Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,984)

Search Parameters:
Keywords = continuous fiber

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3909 KB  
Article
Investigations on Repeated Overheating by Hot Air of Aromatic Epoxy-Based Carbon Fiber-Reinforced Plastics with and Without Thermoplastic Toughening
by Sebastian Eibl and Lara Greiner
J. Compos. Sci. 2025, 9(10), 551; https://doi.org/10.3390/jcs9100551 - 8 Oct 2025
Abstract
This work provides a comparison of two commercial carbon fiber reinforced plastic (CFRP) materials: HexPly® M18 1/G939 and RTM6/G939. Differences due to the additional thermoplastic in one CFRP are investigated for the two otherwise nearly identical, aromatic epoxy-based composites with respect to [...] Read more.
This work provides a comparison of two commercial carbon fiber reinforced plastic (CFRP) materials: HexPly® M18 1/G939 and RTM6/G939. Differences due to the additional thermoplastic in one CFRP are investigated for the two otherwise nearly identical, aromatic epoxy-based composites with respect to thermal degradation. The scenario chosen for testing is based on real incidents of repeated overheating by hot gases between roughly 200 and 320 °C, leading to moderate thermal damage. A special test setup is designed to continuously and alternately load CFRP with hot air in a rapid change. Post-mortem analysis is performed by mass loss, ultrasonic, and mechanical testing. Polymer degradation is analyzed by infrared spectroscopy. Even if the temperature-resistant thermoplastic polyetherimide (PEI) in the M18-1 matrix is enriched between the plies and a compensation of thermal strain during rapid temperature changes is expected, only a weak improvement is observed for residual strength in the presence of PEI, for continuous as well as alternating thermal loading. Thermally induced delaminations are even more pronounced in M18-1/G939. Deep insight is gained into degradation after repeated overheating of CFRP within the chosen scenario. Multivariate data analyses based on infrared spectroscopy allow for the determination of thermal history and residual strength, valuable for failure analysis. Full article
(This article belongs to the Special Issue Advances in Continuous Fiber Reinforced Thermoplastic Composites)
Show Figures

Figure 1

28 pages, 5983 KB  
Article
Theoretical Modeling of Light-Fueled Self-Harvesting in Piezoelectric Beams Actuated by Liquid Crystal Elastomer Fibers
by Lin Zhou, Haiming Chen, Wu Bao, Xuehui Chen, Ting Gao and Dali Ge
Mathematics 2025, 13(19), 3226; https://doi.org/10.3390/math13193226 - 8 Oct 2025
Abstract
Traditional energy harvesting systems, such as photovoltaics and wind power, often rely on external environmental conditions and are typically associated with contact-based vibration wear and bulky structures. This study introduces light-fueled self-vibration to propose a self-harvesting system, consisting of liquid crystal elastomer fibers, [...] Read more.
Traditional energy harvesting systems, such as photovoltaics and wind power, often rely on external environmental conditions and are typically associated with contact-based vibration wear and bulky structures. This study introduces light-fueled self-vibration to propose a self-harvesting system, consisting of liquid crystal elastomer fibers, two resistors, and two piezoelectric cantilever beams arranged symmetrically. Based on the photothermal temperature evolution, we derive the governing equations of the liquid crystal elastomer fiber–piezoelectric beam system. Two distinct states, namely a self-harvesting state and a static state, are revealed through numerical simulations. The self-oscillation results from light-induced cyclic contraction of the liquid crystal elastomer fibers, driving beam bending, stress generation in the piezoelectric layer, and voltage output. Additionally, the effects of various system parameters on amplitude, frequency, voltage, and power are analyzed in detail. Unlike traditional vibration energy harvesters, this light-fueled self-harvesting system features a compact structure, flexible installation, and ensures continuous and stable energy output. Furthermore, by coupling the light-responsive LCE fibers with piezoelectric transduction, the system provides a non-contact actuation mechanism that enhances durability and broadens potential application scenarios. Full article
(This article belongs to the Special Issue Mathematical Models in Mechanics and Engineering)
Show Figures

