). Inclisiran co-incubated with doxorubicin and trastuzumab exerts significant cardioprotective effects, enhancing cell viability by 88.9% compared to only DOXO/TRA treated cells (p < 0.001 for all). Significant reduction of oxidative stress, and intracellular levels of NLRP-3, MyD88, IL-1α, IL-1β, IL-6, IL-12, IL17-α, TNF-α, G-CSF were seen in the inclisiran group vs. only DOXO/TRA (p < 0.001). For the first time, PCSK9i inclisiran has been shown to exert significant anti-inflammatory effects to reduce anthracycline-HER-2 blocking agent-mediated cardiotoxicity through NLRP-3 and Myd-88 related pathways. The overall conclusions of the study warrant further investigation of the use of PCSK9i in primary prevention of CTRCD in cancer patients, independently from dyslipidemia. Full article
Show Figures

Figure 1

18 pages, 3853 KB  
Article
Investigation on the Deviation and Thermal Damage Effects in Laser-Induced Lateral Crack Propagation of Soda–Lime Glass
by Huaye Kong, Xijing Zhu, Yao Liu, Dekang Zhang and Xingqi Du
Coatings 2025, 15(7), 802; https://doi.org/10.3390/coatings15070802 - 9 Jul 2025
Viewed by 924
Abstract
This study is based on the laser-induced thermal-crack propagation (LITP) technology, focusing on the issues of deviation and thermal damage during the transverse crack propagation process, with the aim of achieving high-purity, non-destructive, and high-precision cutting of glass. A 50 W, 1064 nm [...] Read more.
This study is based on the laser-induced thermal-crack propagation (LITP) technology, focusing on the issues of deviation and thermal damage during the transverse crack propagation process, with the aim of achieving high-purity, non-destructive, and high-precision cutting of glass. A 50 W, 1064 nm fiber laser is used for S-pattern scanning cutting of soda–lime glass. A moving heat source model is established and analyzed via MATLAB R2022a numerical simulation. Combined with the ABAQUS 2019 software, the relationships among temperature field, stress field, crack propagation, and deviation during laser-induced thermal crack cutting are deeply explored. Meanwhile, laser thermal fracture experiments are also carried out. A confocal microscope detects glass surface morphology, cross-sectional roughness and hardness under different heat flux densities (HFLs), determining the heat flux density threshold affecting the glass surface quality. Through a comprehensive study of theory, simulation, and experiments, it is found that with an increase in the HFL value of the material, the laser-induced thermal crack propagation can be divided into four stages. When the heat flux density value is in the range of 47.2 to 472 W/m2, the glass substrate has good cross-sectional characteristics. There is no ablation phenomenon, and the surface roughness of the cross-section is lower than 0.15 mm. The hardness decreases by 9.19% compared with the reference value. Full article
Show Figures

Figure 1

20 pages, 5210 KB  
Article
Damage Behaviour of Shot-Peened 7075 Aluminium Alloy Based on Temperature Evolution and Digital Image Correlation Methods
by Yutong Tang, Aifeng Jiang, Lei Li, Yanliang Dong and Le Chang
Materials 2025, 18(14), 3228; https://doi.org/10.3390/ma18143228 - 8 Jul 2025
Viewed by 787
Abstract
The peening process plays a pivotal role in enhancing the properties of aluminium alloys across various industries, including aerospace, automotive, and construction. Among the critical factors influencing this process, the shot peening time is of paramount importance for studying material characteristics. In the [...] Read more.
The peening process plays a pivotal role in enhancing the properties of aluminium alloys across various industries, including aerospace, automotive, and construction. Among the critical factors influencing this process, the shot peening time is of paramount importance for studying material characteristics. In the present study, we undertook a comprehensive investigation into the mechanical properties, surface roughness, and damage evolution behaviour of 7075 aluminium alloy subjected to different shot peening durations. This investigation was conducted using a microhardness tester, laser confocal microscope, scanning electron microscope, and other advanced equipment, in conjunction with digital image correlation methods and temperature evolution analysis. Our findings demonstrate that the shot peening time has a profound impact on the mechanical properties of the 7075 alloy. Specifically, the microhardness, tensile strength, and surface roughness of the alloy increased with increasing shot peening time, whereas the elongation rate exhibited a non-monotonic trend, initially decreasing and then increasing. Utilising DIC and temperature evolution analysis, we analysed the influence of shot peening time on the damage evolution behaviour of the alloy and developed tensile damage evolution equations tailored to different shot peening durations. The damage evolution of the 7075 alloy under various shot peening times was observed to proceed through two distinct stages: smooth development and rapid damage. Notably, the damage evolution laws derived from both techniques exhibited good consistency and agreement. The present study serves as a theoretical foundation for exploring the surface peening and damage evolution of 7075 aluminium alloy, which holds significant implications for optimising peening parameters and predicting material life in engineering applications. Full article
(This article belongs to the Special Issue Fatigue, Damage and Fracture of Alloys)
Show Figures

