Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (131,645)

Search Parameters:
Keywords = contention

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 428 KB  
Article
Fermentation of Grapefruit Juice with Lacticaseibacillus rhamnosus and Enzymatic Debittering by Naringinase
by Katarzyna Górska, Joanna Bodakowska-Boczniewicz and Zbigniew Garncarek
Appl. Sci. 2025, 15(19), 10858; https://doi.org/10.3390/app151910858 - 9 Oct 2025
Abstract
Growing consumer awareness of the link between diet and health has increased interest in functional foods, including fermented juices. Grapefruit juice has potential health-promoting properties, but its bitter taste limits its acceptance by consumers. This study aimed to develop a fermentation process for [...] Read more.
Growing consumer awareness of the link between diet and health has increased interest in functional foods, including fermented juices. Grapefruit juice has potential health-promoting properties, but its bitter taste limits its acceptance by consumers. This study aimed to develop a fermentation process for debittering grapefruit juice at natural pH using Lacticaseibacillus rhamnosus and naringinase. Grapefruit juice was fermented with Lactic. rhamnosus using free naringinase and naringinase immobilized on carob gum and chitosan supports at 30 ± 0.2 °C for 72 h. Naringin concentration, bacterial cell count, total phenol content, organic acids, carbohydrates, antioxidant activity, and pH were analyzed. Naringinase immobilized on carob gum demonstrated the highest efficiency, hydrolyzing over 42% of naringin after 24 h (from 418.20 to 241.19 μg/mL). The free enzyme reduced the naringin concentration to 155.28 μg/mL after 48 h. The highest Lactic. rhamnosus cell count (2.05 × 109 CFU/mL) was achieved with the free enzyme. Total phenol content decreased from 42.24 to 16.58 mg GAE/100 mL when using naringinase immobilized on chitosan. The combined use of naringinase and Lactic. rhamnosus enables the development of an integrated process that improves consumer acceptance with potential applications in the functional beverage industry. Full article
(This article belongs to the Section Food Science and Technology)
28 pages, 11687 KB  
Article
Improved Inversion and Digital Mapping of Soil Organic Carbon Content by Combining Crop-Lush Period Vegetation Indices with Ensemble Learning: A Case Study for Liaoning, Northeast China
by Quanping Zhang, Guochen Li, Huimin Dai, Jian Wang, Zhi Quan, Nana Fang, Ang Wang, Wenxin Huo and Yunting Fang
Land 2025, 14(10), 2022; https://doi.org/10.3390/land14102022 - 9 Oct 2025
Abstract
Soil organic carbon (SOC) is a crucial indicator of soil quality and carbon cycling. While remote sensing and machine learning enable regional scale SOC prediction, most studies rely on vegetation indices (VIs) derived from bare-soil periods, potentially neglecting vegetation–soil interactions during crop growth. [...] Read more.
Soil organic carbon (SOC) is a crucial indicator of soil quality and carbon cycling. While remote sensing and machine learning enable regional scale SOC prediction, most studies rely on vegetation indices (VIs) derived from bare-soil periods, potentially neglecting vegetation–soil interactions during crop growth. Given the bidirectional relationship between SOC and crop growth, we hypothesized that using crop-lush period VIs (VIs_lush) instead of bare-soil period VIs (VIs_bare) would increase the inversion accuracy. To test this hypothesis, we chose the cropland area in Liaoning Province as the study area and developed three modeling strategies (MS-1: VIs_lush + other features; MS-2: VIs_bare + other features; and MS-3: without VIs) using Landsat 8 imagery, topographic and precipitation data, and ensemble learning models (XGBoost, RF, and AdaBoost), with SHapley Additive exPlanations (SHAP) analysis for variable interpretation. We found that (1) all models achieved their highest performance under MS-1, with XGBoost outperforming the others across all modeling strategies; (2) for XGBoost, MS-1 yielded the highest inversion accuracy (R2 = 0.84, RMSE = 2.22 g·kg−1, RPD = 2.49, and RPIQ = 3.25); compared with MS-2, MS-1 reduced the RMSE