Figure 1

17 pages, 3767 KB  
Article
Structural and Chemical Stability of TiO2-Doped Basalt Fibers in Alkaline and Seawater Conditions
by Sergey I. Gutnikov, Sergey S. Popov, Timur A. Terentev and Bogdan I. Lazoryak
Buildings 2025, 15(19), 3605; https://doi.org/10.3390/buildings15193605 - 8 Oct 2025
Abstract
Alkali resistance is a critical factor for the long-term performance of glass fibers in cementitious composites. While zirconium oxide doping has proven effective in enhancing the durability of basalt fibers, its high cost and limited solubility motivate the search for viable alternatives. This [...] Read more.
Alkali resistance is a critical factor for the long-term performance of glass fibers in cementitious composites. While zirconium oxide doping has proven effective in enhancing the durability of basalt fibers, its high cost and limited solubility motivate the search for viable alternatives. This study presents the first systematic investigation of titanium dioxide (TiO2) doping in basalt-based glasses across a wide compositional range (0–8 mol%). X-ray fluorescence and diffraction analyses confirm complete dissolution of TiO2 within the amorphous silicate network, with no phase segregation. At low concentrations (≤3 mol%), Ti4+ acts as a network modifier in octahedral coordination ([TiO6]), reducing melt viscosity and lowering processing temperatures. As TiO2 content increases, titanium in-corporates into tetrahedral sites ([TiO4]), competing with Fe3+ for network-forming positions and displacing it into octahedral coordination, as revealed by Mössbauer spectroscopy. This structural redistribution promotes phase separation and triggers the crystallization of pseudobrukite (Fe2TiO5) at elevated temperatures. The formation of a protective Ti(OH)4 surface layer upon alkali exposure enhances chemical resistance, with optimal performance observed at 4.6 mol% TiO2—reducing mass loss in NaOH and seawater by 13.3% and 25%, respectively, and improving residual tensile strength. However, higher TiO2 concentrations (≥5 mol%) lead to pseudobrukite crystallization and a narrowed fiber-forming temperature window, rendering continuous fiber drawing unfeasible. The results demonstrate that TiO2 is a promising, cost-effective dopant for basalt fibers, but its benefits are constrained by a critical solubility threshold and structural trade-offs between durability and processability. Full article
Show Figures

Figure 1

18 pages, 4201 KB  
Article
Hybrid-Mechanism Distributed Sensing Using Forward Transmission and Optical Frequency-Domain Reflectometry
by Shangwei Dai, Huajian Zhong, Xing Rao, Jun Liu, Cailing Fu, Yiping Wang and George Y. Chen
Sensors 2025, 25(19), 6229; https://doi.org/10.3390/s25196229 - 8 Oct 2025
Abstract
Fiber-optic sensing systems based on a forward transmission interferometric structure can achieve high sensitivity and a wide frequency response over long distances. However, there are still shortcomings in its ability to position multi-point vibrations and detect low-frequency vibrations, which limits its usefulness. To [...] Read more.
Fiber-optic sensing systems based on a forward transmission interferometric structure can achieve high sensitivity and a wide frequency response over long distances. However, there are still shortcomings in its ability to position multi-point vibrations and detect low-frequency vibrations, which limits its usefulness. To address these challenges, we study the viability of merging long-range forward-transmission distributed vibration sensing (FTDVS) with high spatial resolution optical frequency-domain reflectometry (OFDR), forming the first reported hybrid distributed sensing method between these two methods. The probe light source is shared between the two sub-systems, which utilizes stable linear optical frequency sweeping facilitated by high-order sideband injection locking. As a result, this is a new approach for the FTDVS method, which conventionally uses fixed-frequency continuous light. The method of nearest neighbor signal replacement (NSR) is proposed to address the issue of discontinuity in phase demodulation under periodic external modulation. The experimental results demonstrate that the hybrid system can determine the position of vibration signals between 0 and 900 Hz within a sensing distance of 21 km. When the sensing distance is extended to 71 km, the FTDVS module can still function adequately for high-frequency vibration signals. This hybrid architecture offers a fresh approach to simultaneously achieving long-distance sensing and wide frequency response, making it suitable for the combined measurement of dynamic (e.g., gas leakage, pipeline excavation warning) and quasi-static (e.g., pipeline displacement) events in long-distance applications. Full article
(This article belongs to the Special Issue Advances in Optical Fiber-Based Sensors)
Show Figures

