Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = conical quantum dot

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 13405 KB  
Article
Impact of Nonresonant Intense Laser and Electric Fields on a Low-Dimensional CdTe/CdSe Type-II Cone
by Fredy Amador Donado, Fernando Guerrero Almanza, Camilo Frías Viña, Juan Alejandro Vinasco, J. Sierra-Ortega, Gene Elizabeth Escorcia-Salas, R. V. H. Hahn, M. E. Mora-Ramos, O. Mommadi, A. El Moussaouy, R. Boussetta, D. Duque, A. L. Morales, S. Uran-Parra and C. A. Duque
Nanomaterials 2025, 15(15), 1208; https://doi.org/10.3390/nano15151208 - 7 Aug 2025
Viewed by 456
Abstract
In this work, a theoretical study on the combined effects of an external electric field and a nonresonant intense laser field on the electronic properties of a quantum dot with a truncated cone shape is presented. This quantum dot was made from a [...] Read more.
In this work, a theoretical study on the combined effects of an external electric field and a nonresonant intense laser field on the electronic properties of a quantum dot with a truncated cone shape is presented. This quantum dot was made from a type-II CdTe/CdSe heterostructure (core/shell). Using the effective mass approximation with parabolic bands and the finite element method, the Schrödinger equation was solved to analyze the confined states of electron, hole, and exciton. This study demonstrates the potential of combining nonresonant intense laser and electric fields to control confinement properties in semiconductor nanodevices, with potential applications in optoelectronics and quantum mechanics-related technologies. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

14 pages, 896 KB  
Article
Electric and Magnetic Fields Effects in Vertically Coupled GaAs/AlxGa1−xAs Conical Quantum Dots
by Ana María López Aristizábal, Fernanda Mora Rey, Álvaro Luis Morales, Juan A. Vinasco and Carlos Alberto Duque
Condens. Matter 2023, 8(3), 71; https://doi.org/10.3390/condmat8030071 - 15 Aug 2023
Cited by 3 | Viewed by 2020
Abstract
Vertically coupled quantum dots have emerged as promising structures for various applications such as single photon sources, entangled quantum pairs, quantum computation, and quantum cryptography. We start with a structure composed of two vertically coupled GaAs conical quantum dots surrounded by Alx [...] Read more.
Vertically coupled quantum dots have emerged as promising structures for various applications such as single photon sources, entangled quantum pairs, quantum computation, and quantum cryptography. We start with a structure composed of two vertically coupled GaAs conical quantum dots surrounded by AlxGa1x, and the effects of the applied electric and magnetic fields on the energies are evaluated using the finite element method. In addition, the effects are evaluated by including the presence of a shallow-donor impurity. The electron binding energy behavior is analyzed, and the effects on the photoionization cross-section are studied. Calculations are carried out in the effective mass and parabolic conduction band approximations. Our results show a notable dependence on the electric and magnetic fields applied to the photoionization cross-section. In general, it has been observed that both the electric and magnetic fields are useful parameters for inducing blueshifts of the resonant photoionization cross-section structure, which is accompanied by a drop in its magnitude. Full article
(This article belongs to the Special Issue Physics of Light-Matter Coupling in Nanostructures)
Show Figures

Figure 1

13 pages, 3050 KB  
Article
Optical Properties of Conical Quantum Dot: Exciton-Related Raman Scattering, Interband Absorption and Photoluminescence
by Sargis P. Gavalajyan, Grigor A. Mantashian, Gor Ts. Kharatyan, Hayk A. Sarkisyan, Paytsar A. Mantashyan, Sotirios Baskoutas and David B. Hayrapetyan
Nanomaterials 2023, 13(8), 1393; https://doi.org/10.3390/nano13081393 - 18 Apr 2023
Cited by 7 | Viewed by 2929
Abstract
The current work used the effective mass approximation conjoined with the finite element method to study the exciton states in a conical GaAs quantum dot. In particular, the dependence of the exciton energy on the geometrical parameters of a conical quantum dot has [...] Read more.
The current work used the effective mass approximation conjoined with the finite element method to study the exciton states in a conical GaAs quantum dot. In particular, the dependence of the exciton energy on the geometrical parameters of a conical quantum dot has been studied. Once the one-particle eigenvalue equations have been solved, both for electrons and holes, the available information on energies and wave functions is used as input to calculate exciton energy and the effective band gap of the system. The lifetime of an exciton in a conical quantum dot has been estimated and shown to be in the range of nanoseconds. In addition, exciton-related Raman scattering, interband light absorption and photoluminescence in conical GaAs quantum dots have been calculated. It has been shown that with a decrease in the size of the quantum dot, the absorption peak has a blue shift, which is more pronounced for quantum dots of smaller sizes. Furthermore, the interband optical absorption and photoluminescence spectra have been revealed for different sizes of GaAs quantum dot. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