by 0.31 g·kg−1, increased R2 from 0.77 to 0.84, and reduced the RPD by 0.31 and the RPIQ by 0.40, and compared with MS-3, MS-1 reduced the RMSE by 0.41 g·kg−1, increased R2 from 0.79 to 0.84, and reduced the RPD by 0.39 and the RPIQ by 0.51; (3) based on the SHAP analysis of the three modeling strategies, it is considered that precipitation, terrain and terrain analysis results are important indicators for SOC content inversion, and it is confirmed that VIs_lush contributed more than VIs_bare, supporting the rationale of using lush-period imagery; and (4) Liaoning Province exhibited distinct SOC spatial patterns (mean: 13.08 g·kg−1), with values ranging from 2.19 g·kg−1 (sandy central–western area) to 33.86 g·kg−1 (eastern mountains/coast). This study demonstrates that integrating growth stage-specific VIs with ensemble learning can significantly enhance regional-scale SOC prediction. Full article
(This article belongs to the Special Issue Digital Soil Mapping and Precision Agriculture)
17 pages, 1035 KB  
Article
Diverse Members of the Phylum Armatimonadota Promote the Growth of Aquatic Plants, Duckweeds
by Tomoki Iwashita, Ayaka Makino, Ryosuke Nakai, Yasuko Yoneda, Yoichi Kamagata, Tadashi Toyama, Kazuhiro Mori, Yasuhiro Tanaka and Hideyuki Tamaki
Int. J. Mol. Sci. 2025, 26(19), 9824; https://doi.org/10.3390/ijms26199824 (registering DOI) - 9 Oct 2025
Abstract
Duckweeds are small, fast-growing aquatic plants with high starch and protein content, making them promising candidates for next-generation plant biomass resources. Despite their importance, little is known about their interactions with microorganisms, particularly plant growth-promoting bacteria (PGPB), which play key roles in enhancing [...] Read more.
Duckweeds are small, fast-growing aquatic plants with high starch and protein content, making them promising candidates for next-generation plant biomass resources. Despite their importance, little is known about their interactions with microorganisms, particularly plant growth-promoting bacteria (PGPB), which play key roles in enhancing plant productivity. In this study, we report the plant growth-promoting effects of strain LA-C6, a member of the phylum Armatimonadota, isolated from duckweed fronds. Based on 16S rRNA gene analysis, this strain represents a novel genus-level lineage, and is referred to as Fimbriimonadaceae bacterium strain LA-C6. In axenic co-culture experiments, strain LA-C6 promoted duckweed growth, increasing the frond proliferation of four duckweed species (Lemna minor, Lemna aequinoctialis, Spirodela polyrhiza, and Landoltia punctata) by 1.8- to 4.0-fold compared with uninoculated controls. Importantly, three other phylogenetically distinct Armatimonadota species also exhibited significant plant growth-promoting effects on L. minor, increasing frond number by up to 2.3-fold and dry weight by up to 2.4-fold. This finding highlights the broader potential of diverse Armatimonadota members as PGP bacteria. A survey of the IMNGS database showed that strain LA-C6 and other Armatimonadota species are widely distributed across diverse plant-associated environments. Biochemical assays and gene prediction analyses revealed that strain LA-C6 produces indole-3-acetic acid (IAA) as a representative PGP trait, whereas no additional PGP-associated traits were detected. These results suggest that diverse bacterial lineages within the phylum Armatimonadota exert growth-promoting effects on aquatic plants, potentially through yet-to-be-identified mechanisms. Full article
(This article belongs to the Section Molecular Microbiology)
15 pages, 3782 KB  
Article
Consequences of Dietary Manganese Deficiency or Mn2O3 Nanoparticles Supplementation on Rat Manganese Biodistribution and Femur Morphology
by Ewelina Cholewińska, Wojciech Dworzański, Jerzy Juśkiewicz, Piotr Listos and Katarzyna Ognik
Nutrients 2025, 17(19), 3184; https://doi.org/10.3390/nu17193184 - 9 Oct 2025
Abstract
Objectives: The study aimed to determine the effect of manganese (Mn) exclusion from the dietary mineral mixture and the dietary replacement of the recommended level of MnCO3 with Mn2O3 nanoparticles (Mn2O3NPs) on the Mn [...] Read more.