Graphical abstract

28 pages, 7519 KB  
Article
Multiaxial Fatigue Behavior of CFRP Thin-Walled Tubes: An Experimental Study with Analysis of the Acoustic Signals
by Szymon Duda, Michał Smolnicki, Paweł Zielonka, Paweł Stabla and Grzegorz Lesiuk
Polymers 2025, 17(19), 2701; https://doi.org/10.3390/polym17192701 - 7 Oct 2025
Viewed by 30
Abstract
The fatigue behavior of continuous fiber-reinforced composite materials is still not fully understood, particularly under multiaxial out-of-phase loading conditions. This study assesses the multiaxial fatigue behavior of thin-walled carbon fiber-reinforced polymer (CFRP) tubular specimens fabricated by filament winding (FW). A comprehensive experimental study [...] Read more.
The fatigue behavior of continuous fiber-reinforced composite materials is still not fully understood, particularly under multiaxial out-of-phase loading conditions. This study assesses the multiaxial fatigue behavior of thin-walled carbon fiber-reinforced polymer (CFRP) tubular specimens fabricated by filament winding (FW). A comprehensive experimental study is presented, investigating axial-torsion loads, phase shifts (0°, 45°, and 90°), and load ratios (−1, 0.05, and 0.5). Simultaneously, the acoustic emission (AE) method provides supplementary data for assessing fatigue damage accumulation. Consequently, a shear nonlinear material model and progressive damage in a shell-based finite element model were applied for stress analysis. The experimental results demonstrate the negative influence of a 90° out-of-phase load and the detrimental effect of mean stress for investigated positive load ratios. These findings offer valuable insights into the impact of phase shift (δ) and load ratio (R) in filament-wound carbon composites. These are essential for accurately modeling the fatigue behavior of composite materials under complex multiaxial loading. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

20 pages, 2587 KB  
Article
Load-Dedicated Fiber Reinforcement of Additively Manufactured Lightweight Structures
by Sven Meißner, Daniel Kalisch, Rezo Aliyev, Sebastian Scholz, Henning Zeidler, Sascha Müller, Axel Spickenheuer and Lothar Kroll
J. Compos. Sci. 2025, 9(10), 548; https://doi.org/10.3390/jcs9100548 - 6 Oct 2025
Viewed by 200
Abstract
This study focuses on a novel lightweight technology for manufacturing variable-axial fiber-reinforced polymer components. In the presented approach, channels following the load flow are implemented in an additively manufactured basic structure and impregnated continuous fiber bundles are pulled through these component-integrated cavities. Improved [...] Read more.
This study focuses on a novel lightweight technology for manufacturing variable-axial fiber-reinforced polymer components. In the presented approach, channels following the load flow are implemented in an additively manufactured basic structure and impregnated continuous fiber bundles are pulled through these component-integrated cavities. Improved channel cross-section geometries to enhance the mechanical performance are proposed and evaluated. The hypothesis posits that increasing the surface area of the internal channels significantly reduces shear stresses between the polymer basic structure and the integrated continuous fiber composite. A series of experiments, including analytical, numerical, and microscopic analyses, were conducted to evaluate the mechanical properties of the composites formed, focusing on Young’s modulus and tensile strength. In addition, an important insight into the failure mechanism of the novel fiber composite is provided. The results demonstrate a clear correlation between the channel geometry and mechanical performance, indicating that optimized designs can effectively reduce shear stress, thus improving load-bearing capacities. The findings reveal that while fiber volume content influences the impregnation quality, an optimal balance must be achieved to enhance mechanical properties. This research contributes to the advancement of production technologies for lightweight components through additive manufacturing and the development of new types of composite materials applicable in various engineering fields. Full article
(This article belongs to the Special Issue Additive Manufacturing of Advanced Composites, 2nd Edition)
Show Figures