Figure 1

28 pages, 9321 KB  
Article
In Situ Vaccination with a Vpr-Derived Peptide Elicits Systemic Antitumor Immunity by Improving Tumor Immunogenicity
by Danjie Pan, Ling Du, Jiayang Liu, Kudelaidi Kuerban, Xuan Huang, Yue Wang, Qiuyu Guo, Huaning Chen, Songna Wang, Li Wang, Pinghong Zhou, Zhefeng Meng and Li Ye
Vaccines 2025, 13(7), 710; https://doi.org/10.3390/vaccines13070710 - 30 Jun 2025
Viewed by 806
Abstract
Background: Cancer vaccines represent a groundbreaking advancement in cancer immunotherapy, utilizing tumor antigens to induce tumor-specific immune responses. However, challenges like tumor-induced immune resistance and technical barriers limit the widespread application of predefined antigen vaccines. Here, we investigated the potential of viral protein [...] Read more.
Background: Cancer vaccines represent a groundbreaking advancement in cancer immunotherapy, utilizing tumor antigens to induce tumor-specific immune responses. However, challenges like tumor-induced immune resistance and technical barriers limit the widespread application of predefined antigen vaccines. Here, we investigated the potential of viral protein R (Vpr) peptides as effective candidates for constructing anonymous antigen vaccines in situ by directly injecting at the tumor site and releasing whole-tumor antigens, inducing robust anti-tumor immune responses to overcome the limitations of predefined antigen vaccines. Methods: The cytotoxic effects of Vpr peptides were evaluated using the CCK8 reagent kit. Membrane penetration ability of Vpr peptides was observed using a confocal laser scanning microscope and quantitatively analyzed using flow cytometry. EGFR levels in the cell culture supernatants of cells treated with Vpr peptides were evaluated using an ELISA. Surface exposure of CRT on the tumor cell surface was observed using a confocal laser scanning microscope and quantitatively analyzed using flow cytometry. The secretion levels of ATP from tumor cells were evaluated using an ATP assay kit. HMGB1 release was evaluated using an ELISA. Mouse (Male C57BL/6 mice aged 4 weeks) MC38 and LLC bilateral subcutaneous tumor models were established to evaluate the therapeutic effects of Vpr peptides through in situ vaccination. Proteomic analysis was performed to explore the mechanism of anti-tumor activity of Vpr peptides. Results: Four Vpr peptides were designed and synthesized, with P1 and P4 exhibiting cytotoxic effects on tumor cells, inducing apoptosis and immunogenic cell death. In mouse tumor models, in situ vaccination with Vpr peptide significantly inhibited tumor growth and activated various immune cells. High-dose P1 monotherapy demonstrated potent anti-tumor effects, activating DCs, T cells, and macrophages. Combining ISV of P1 with a CD47 inhibitor SIRPαFc fusion protein showed potent distant tumor suppression effects. Proteomic analysis suggested that Vpr peptides exerted anti-tumor effects by disrupting tumor cell morphology, movement, and adhesion, and promoting immune cell infiltration. Conclusions: The designed Vpr peptides show promise as candidates for in situ vaccination, with significant anti-tumor effects, immune activation, and favorable safety profiles observed in mouse models. In situ vaccination with Vpr-derived peptides represents a potential approach for cancer immunotherapy. Full article
(This article belongs to the Special Issue New Approaches to Vaccine Development and Delivery)
Show Figures

Figure 1

16 pages, 3999 KB  
Article
Reimagining Microbially Induced Concrete Deterioration: A Novel Approach Through Coupled Confocal Laser Scanning Microscope–Avizo Three-Dimensional Modeling of Biofilms
by Mingyue Ma, Guangda Yu, Zhen Xu, Jun Hu, Ziyuan Ji, Zihan Yang, Yumeng Sun, Yeqian Zhen and Jingya Zhou
Microorganisms 2025, 13(7), 1452; https://doi.org/10.3390/microorganisms13071452 - 23 Jun 2025
Viewed by 538
Abstract
Microbially induced concrete deterioration (MID) poses a significant and urgent challenge to urban sewerage systems globally, particularly in tropical coastal regions. Despite the acknowledged importance of biofilms in MICC, limited research on sewer pipe biofilms has hindered a comprehensive understanding of their deterioration [...] Read more.
Microbially induced concrete deterioration (MID) poses a significant and urgent challenge to urban sewerage systems globally, particularly in tropical coastal regions. Despite the acknowledged importance of biofilms in MICC, limited research on sewer pipe biofilms has hindered a comprehensive understanding of their deterioration mechanisms. To overcome this limitation, our research employed multiple staining techniques and digital volume correlation (DVC) technology, creating a new method to analyze the microstructure of biofilms, precisely identify the components of EPSs, and quantitatively examine MID mechanisms from a microscopic viewpoint. Our results revealed that the biofilm on concrete surfaces regulates the types of amino acids, thereby creating an environment conducive to microbial aggregate survival. Additionally, salinity significantly influences biofilm component distribution, while proteins play a pivotal role in biofilm mechanical stability. Notably, a high salinity fosters microbial migration within the biofilm, exacerbating deterioration. Through this multidimensional inquiry, our study established an advanced echelon of comprehension concerning the intricate mechanisms underpinning MICC. Meanwhile, by peering into the biofilms and elucidating their interplay with concrete, our findings offer profound insights, which can aid in devising strategies to counter urban sewer system deterioration. Full article
(This article belongs to the Section Biofilm)
Show Figures