Objectives: The study aimed to determine the effect of manganese (Mn) exclusion from the dietary mineral mixture and the dietary replacement of the recommended level of MnCO3 with Mn2O3 nanoparticles (Mn2O3NPs) on the Mn biodistribution and the femur histology. Methods: The experiment was conducted on twenty seven Wistar rats divided into three groups (n = 9): a control group receiving the recommended level of Mn (65 mg/kg) in standard form (MnCO3); a manganese deficient group (Mn deprived from dietary mineral mixture), and a group receiving diet supplemented Mn2O3NPs (65 mg/kg) instead of MnCO3. During the 12-week experiment, a balance test was performed. After the experiment period, blood and femur were collected from sacrificed rats. The content of Mn in water, diet, urine, feces, plasma, and femur was measured. Results: In the Mn-deficient rats, a reduction in Mn intake and excretion, Mn retention index, and blood Mn level, but an increase in Mn digestibility index was noted. In rats supplemented with Mn2O3NPs, Mn intake and excretion and blood Mn levels were decreased, while Mn retention and digestibility indexes were increased. In both experimental groups, deterioration of femur morphology was noted, but these changes were more severe in the Mn-deficient group. Conclusions: The obtained research results indicate that manganese deficiency significantly disturbed the biodistribution of this element and led to the deterioration of the architecture and histological parameters of the femur, emphasizing the key role of manganese in maintaining bone homeostasis. It has also been shown that replacing MnCO3 with Mn2O3NPs allows the maintenance of the correct Mn level in the femur but causes unfavorable changes in its morphology. Full article
(This article belongs to the Section Micronutrients and Human Health)
Show Figures

Figure 1

13 pages, 216 KB  
Article
Content Validity Assessment of a Newly Developed Emergency Medical Dispatch and Triage Protocol in Thailand
by Thongpitak Huabbangyang, Duangpon Thepmanee, Phudit Buaprasert, Pit Chansomboon, Jiraporn Sri-on and Rapeeporn Rojsaengroeng
J. Clin. Med. 2025, 14(19), 7125; https://doi.org/10.3390/jcm14197125 (registering DOI) - 9 Oct 2025
Abstract
Background/Objectives: Accurate telephone triage of emergency medical cases plays a crucial role in improving outcomes for critically ill patients. Effective triage enables emergency medical dispatchers to provide appropriate pre-arrival instructions and to deploy operational units according to the patient’s severity level. This study [...] Read more.
Background/Objectives: Accurate telephone triage of emergency medical cases plays a crucial role in improving outcomes for critically ill patients. Effective triage enables emergency medical dispatchers to provide appropriate pre-arrival instructions and to deploy operational units according to the patient’s severity level. This study aimed to develop and assess the content validity of the Emergency Medical Triage Protocol and Criteria-Based Dispatch Code (EMTP-CBDC) for Thailand. The objective was to ensure the tool’s content accuracy and applicability in prioritizing emergency responses in line with medical urgency, considering global changes and universal standards. Methods: A cross-sectional descriptive study was conducted from 15–30 April 2024. The content validity of the newly developed EMTP-CBDC, comprising 30 symptom groups, was evaluated by five emergency physician experts with at least 1 year of experience in emergency medical oversight. The assessment focused on four aspects: relevance, clarity, simplicity, and ambiguity. The Content Validity Index (CVI) was calculated at both the item level (I-CVI) and the scale level using the average index (S-CVI/Ave). To adjust for chance agreement, the probability of chance agreement (Pc) and the modified kappa coefficient (k*) were calculated for each item. Results: The content validation revealed I-CVI values ranging from 0.80 to 1.00 across all items. The S-CVI/Ave scores were 0.97 for relevance, 0.93 for clarity, 0.98 for simplicity, and 0.94 for ambiguity. These values surpassed the accepted thresholds for content validity. Conclusions: The EMTP-CBDC developed for Thailand demonstrated good content validity across relevance, clarity, simplicity, and ambiguity. Further studies are needed to establish its reliability and field performance before routine implementation. Full article
(This article belongs to the Special Issue Advancements in Emergency Medicine Practices and Protocols)
15 pages, 784 KB  
Article
Impacts of Tree Thinning on Overall Productivity in Densely Planted Walnut Orchards
by Qian Ye, Qinyang Yue, Yingxia Zhang, Rui Zhang, Qiang Jin, Jianliang Zhang, Siyuan Zhu, Miaomiao Zhao and Zhongzhong Guo
Horticulturae 2025, 11(10), 1216; https://doi.org/10.3390/horticulturae11101216 - 9 Oct 2025
Abstract
To effectively address the issues of poor ventilation, light deficiency, increased pest and disease pressure, and declining fruit quality in closed-canopy walnut orchards, this study was conducted in a standard, densely planted ‘Xinwen 185’ walnut orchard. Three treatments were established: an unthinned control [...] Read more.