Figure 1

13 pages, 2083 KB  
Article
Temperature-Controlled Cascaded Fabry–Pérot Filters: A Scalable Solution for Ultra-Low-Noise Stokes Photon Detection in Quantum Systems
by Ya Li, Changqing Niu, Weizhe Qiao, Xiaolong Zou and Youxing Chen
Photonics 2025, 12(10), 986; https://doi.org/10.3390/photonics12100986 - 4 Oct 2025
Viewed by 121
Abstract
This study addresses the issue of cross-interference that occurs when locked continuous light and signal photons are collinear during interferometer measurements. To tackle this, a temperature-controlled Fabry–Pérot cavity filter with a heterogeneous cascaded structure is proposed and applied. The system consists of six [...] Read more.
This study addresses the issue of cross-interference that occurs when locked continuous light and signal photons are collinear during interferometer measurements. To tackle this, a temperature-controlled Fabry–Pérot cavity filter with a heterogeneous cascaded structure is proposed and applied. The system consists of six filtering stages, created by designing Fabry–Pérot cavities of three different lengths, each used twice (to match optical frequencies), along with temperature control settings. By applying differentiated linewidth regulation, the approach effectively suppresses interference from locked light while significantly enhancing the signal-to-noise ratio in photon detection. This method overcomes the challenge of interference from same-frequency noise photons in atomic ensemble-entangled sources, achieving a noise–photon extinction ratio on the order of 106 and surpassing the frequency resolution limit of a single filter. Experimental results demonstrate that the system reduces the noise floor in the detection optical path to below 10−16, while maintaining a photon transmission efficiency above 53% for the signal. This technology effectively addresses key challenges in noise suppression and photon state fidelity optimization in optical fiber quantum communication, offering a scalable frequency–photon noise filtering solution for long-distance quantum communication. Furthermore, its multi-parameter cooperative filtering mechanism holds broad potential applications in areas such as quantum storage and optical frequency combs. Full article
Show Figures

Figure 1

18 pages, 3197 KB  
Article
Transcriptome Analysis Revealed the Molecular Mechanism of Cyanogenic Glycoside Synthesis in Flax
by Xixia Song, Jinhao Zhang, Lili Tang, Hongmei Yuan, Dandan Yao, Weidong Jiang, Guangwen Wu, Lili Cheng, Dandan Liu, Lie Yang, Zhongyi Sun, Caisheng Qiu, Jian Zhang, Liuxi Yi and Qinghua Kang
Agronomy 2025, 15(10), 2327; https://doi.org/10.3390/agronomy15102327 - 1 Oct 2025
Viewed by 191
Abstract
This study aims to elucidate the molecular mechanisms underlying cyanogenic glycoside accumulation in flax. As an important oil and fiber crop, the nutritional value of flax is compromised by the toxicity of cyanogenic glycoside. To clarify the key genetic regulators and temporal patterns [...] Read more.
This study aims to elucidate the molecular mechanisms underlying cyanogenic glycoside accumulation in flax. As an important oil and fiber crop, the nutritional value of flax is compromised by the toxicity of cyanogenic glycoside. To clarify the key genetic regulators and temporal patterns of cyanogenic glycoside biosynthesis, transcriptomic sequencing was performed on seeds from high- and low-cyanogenic glycoside flax varieties (‘MONTANA16’ and ‘Xilibai’) at three developmental stages: bud stage, full flowering stage, and capsule-setting stage. A total of 127.25 Gb of high-quality data was obtained, with an alignment rate exceeding 87.80%. We identified 31,623 differentially expressed genes (DEGs), which exhibited distinct variety- and stage-specific expression patterns. Principal component analysis (PCA) and hierarchical clustering demonstrated strong reproducibility among biological replicates and revealed the seed pod formation stage as the period with the most significant varietal differences, suggesting it may represent a critical regulatory window for cyanogenic glycoside synthesis. GO and KEGG enrichment analyses indicated that DEGs were primarily involved in metabolic processes (including secondary metabolism and carbohydrate metabolism), oxidoreductase activity, and transmembrane transport functions. Of these, the cytochrome P450 pathway was most significantly enriched at the full bloom stage (H2 vs. L2). A total of 15 LuCYP450 and 13 LuUGT85 family genes were identified, and their expression patterns were closely associated with cyanogenic glycoside accumulation: In high-cyanogenic varieties, LuCYP450-8 was continuously upregulated, and LuUGT85-12 was significantly activated during later stages. Conversely, in low-cyanogenic varieties, high expression of LuCYP450-2/14 may inhibit synthesis. These findings systematically reveal the genetic basis and temporal dynamics of cyanogenic glycoside biosynthesis in flax and highlight the seed pod formation stage as a decisive regulatory window for cyanogenic glycoside synthesis. This study provides new insights into the coordinated regulation of cyanogenic pathways and establishes a molecular foundation for breeding flax varieties with low CNG content without compromising agronomic traits. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