Graphical abstract

22 pages, 3777 KB  
Article
Exploring the Effects of Fillers and Cultivation Conditions on Microbial-Algal Biofilm Formation and Cattle Wastewater Treatment Efficiency
by Weice Zhang, Lei Wu, Ming Li, Yuting Chen, Chenyang Li, Cong Wang and Shiyao Sun
Water 2025, 17(12), 1835; https://doi.org/10.3390/w17121835 - 19 Jun 2025
Cited by 1 | Viewed by 522
Abstract
With the rapid development of the livestock farming industry, the treatment of livestock farming wastewater has become increasingly important. The microbial-algal biofilm method has gained widespread attention for cattle wastewater treatment owing to its non-toxic nature, resistance to shock loading, and high treatment [...] Read more.
With the rapid development of the livestock farming industry, the treatment of livestock farming wastewater has become increasingly important. The microbial-algal biofilm method has gained widespread attention for cattle wastewater treatment owing to its non-toxic nature, resistance to shock loading, and high treatment efficiency. In this study, three types of substrates—polyurethane sponge, ceramic material, and moving bed biofilm reactor media—were evaluated. The formation of biofilms was assessed through variations in chlorophyll content, microscopic observations, and measurements of biofilm dry weight and attachment rate. Biofilm characterization on the different substrates was conducted via Fourier transform infrared spectroscopy, confocal laser scanning microscopy, and scanning electron microscopy. The results demonstrated that polyurethane sponge was the most effective substrate. Furthermore, a single-factor experiment was conducted to optimize the cultivation conditions for the microbial-algal biofilms and identify the optimal parameters based on the ability of the biofilm to remove COD, TN, TP, and NH4+-N. The optimal conditions were as follows: an illumination intensity of 8000 lux, red light, a temperature of 20 °C, a pH of 7, and an aeration intensity of 8 L/min. Under these conditions, the pollutant removal rates were exceptionally high: ~73.4% for COD, 51.8% for TP, 57.0% for TN, and 75.1% for NH4+-N. Full article
(This article belongs to the Special Issue Water Reclamation and Reuse in a Changing World)
Show Figures

Figure 1

14 pages, 6281 KB  
Article
Martensitic Transformation Mechanism In Situ Observation for the Simulated Coarse-Grained Heat-Affected Zone of DP1180 Steel
by Wenjuan Li, Jinfeng Wang, Wenchao Su, Zhiyuan Wei, Jiaxin Wu, Xiaofei Xu and Jiaan Wei
Materials 2025, 18(12), 2721; https://doi.org/10.3390/ma18122721 - 10 Jun 2025
Viewed by 540
Abstract
The martensitic transformation mechanism in the heat-affected zone of DP1180 steel plays a decisive role in the strength of welded joints. In this work, the nucleation and growth kinetics of martensite laths in the coarse grain heat-affected zone (CGHAZ) are analyzed by a [...] Read more.
The martensitic transformation mechanism in the heat-affected zone of DP1180 steel plays a decisive role in the strength of welded joints. In this work, the nucleation and growth kinetics of martensite laths in the coarse grain heat-affected zone (CGHAZ) are analyzed by a high-temperature laser scanning confocal microscope (LSCM). The grain distribution and stress distribution of the samples after in situ observation are analyzed by electron backscatter diffraction (EBSD). The results reveal that austenite grain growth is realized by continuous grain boundary annexation and grain boundary migration of small grains by large grains during the heating process. Seven growth modes of CGHAZ martensitic laths under laser welding conditions are proposed. Additionally, the end growth of martensitic laths is mostly attributed to the collision with grain boundaries or other laths to form a complex interlocking structure. The results of this study could provide important data support for the development of dual-phase steel materials and improvement of welding quality. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

Back to TopTop