To effectively address the issues of poor ventilation, light deficiency, increased pest and disease pressure, and declining fruit quality in closed-canopy walnut orchards, this study was conducted in a standard, densely planted ‘Xinwen 185’ walnut orchard. Three treatments were established: an unthinned control (CK), a 1-year thinning treatment (T1), and a 2-year thinning treatment (T2). All parameters were uniformly investigated during the 2023 growing season to analyze the effects of thinning on orchard population structure, microenvironment, leaf physiological characteristics, fruit quality, and yield. The results demonstrated that tree thinning significantly optimized the population structure: crown width expanded by 6.22–6.76 m, light transmittance increased to 27.74–33.64%, and orchard coverage decreased from 100% to 75.94–80.51%. The microenvironment was improved: inter-row temperature increased by 2.34–4.08 °C, light intensity increased by 5.38–25.29%, and relative humidity decreased by 2.15–3.30%. Furthermore, leaf physiological functions were activated: in the T2 treatment, the chlorophyll content in outer-canopy leaves increased by 15.23% and 12.45% at the kernel-hardening and maturity stages, respectively; the leaf carbon-to-nitrogen ratio increased by 18.67%; the net photosynthetic rate (Pn) during fruit expansion increased by 34.21–46.10%; and the intercellular CO2 concentration (Ci) decreased by 10.18–10.31%. Fruit quality and yield were synergistically enhanced: single fruit weight increased by 23.39~37.94%, and kernel weight increased by 26.79–41.13%. The total sugar content in inner-canopy fruits increased by 16.50–16.67%, while the protein and fat content in outer-canopy fruits increased by 0.69–12.50% and 0.60–2.18%, respectively. Yield exhibited a “short-term adjustment and long-term gain” pattern: the T2 treatment (after 2 years of thinning) achieved a yield of 5.26 t·ha−1, which was 20.38% higher than the CK. The rates of diseased fruit and empty shells decreased by 65.71% and 93.22%, respectively, and the premium fruit rate reached 90.60%. This study confirms that tree thinning is an effective measure for improving the growing environment and enhancing overall productivity in closed-canopy walnut orchards, providing a scientific basis for sustainable orchard management and increased orchard profitability. Full article
(This article belongs to the Special Issue Fruit Tree Cultivation and Sustainable Orchard Management)
Show Figures

Figure 1

12 pages, 4194 KB  
Article
Interaction Between Air Entraining Agent and Graphene Oxide and Its Effect on Bubble Behavior of Cement-Based Materials
by Min Qiao, Guofeng Chen, Yajie Fang, Yuxin Li and Mei Shi
Buildings 2025, 15(19), 3631; https://doi.org/10.3390/buildings15193631 - 9 Oct 2025
Abstract
Nanomaterials play a beneficial role in regulating the function of cement-based materials. The effects and mechanism of graphene oxide (GO) on foam behavior in solutions and air-entraining behavior of cement mortar were studied, and its effect on the microstructure of cement mortar was [...] Read more.