32 pages, 921 KB  
Review
An Overview of the Microbiological, Nutritional, Sensory and Potential Health Aspects of Tree Nut-Based Beverages
by Tiziana Di Renzo, Antonela G. Garzón, Stefania Nazzaro, Pasquale Marena, Angela Daniela Carboni, Maria Cecilia Puppo, Silvina Rosa Drago and Anna Reale
Beverages 2025, 11(5), 144; https://doi.org/10.3390/beverages11050144 - 1 Oct 2025
Viewed by 653
Abstract
In recent years, the rise in food allergies and intolerances, combined with the increasing consumer preference for healthier, plant-based alternatives to traditional dairy products, has driven the development of a diverse range of plant-based beverages. Among these, tree nut-based beverages, “ready-to-drink” products made [...] Read more.
In recent years, the rise in food allergies and intolerances, combined with the increasing consumer preference for healthier, plant-based alternatives to traditional dairy products, has driven the development of a diverse range of plant-based beverages. Among these, tree nut-based beverages, “ready-to-drink” products made from nuts such as almonds, hazelnuts, pistachios, walnuts, brazil nut, macadamia, cashew nut, coconut, pine nut, have gained significant popularity. This review offers a comprehensive analysis of the microbiological, nutritional, and sensory properties of tree nut-based beverages, highlighting their ability to deliver essential nutrients such as healthy fats, proteins, fiber, vitamins, and minerals. Additionally, these beverages provide a rich source of bioactive compounds (e.g., antioxidants, polyphenols) that can contribute to health benefits such as reducing oxidative stress, supporting cardiovascular health, and promoting overall well-being. The review also highlights the ability of different species of lactic acid bacteria to enhance flavour profiles and increase the bioavailability of certain bioactive compounds. Nevertheless, further research is essential to optimize the production methods, improve sensory characteristics, and address challenges related to cost, scalability, and consumer acceptance. Continued innovation in this area may position tree nut beverages as a key component of plant-based food models, contributing to the promotion of healthier eating patterns. Full article
(This article belongs to the Special Issue Recent Research in Plant-Based Drinks)
Show Figures