19 pages, 11913 KB  
Article
Modeling of Quantum Dots with the Finite Element Method
by G.A. Mantashian, P.A. Mantashyan and D.B. Hayrapetyan
Computation 2023, 11(1), 5; https://doi.org/10.3390/computation11010005 - 2 Jan 2023
Cited by 23 | Viewed by 5640
Abstract
Considering the increasing number of experimental results in the manufacturing process of quantum dots (QDs) with different geometries, and the fact that most numerical methods that can be used to investigate quantum dots with nontrivial geometries require large computational capacities, the finite element [...] Read more.
Considering the increasing number of experimental results in the manufacturing process of quantum dots (QDs) with different geometries, and the fact that most numerical methods that can be used to investigate quantum dots with nontrivial geometries require large computational capacities, the finite element method (FEM) becomes an incredibly attractive tool for modeling semiconductor QDs. In the current article, we used FEM to obtain the first twenty-six probability densities and energy values for the following GaAs structures: rectangular, spherical, cylindrical, ellipsoidal, spheroidal, and conical QDs, as well as quantum rings, nanotadpoles, and nanostars. The results of the numerical calculations were compared with the exact analytical solutions and a good deviation was obtained. The ground-state energy dependence on the element size was obtained to find the optimal parameter for the investigated structures. The abovementioned calculation results were used to obtain valuable insight into the effects of the size quantization’s dependence on the shape of the QDs. Additionally, the wavefunctions and energies of spherical CdSe/CdS quantum dots were obtained while taking into account the diffusion effects on the potential depth with the use of a piecewise Woods–Saxon potential. The diffusion of the effective mass and the dielectric permittivity was obtained with the use of a normal Woods–Saxon potential. A structure with a quasi-type-II band alignment was obtained at the core size of ≈2.2 nm This result is consistent with the experimental data. Full article
(This article belongs to the Special Issue Application of Finite Element Methods)
Show Figures

Figure 1

16 pages, 3841 KB  
Article
Characterizing the Ee Jahn–Teller Potential Energy Surfaces by Differential Geometry Tools
by Fanica Cimpoesu and Adela Mihai
Symmetry 2022, 14(3), 436; https://doi.org/10.3390/sym14030436 - 22 Feb 2022
Cited by 2 | Viewed by 3224
Abstract
The term ‘mathematical chemistry’ is mostly associated with applications of graph theory in topological issues of 3D chemical structures, thought of as a collection of atoms as dots and bonds as lines. We propose here new directions in this field, coming from the [...] Read more.
The term ‘mathematical chemistry’ is mostly associated with applications of graph theory in topological issues of 3D chemical structures, thought of as a collection of atoms as dots and bonds as lines. We propose here new directions in this field, coming from the side of theoretical chemistry approached with modern computational tools. Possible challenges are proposed in using ancillary tools of differential geometry for examining the potential energy surfaces of certain specific structural prototypes. Concretely, we describe here the geodesics on the surfaces related to the potential energy functions of the so-called Ee Jahn–Teller effect, a spontaneous symmetry-breaking phenomenon also known as a case of conical intersection. To illustrate the case, first-principles (ab initio) quantum chemical calculations are performed on the cyclo-propenyl molecular radical C3H3. Full article
(This article belongs to the Section Chemistry: Symmetry/Asymmetry)
Show Figures

Figure 1

19 pages, 945 KB  
Article
Shallow Donor Impurity States with Excitonic Contribution in GaAs/AlGaAs and CdTe/CdSe Truncated Conical Quantum Dots under Applied Magnetic Field
by Lorenz Pulgar-Velásquez, José Sierra-Ortega, Juan A. Vinasco, David Laroze, Adrian Radu, Esin Kasapoglu, Ricardo L. Restrepo, John A. Gil-Corrales, Alvaro L. Morales and Carlos A. Duque
Nanomaterials 2021, 11(11), 2832; https://doi.org/10.3390/nano11112832 - 25 Oct 2021
Cited by 13 | Viewed by 3353
Abstract
Using the effective mass approximation in a parabolic two-band model, we studied the effects of the geometrical parameters, on the electron and hole states, in two truncated conical quantum dots: (i) GaAs-(Ga,Al)As in the presence of a shallow donor impurity and under an [...] Read more.
Using the effective mass approximation in a parabolic two-band model, we studied the effects of the geometrical parameters, on the electron and hole states, in two truncated conical quantum dots: (i) GaAs-(Ga,Al)As in the presence of a shallow donor impurity and under an applied magnetic field and (ii) CdSe–CdTe core–shell type-II quantum dot. For the first system, the impurity position and the applied magnetic field direction were chosen to preserve the system’s azimuthal symmetry. The finite element method obtains the solution of the Schrödinger equations for electron or hole with or without impurity with an adaptive discretization of a triangular mesh. The interaction of the electron and hole states is calculated in a first-order perturbative approximation. This study shows that the magnetic field and donor impurities are relevant factors in the optoelectronic properties of conical quantum dots. Additionally, for the CdSe–CdTe quantum dot, where, again, the axial symmetry is preserved, a switch between direct and indirect exciton is possible to be controlled through geometry. Full article
(This article belongs to the Special Issue Electronics, Electromagnetism and Applications of Nanomaterials)
Show Figures

Figure 1

Back to TopTop