Nanomaterials play a beneficial role in regulating the function of cement-based materials. The effects and mechanism of graphene oxide (GO) on foam behavior in solutions and air-entraining behavior of cement mortar were studied, and its effect on the microstructure of cement mortar was also investigated. The results show that a synergy between GO’s hydrophobicity and the air-entraining agent’s hydrophobic chains drove more agent molecules to adsorb onto the GO surface, subsequently spreading and aggregating across the bubbles. GO effectively assisted the air entraining agent to refine the bubble size, improved the bubble stability of aqueous solutions, and had excellent air entraining performance in the fresh cement mortar, as well as the optimum air-void adjustment performance of hardened cement mortars. With the addition of 0.4‰ GO, the loss rate of gas content in the GO mixed mortar was 10.3%, which was 55.8% lower than that when only using AEA. The addition of 0.4‰ of GO effectively increased the volume fraction of the cement mortar system. GO reduced the pore volume in the mortar through the filling effect and nucleation effect to reduce the total porosity and refine the microstructure of the mortar. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
18 pages, 1864 KB  
Article
Evaluating Factors Influencing Dynamic Modulus Prediction: GRA-MLR Compared with Sigmoidal Modelling for Asphalt Mixtures with Reclaimed Asphalt
by Majda Belhaj, Jan Valentin, Nicola Baldo and Jan B. Król
Infrastructures 2025, 10(10), 269; https://doi.org/10.3390/infrastructures10100269 - 9 Oct 2025
Abstract
The dynamic modulus of asphalt mixtures (|E*|) is a key mechanical parameter in the design of road pavements, yet direct laboratory testing is time- and resource-intensive. This study evaluates two predictive models for estimating |E*| using data from 62 asphalt mixtures containing reclaimed [...] Read more.
The dynamic modulus of asphalt mixtures (|E*|) is a key mechanical parameter in the design of road pavements, yet direct laboratory testing is time- and resource-intensive. This study evaluates two predictive models for estimating |E*| using data from 62 asphalt mixtures containing reclaimed asphalt: a grey relational analysis–multiple linear regression (GRA-MLR) hybrid model and a mechanistic sigmoidal model. The results showed that the GRA-MLR model effectively identifies influential variables but achieved moderate predictive accuracy (R2 values varying from 0.4743 to 0.6547). In contrast, the sigmoidal model outperformed across all temperature conditions (R2 > 0.96) and produced predictions deviating by less than ±20% from measured values. Temperature-dependent shifts in factor influence were observed, with stiffness and gradation dominating at low temperatures and reclaimed asphalt (RA) content becoming more significant at higher temperatures. While the GRA-MLR model is advantageous, offering rapid assessments and early-stage evaluations, the sigmoidal model offers the precision suited for detailed design. Integrating both models can balance computational efficiency and provide a balanced strategy, with strong predictive reliability to advance mechanistic–empirical pavement design. Full article
18 pages, 3625 KB  
Article
Fabrication and Oxidation Resistance of Metallic Ta-Reinforced High-Entropy (Ti,Zr,Hf,Nb,Ta)B2 Ceramics
by Bowen Yuan, Qilong Guo, Hao Ying, Liang Hua, Ziqiu Shi, Shengcai Yang, Jing Wang and Xiufang Wang
Materials 2025, 18(19), 4642; https://doi.org/10.3390/ma18194642 (registering DOI) - 9 Oct 2025
Abstract
High-entropy boride (HEB) ceramics combine ultra-high melting points, superior hardness, and compositional tunability, enabling service in extreme environments; however, difficult densification and limited fracture toughness still constrain their aerospace applications. In this study, metallic Ta was introduced into high-entropy (Ti0.2Zr0.2 [...] Read more.
High-entropy boride (HEB) ceramics combine ultra-high melting points, superior hardness, and compositional tunability, enabling service in extreme environments; however, difficult densification and limited fracture toughness still constrain their aerospace applications. In this study, metallic Ta was introduced into high-entropy (Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)B2 as both a sintering aid and a toughening phase. Bulk HEB-Ta composites were fabricated by spark plasma sintering to investigate the effect of Ta content on densification behavior, microstructure, mechanical properties, and high-temperature oxidation resistance. The results show that an appropriate amount of Ta markedly promotes densification; at 10 vol% Ta, the open porosity reaches a minimum of 0.15%. Hardness and fracture toughness exhibit an increase-then-decrease trend with Ta content, attaining maxima at 15 vol% Ta (20.79 ± 0.17 GPa and 4.31 ± 0.12 MPa·, respectively). During oxidation at 800–1400 °C, the extent of oxidation increases with temperature, yet the composite with 10 vol% Ta shows the best oxidation resistance. This improvement arises from the formation of a viscous, protective Ta2O5-B2O3 glassy layer that effectively suppresses oxygen diffusion and enhances high-temperature stability. Overall, incorporating metallic Ta is an effective route to improve the manufacturability and service durability of HEB ceramics, providing a composition guideline and a mechanistic basis for simultaneously enhancing densification, toughness, and oxidation resistance. Full article
17 pages, 6375 KB  
Article
Utilization of Desulfurization Gypsum in Alkali-Activated Mortar: Performance Enhancement and Microstructural Evolution
by Xiaolong Zhou, Xinyan Wang, Wenjing Yu, Yuhui Zhao and Zhonghao Li
Buildings 2025, 15(19), 3628; https://doi.org/10.3390/buildings15193628 - 9 Oct 2025
Abstract
The engineering applicability of alkali-activated mortar (AAM) is limited by high shrinkage and fast setting time. In this study, the shrinkage performance of AAM was regulated by adding desulfurization gypsum (DG), and the effects of DG content on its workability, corrosion resistance, and [...] Read more.