Figure 1

20 pages, 7147 KB  
Article
Application Potential of Lion’s Mane Mushroom in Soy-Based Meat Analogues by High Moisture Extrusion: Physicochemical, Structural and Flavor Characteristics
by Yang Gao, Song Yan, Kaixin Chen, Qing Chen, Bo Li and Jialei Li
Foods 2025, 14(19), 3402; https://doi.org/10.3390/foods14193402 - 1 Oct 2025
Viewed by 324
Abstract
The aim of this work was to systematically evaluate the effects of Lion’s Mane Mushroom powder (LMM, 0–40%) on the physicochemical properties, structural characteristics, and flavor profile of soy protein isolate-based high-moisture meat analogues (HMMAs). Optimal incorporation of 20% LMM significantly enhanced product [...] Read more.
The aim of this work was to systematically evaluate the effects of Lion’s Mane Mushroom powder (LMM, 0–40%) on the physicochemical properties, structural characteristics, and flavor profile of soy protein isolate-based high-moisture meat analogues (HMMAs). Optimal incorporation of 20% LMM significantly enhanced product quality by acting as a secondary phase that inhibited lateral protein aggregation while promoting longitudinal alignment, achieving a peak fibrous degree of 1.54 with dense, ordered fibers confirmed by scanning electron microscopy. Rheological analysis showed that LMM improved viscoelasticity (G′ > G″) through β-glucan; however, excessive addition (≥30%) compromised structural integrity due to insoluble dietary fiber disrupting protein network continuity, concurrently reducing thermal stability as denaturation enthalpy (ΔH) decreased from 1176.6 to 776.3 J/g. Flavor analysis identified 285 volatile compounds in HMMAs with 20% LMM, including 98 novel compounds, and 101 flavor metabolites were upregulated. The mushroom-characteristic compound 1-octen-3-ol exhibited a marked increase in its Relative Odor Activity Value of 18.04, intensifying mushroom notes. Furthermore, LMM polysaccharides promoted the Maillard reaction, increasing the browning index from 48.77 to 82.07, while β-glucan induced a transition in protein secondary structure from random coil to β-sheet configurations via intramolecular hydrogen bonding. In conclusion, 20% LMM incorporation synergistically improved texture, fibrous structure, and flavor complexity—particularly enhancing mushroom aroma. This research offers valuable insights and a foundation for future research for developing high-quality fungal protein-based meat analogues Full article
Show Figures

Figure 1

22 pages, 533 KB  
Article
A School-Based Five-Month Gardening Intervention Improves Vegetable Intake, BMI, and Nutrition Knowledge in Primary School Children: A Controlled Quasi-Experimental Trial
by Nour Amin Elsahoryi, Omar A. Alhaj, Ruba Musharbash, Fadia Milhem, Tareq Al-Farah and Ayoub Al Jawaldeh
Nutrients 2025, 17(19), 3133; https://doi.org/10.3390/nu17193133 - 30 Sep 2025
Viewed by 191
Abstract
Background/Objectives: Childhood obesity rates in Jordan have reached alarming levels, with 28% of school-age children classified as overweight or obese. School-based gardening interventions show promise for promoting healthy eating behaviors, yet limited research exists in Middle Eastern contexts. This study evaluated the [...] Read more.
Background/Objectives: Childhood obesity rates in Jordan have reached alarming levels, with 28% of school-age children classified as overweight or obese. School-based gardening interventions show promise for promoting healthy eating behaviors, yet limited research exists in Middle Eastern contexts. This study evaluated the effectiveness of a five-month school-based vegetable gardening and nutrition education intervention on anthropometric measures, dietary intake, and knowledge, attitudes, and practices (KAP) regarding vegetable consumption among Jordanian primary school children. Methods: A quasi-experimental controlled trial was conducted with 216 students (ages 10–12 years) from two demographically matched schools in Amman, Jordan. The intervention group (n = 121) participated in weekly one-hour gardening sessions combined with nutrition education and vegetable tasting activities over five months, while the control group (n = 95) continued the standard curriculum. Outcomes measured at baseline and post-intervention included anthropometric assessments, dietary intake via 24 h recalls, and vegetable-related KAP using a validated questionnaire. Data were analyzed using paired t-tests and repeated measures ANCOVA. Results: The intervention group demonstrated significant improvements in body composition, including reductions in BMI (−1.57 kg/m2), weight (−1.88 kg), and BMI z-score (−0.37), while controls showed minimal increases. Vegetable intake showed significant time × group interaction (p-value = 0.003), with a non-significant increase in the intervention group (2.7 to 2.9 times/day) and a non-significant decrease in the controls (2.5 to 2.4 times/day). Dietary quality improved, including increased fiber intake (+2.36 g/day) and reduced saturated fat consumption (−9.24 g/day). Nutrition knowledge scores increased substantially in the intervention group (+22.31 points) compared to controls (+1.75 points; p-value ≤ 0.001). However, attitudes and practices toward vegetable consumption showed no significant changes. Conclusions: This intervention effectively improved body composition, dietary quality, and nutrition knowledge among Jordanian primary school children. These findings provide evidence for implementing culturally adapted school gardening programs as childhood obesity prevention interventions in Middle Eastern settings, though future programs should incorporate family engagement strategies to enhance behavioral sustainability. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