The engineering applicability of alkali-activated mortar (AAM) is limited by high shrinkage and fast setting time. In this study, the shrinkage performance of AAM was regulated by adding desulfurization gypsum (DG), and the effects of DG content on its workability, corrosion resistance, and mechanical properties were systematically investigated. The test included fluidity, setting time, compressive strength, drying shrinkage, water erosion resistance, and sulfate erosion resistance and was combined with microscopic analysis to reveal its phase composition and micro-morphology. The results show that DG can significantly prolong the setting time and reduce the drying shrinkage. With a DG content of 10%, alkali-activated materials exhibited a setting time similar to that of OPC, and the 56-d drying shrinkage of the AAM was reduced by 20.2%. However, the fluidity, water erosion resistance, and sulfate resistance decreased with an increase in DG content. When the DG content was 10%, the fluidity of the AAM reached 126 mm, and its setting time was equivalent to that of OPC. The mechanical properties showed a trend of increasing first and then decreasing. The optimum was reached when the DG content was 6%. The 28-d compressive strength of AAM-6 was 63.25 MPa, and after 60 days of water erosion and sulfate corrosion its residual strength was still higher than that of OPC in the same environment. Microscopic analysis showed that DG promoted the formation of ettringite, which filled pores with age and formed a dense structure, thereby improving mechanical properties and inhibiting shrinkage. This study enhances the engineering applicability of AAM while enabling high-value utilization of industrial solid waste for sustainable construction materials. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

19 pages, 448 KB  
Article
From Policy to Practice: Challenges and Opportunities in Bilingual Preschool Education in Georgia (Sakartvelo)
by Gulnara Bibileishvili
Educ. Sci. 2025, 15(10), 1340; https://doi.org/10.3390/educsci15101340 - 9 Oct 2025
Abstract
In Georgia (Sakartvelo), a program promoting bilingual education in preschool institutions was formally adopted in 2020. It aligns with the objectives of the 2021–2030 State Strategy for Civic Equality and Integration Plan, which envisions a comprehensive reform of bilingual education across Georgia’s regions. [...] Read more.
In Georgia (Sakartvelo), a program promoting bilingual education in preschool institutions was formally adopted in 2020. It aligns with the objectives of the 2021–2030 State Strategy for Civic Equality and Integration Plan, which envisions a comprehensive reform of bilingual education across Georgia’s regions. Any reform requires research and evaluation to measure how effectively it is being implemented and whether the intended outcomes have been achieved. The bilingual education initiative pursues a dual objective: to preserve the native languages of minority communities while ensuring effective acquisition of the state language. This dual mandate is intrinsically linked to state language policy and constitutes a sensitive issue for local communities, parents, and preschool administrators, thereby necessitating a careful and nuanced approach. The present study analyzed the readiness of the social environment to support the implementation of bilingual education programs at the preschool level in the regions of Georgia in which ethnic minorities live side by side. Research was carried out in two ethnically diverse regions—Kvemo Kartli and Samtskhe–Javakheti. The author conducted individual and group interviews, and the elicited data were analyzed with the help of content and thematic analyses. This study examines key attributes of the ongoing preschool reform to identify factors that facilitate the effective implementation of early bilingual education initiatives. The findings highlight both commonalities and regional variations in parental attitudes toward the bilingual education reform. Full article
(This article belongs to the Special Issue Innovation and Design in Multilingual Education)
Show Figures

Figure 1

14 pages, 3881 KB  
Article
Research and Application of Conditional Generative Adversarial Network for Predicting Gas Content in Deep Coal Seams
by Lixin Tian, Shuai Sun, Yu Qi and Jingxue Shi
Processes 2025, 13(10), 3215; https://doi.org/10.3390/pr13103215 - 9 Oct 2025
Abstract
Accurate assessment of coalbed methane (CBM) content is essential for characterizing subsurface reservoir distribution, guiding well placement, and estimating reserves. Current methods for determining coal seam gas content mainly rely on direct laboratory measurements of core samples or indirect interpretations derived from well [...] Read more.
Accurate assessment of coalbed methane (CBM) content is essential for characterizing subsurface reservoir distribution, guiding well placement, and estimating reserves. Current methods for determining coal seam gas content mainly rely on direct laboratory measurements of core samples or indirect interpretations derived from well log data. However, conventional coring is costly, while log-based approaches often depend on linear empirical formulas and are restricted to near-wellbore regions. In practice, the relationships between elastic properties and gas content are highly complex and nonlinear, leading conventional linear models to produce substantial prediction errors and inadequate performance. This study introduces a novel method for predicting gas content in deep coal seams using a Conditional Generative Adversarial Network (CGAN). First, elastic parameters are obtained through pre-stack inversion. Next, sensitivity analysis and attribute optimization are applied to identify elastic attributes that are most sensitive to gas content. A CGAN is then employed to learn the nonlinear mapping between multiple fluid-sensitive seismic attributes and gas content distribution. By integrating multiple constraints to refine the discriminator and guide generator training, the model achieves accurate gas content prediction directly from seismic data. Applied to a real dataset from a CBM block in the Ordos Basin, China, the proposed CGAN-based method produces predictions that align closely with measured gas content trends at well locations. Validation at blind wells shows an average prediction error of 1.6 m3/t, with 83% of samples exhibiting errors less than 3 m3/t. This research presents an effective and innovative deep learning approach for predicting coalbed methane content. Full article
(This article belongs to the Special Issue Coalbed Methane Development Process)
28 pages, 1050 KB  
Systematic Review
Naidí (Euterpe oleracea Mart.), a Colombian Pacific Fruit with Potential Use in Animal Feed: A Systematic Review
by Eduardo J. Chavarro-Parra, Carlos A. Hincapié, Gustavo Adolfo Hincapié-Llanos, Marisol Osorio and Piedad Gañán-Rojo
Resources 2025, 14(10), 161; https://doi.org/10.3390/resources14100161 - 9 Oct 2025
Abstract
Due to its implications for environmental conservation, the search for alternative ingredients to replace conventional raw materials destined for animal feed is a highly relevant issue. This systematic review aims to identify the fruit with the greatest potential for use in animal feed [...] Read more.
Due to its implications for environmental conservation, the search for alternative ingredients to replace conventional raw materials destined for animal feed is a highly relevant issue. This systematic review aims to identify the fruit with the greatest potential for use in animal feed among those commonly cultivated in the Colombian Pacific region. A bibliographic search of scientific articles on eight different fruits commonly cultivated in the Colombian Pacific was carried out in the Scopus and Web of Science databases. Using the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodology, 970 publications from 2004 to 15 December 2024 were selected. After screening the publications, naidí (Euterpe oleracea) was selected as the fruit with the greatest potential for use in animal feed due to the quantitative and qualitative characteristics of the 53 relevant publications found in the databases. The articles were classified by subject matter: nutritional composition, bioactive compound content, and uses in animal feed. The results indicate that naidí is a good source of fat and fiber and has a suitable mineral and fatty acid profile for animal feed. It also contains a variety of chemical constituents, including polyphenols such as anthocyanins and other flavonoids. The multiple precedents found related to the use of naidí in animal feed, such as good indicators of weight gain, increased immune values, antioxidant capacity, and other health benefits, make this fruit and its by-products a promising source as an ingredient for animal feed. This expands the perspective and projection of the naidí industry in Colombia. Full article
13 pages, 2455 KB  
Article
Spatial Distribution of Uranium and Thorium in the Soils of North Macedonia
by Trajče Stafilov and Robert Šajn
Minerals 2025, 15(10), 1063; https://doi.org/10.3390/min15101063 - 9 Oct 2025
Abstract
The aim of the study was to determine the spatial distribution and assess uranium and thorium contamination in the soils of North Macedonia. Topsoil samples (0–30 cm) were collected from 995 locations across the country on a 5 × 5 km grid. The [...] Read more.