8 pages, 1199 KB  
Article
6.7 kW LD-Pumped Nearly-Single-Mode MOPA Fiber Laser Enabled by Low-NA Confined-Doped Fiber
by Hengyu Tang, Bingyu Rao, Yufei Gan, Baolai Yang, Fan Wang, Lei Zhang, Meng Wang, Lili Hu, Zilun Chen, Hu Xiao, Zhixian Li, Pengfei Ma and Zefeng Wang
Photonics 2025, 12(10), 971; https://doi.org/10.3390/photonics12100971 - 30 Sep 2025
Viewed by 240
Abstract
Optimized designs of the ytterbium-doped fiber (YDF) have been effective at mitigating transverse mode instability (TMI) and enabling high-power scaling. In this study, the use of low-NA confined-doped YDFs is explored to achieve high-power nearly-single-mode continuous-wave lasers. Three types of 25/500 µm YDFs [...] Read more.
Optimized designs of the ytterbium-doped fiber (YDF) have been effective at mitigating transverse mode instability (TMI) and enabling high-power scaling. In this study, the use of low-NA confined-doped YDFs is explored to achieve high-power nearly-single-mode continuous-wave lasers. Three types of 25/500 µm YDFs are manufactured with ~80% doping ratio and respective NAs of 0.058, 0.053, and 0.048. Experimental results indicate that the corresponding TMI thresholds increase with the descending NA in the YDFs. Based on the YDF with a NA of 0.048, the master oscillation power amplification (MOPA) fiber laser is scaled to 6.79 kW with nearly-single-mode beam quality. Full article
Show Figures

Figure 1

22 pages, 3051 KB  
Review
A Review of Recent Advances in MgO-Based Cementitious Composites for Green Construction: Mechanical and Durability Aspects
by Iqra, Khin Soe, Richard (Chunhui) Yang and Y. X. Zhang
Buildings 2025, 15(19), 3513; https://doi.org/10.3390/buildings15193513 - 29 Sep 2025
Viewed by 446
Abstract
The construction industry, as a major contributor to greenhouse gas emissions, urgently requires sustainable development solutions to achieve the Net Zero Emission Goal. Magnesium oxide (MgO)-based cementitious composites have emerged as promising alternatives due to their ability to reduce environmental impact and their [...] Read more.
The construction industry, as a major contributor to greenhouse gas emissions, urgently requires sustainable development solutions to achieve the Net Zero Emission Goal. Magnesium oxide (MgO)-based cementitious composites have emerged as promising alternatives due to their ability to reduce environmental impact and their potential to enhance structural integrity. Despite these advantages, limitations such as poor resistance to harsh environmental conditions and concerns over long-term durability continue to restrict their broader application. To better understand these strengths and limitations, this review investigates the influence of MgO; supplementary cementitious materials (SCMs) such as fly ash, silica fume, and rice husk ash. It also examines fibers, including polyethylene (PE), polypropylene (PP), polyvinyl alcohol (PVA), glass, sisal, and cellulose, and their effect on the mechanical and durability properties of MgO-based composites. Mechanical performance is assessed through compressive and tensile strength, while durability is evaluated in terms of porosity, permeability, water absorption, shrinkage (autogenous and drying), and carbonation resistance. Key challenges and future research directions to promote the use of MgO composites in sustainable construction are also identified. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