The aim of the study was to determine the spatial distribution and assess uranium and thorium contamination in the soils of North Macedonia. Topsoil samples (0–30 cm) were collected from 995 locations across the country on a 5 × 5 km grid. The soil samples were analysed by inductively coupled plasma–mass spectrometry (ICP-MS) using the total digestion method. The distribution of uranium and thorium in the soils is discussed according to the country’s 8 statistical regions, 15 major geological formations and 13 pedological units. The average uranium content is 2.1 mg/kg, ranging from <0.1 to 13 mg/kg (median 2.0 mg/kg), while the average thorium content is 9.3 mg/kg, ranging from 0.20 to 92 mg/kg (median 9.5 mg/kg). The spatial distribution patterns of U and Th in the soils of North Macedonia are very similar and are determined by geology (parent material and mineralisation). High uranium (2.9–13 mg/kg) and thorium (42–92 mg/kg) contents were found mainly in soils in the areas of Neogene and Palaeozoic igneous rocks and Neogene clastites (Pelagonian, East Macedonian zone), as well as in the Kratovo-Zletovo Massif in the north-eastern part of the country and in the Kožuf Mountains in the central and southern parts, where Neogene igneous rocks predominate. According to the pedological units, the hydromorphic soils (mean content of 2.9 mg/kg U and 12 mg/kg Th) in the valleys of the country’s main rivers, which predominate in the western part, were the richest for these elements. Full article
Show Figures

Figure 1

18 pages, 1473 KB  
Article
Asymmetric Response of Grassland Greenhouse Gases to Nitrogen Addition: A Global Meta-Analysis
by Xiaoqing Cui, Yu Zhang and Xiping Song
Agronomy 2025, 15(10), 2365; https://doi.org/10.3390/agronomy15102365 - 9 Oct 2025
Abstract
Grassland ecosystems, a major component of the global carbon (C) and nitrogen (N) cycles, are increasingly impacted by anthropogenic N addition. However, a comprehensive, integrated assessment of all three major greenhouse gas (GHG) responses in grasslands is lacking. Here, we present the first [...] Read more.
Grassland ecosystems, a major component of the global carbon (C) and nitrogen (N) cycles, are increasingly impacted by anthropogenic N addition. However, a comprehensive, integrated assessment of all three major greenhouse gas (GHG) responses in grasslands is lacking. Here, we present the first global meta-analysis to evaluate the effects of N addition on all three major GHGs (i.e., nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) fluxes) in grasslands. Our results show that N addition significantly and consistently stimulates N2O emissions, a response primarily modulated by key drivers such as grassland type, management, N addition rate and forms, humidity index (HI), and soil pH, clay, and total nitrogen (TN) content. In contrast, N addition has a minimal and non-significant overall effect on soil CO2 fluxes. For CH4, N addition causes a context-dependent reduction in uptake, an effect that is exacerbated by high mean annual precipitation (MAP) and soil bulk density (BD) but alleviated by high soil organic carbon (SOC) content. Notably, both CO2 and N2O showed a dose-dependent effect, while soil CO2 fluxes were unexpectedly suppressed by nitrate nitrogen (NO3) addition. Our findings indicate that the pronounced and consistent increase in N2O emissions is the dominant factor in GHG-related impacts in grasslands, implying a net positive climate forcing in grasslands from N enrichment, even if there is insufficient data to calculate net climate forcing directly. Our study highlights the heterogeneous nature of grassland GHG responses and provides critical insights for developing sustainable N management strategies to mitigate climate change. Full article
(This article belongs to the Section Grassland and Pasture Science)
Back to TopTop