16 pages, 5269 KB  
Article
Drilling Surface Quality Analysis of Carbon Fiber-Reinforced Polymers Based on Acoustic Emission Characteristics
by Mengke Yan, Yushu Lai, Yiwei Zhang, Lin Yang, Yan Zheng, Tianlong Wen and Cunxi Pan
Polymers 2025, 17(19), 2628; https://doi.org/10.3390/polym17192628 - 28 Sep 2025
Viewed by 278
Abstract
CFRP is extensively utilized in the manufacturing of aerospace equipment owing to its distinctive properties, and hole-making processing continues to be the predominant processing method for this material. However, due to the anisotropy of CFRP, in its processing process, processing damage appears easily, [...] Read more.
CFRP is extensively utilized in the manufacturing of aerospace equipment owing to its distinctive properties, and hole-making processing continues to be the predominant processing method for this material. However, due to the anisotropy of CFRP, in its processing process, processing damage appears easily, such as stratification, fiber tearing, burrs, etc. These damages will seriously affect the performance of CFRP components in the service process. This work employs acoustic emission (AE) and infrared thermography (IT) techniques to analyze the characteristics of AE signals and temperature signals generated during the CFRP drilling process. Fast Fourier transform (FFT) and short-time Fourier transform (STFT) are used to process the collected AE signals. And in combination with the actual damage morphology, the material removal behavior during the drilling process and the AE signal characteristics corresponding to processing defects are studied. The results show that the time-frequency graph and root mean square (RMS) curve of the AE signal can accurately distinguish the different stages of the drilling process. Through the analysis of the frequency domain characteristics of the AE signal, the specific frequency range of the damage mode of the CFRP composite material during drilling is determined. This paper aims to demonstrate the feasibility of real-time monitoring of the drilling process. By analyzing the relationship between the RMS values of acoustic emission signals and hole surface topography under different drilling parameters, it provides a new approach for the research on online monitoring of CFRP drilling damage and improvement of CFRP machining quality. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

15 pages, 8390 KB  
Article
Switchable Dual-Comb Fiber Laser Based on Sagnac Loop for Wavelength-Multiplexing and Polarization-Multiplexing
by Qianyu Yao, Lilin Luo, Yue Cai, Yongguo Zheng and Xinhai Zhang
Photonics 2025, 12(10), 961; https://doi.org/10.3390/photonics12100961 - 28 Sep 2025
Viewed by 203
Abstract
We present an all-fiber erbium-doped mode-locked laser capable of switching among continuously tunable single-pulse mode-locking, wavelength-multiplexing asynchronous-pulse mode-locking, and polarization-multiplexing asynchronous-pulse mode-locking states. The multiplexing mechanisms under different conditions are confirmed by separating the asynchronous-pulse sequences. Experimental results and numerical simulations indicate that [...] Read more.
We present an all-fiber erbium-doped mode-locked laser capable of switching among continuously tunable single-pulse mode-locking, wavelength-multiplexing asynchronous-pulse mode-locking, and polarization-multiplexing asynchronous-pulse mode-locking states. The multiplexing mechanisms under different conditions are confirmed by separating the asynchronous-pulse sequences. Experimental results and numerical simulations indicate that the adjustment of the polarization controller within the Sagnac loop is the key factor for switching between wavelength- and polarization-multiplexing asynchronous-pulse mode-locking. The multiple output characteristics of the same laser can support diverse application scenarios, offering significant cost reduction in practical applications. To the best of our knowledge, this is the first demonstration of switching between wavelength- and polarization-multiplexing asynchronous-pulse mode-locking states in a noise-like laser. Compared to previous related work, the proposed laser not only enables tunable mode-locking wavelengths but also achieves higher pulse energy. This work provides a light source solution with a simple structure and high switchability for dual-comb applications. Full article
(This article belongs to the Special Issue Advances in Solid-State Laser Technology and Applications)
Show Figures

Figure 1

Back to TopTop