Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (780)

Search Parameters:
Keywords = controlled composting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3579 KB  
Review
Mulching for Weed Management in Medicinal and Aromatic Cropping Systems
by Ana Dragumilo, Tatjana Marković, Sava Vrbničanin, Stefan Gordanić, Milan Lukić, Miloš Rajković, Željana Prijić and Dragana Božić
Horticulturae 2025, 11(9), 998; https://doi.org/10.3390/horticulturae11090998 - 22 Aug 2025
Viewed by 81
Abstract
Weeds are one of the main problems in cultivation of medicinal and aromatic plants (MAPs); they negatively affect yield (herba and essential oil), and the overall quantity and quality of biomass, flowers, roots, seeds, and secondary metabolites. This review evaluates mulching as a [...] Read more.
Weeds are one of the main problems in cultivation of medicinal and aromatic plants (MAPs); they negatively affect yield (herba and essential oil), and the overall quantity and quality of biomass, flowers, roots, seeds, and secondary metabolites. This review evaluates mulching as a sustainable, non-chemical method for weed management in the cultivation of MAPs and examines how effectively organic, synthetic, and living mulches reduce weeds and increase yields. Regarding different mulch materials such as straw, sawdust, bark, needles, compost, polyethylene, and biodegradable films, the basic processes of mulch activity, including light interception, physical suppression, and microclimate adjustment, are examined. The review further analyzes the impact of mulching on soil parameters (moisture, temperature, pH, chlorophyll content) and the biosynthesis of secondary metabolites. The findings consistently indicate that mulching substantially reduces weed biomass, improves crop performance, and supports organic farming practices. However, there are still issues with cost, material availability, and possible soil changes, and the efficacy is affected by variables including cultivated plant species, mulch type, and application thickness. The review highlights the importance of further research to optimize the selection of mulch and MAPs and their application across various agroecological conditions, and indicates that mulching is a potential, environmentally friendly technique for weed control in MAP cultivations. Full article
(This article belongs to the Section Floriculture, Nursery and Landscape, and Turf)
Show Figures

Figure 1

20 pages, 1683 KB  
Article
Use of Spent Mushroom Substrates in Radish (Raphanus ssp.) Microgreens Cultivation
by Barbara Frąszczak, Mirosław Mleczek and Marek Siwulski
Agronomy 2025, 15(8), 2012; https://doi.org/10.3390/agronomy15082012 - 21 Aug 2025
Viewed by 184
Abstract
This study evaluated the effects of incorporating spent mushroom substrates (SMS) derived from Agaricus bisporus, Pleurotus ostreatus, and Lentinula edodes into peat-based growing media on the morphological traits, photosynthetic parameters, and mineral composition of radish and black radish microgreens. Six substrate [...] Read more.
This study evaluated the effects of incorporating spent mushroom substrates (SMS) derived from Agaricus bisporus, Pleurotus ostreatus, and Lentinula edodes into peat-based growing media on the morphological traits, photosynthetic parameters, and mineral composition of radish and black radish microgreens. Six substrate mixtures were tested, with 2.5–30% SMS and two composting durations (97 and 153 days). The results showed that a low proportion of A. bisporus SMS (2.5–5%) significantly enhanced biomass production, plant length, and leaf area, particularly in radish. In contrast, higher proportions (20–30%) of P. ostreatus and L. edodes SMS, especially when short-time composted, inhibited plant growth and photosynthetic performance (Fv/Fm, PIabs), likely due to phytotoxic compounds, high salt content, or nutrient imbalances. Mineral analysis revealed substantial increases in K, Fe, and Zn accumulation in microgreens grown on selected SMS media, particularly Agaricus 5% and Lentinula 30, while also highlighting the risk of excessive Na or heavy metal content in some treatments. Differences between the species were observed: black radish produced higher dry mass and accumulated more minerals, suggesting greater adaptability to suboptimal substrates. These findings support the potential use of well-composted SMS as a sustainable growing media component for microgreens, provided proper substrate selection, composting, and dosage control are applied. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

22 pages, 11315 KB  
Article
Improvement of Cleaner Composting Production by Manganese Dioxide Nanozyme with Streptomyces rochei ZY-2: From the Humus Formation to Greenhouse Gas Emissions
by Guoxiang Liu, Lili Lin, Jing Zhang, Enhui Sun, Cheng Yong, Ling Chen, Hongying Huang, Hongmei Jin and Ping Qu
Catalysts 2025, 15(8), 774; https://doi.org/10.3390/catal15080774 - 14 Aug 2025
Viewed by 356
Abstract
This study innovatively integrates ball-milled manganese dioxide nanozyme (MDMP) with the Streptomyces rochei ZY-2 inoculant in aerobic rice straw composting. The ZY-2 inoculant efficiently degrades the three major components to generate humus precursors such as phenols and quinones, while the MnO2 nanozyme [...] Read more.
This study innovatively integrates ball-milled manganese dioxide nanozyme (MDMP) with the Streptomyces rochei ZY-2 inoculant in aerobic rice straw composting. The ZY-2 inoculant efficiently degrades the three major components to generate humus precursors such as phenols and quinones, while the MnO2 nanozyme accelerates precursor polymerization into stable humic acid (HA) via oxygen vacancy-mediated catalytic activity. Simultaneously, this combination regulates microbial communities to reduce greenhouse gas emissions. The results show that the co-treatment group (ZY-2+ MnO2 nanozyme) had an increased HA content by 30.8%, raised HA/FA ratio by 31.6%, and degradation rates of 30.75%, 31.39%, and 16.74% for cellulose, hemicellulose, and lignin, respectively. Additionally, cumulative emissions of CH4, N2O, and NH3 were significantly reduced by 35.22%, 28.23%, and 25.67% compared to the control, attributed to the MnO2 nanozyme’s inhibition of methanogens, enhanced nitrogen fixation, and ZY-2-driven microbial metabolic optimization. This study proposes a dual-effect strategy of “enhanced humification-synergistic greenhouse gas mitigation” for agricultural waste recycling, demonstrating significant practical value. Full article
Show Figures

Graphical abstract

26 pages, 970 KB  
Review
A Review on the Degradation of Antibiotic Resistance Genes During Composting of Livestock Manure
by Enwang Zhao, Yongchao Li, Jin Zhang and Bing Geng
Toxics 2025, 13(8), 667; https://doi.org/10.3390/toxics13080667 - 8 Aug 2025
Viewed by 416
Abstract
As emerging pollutants, antibiotic resistance genes (ARGs) have been recognized as originating from diverse sources. Among these, the use of livestock feed and veterinary drugs was identified as the primary source of ARGs in livestock manure. ARGs were found to be widely distributed [...] Read more.
As emerging pollutants, antibiotic resistance genes (ARGs) have been recognized as originating from diverse sources. Among these, the use of livestock feed and veterinary drugs was identified as the primary source of ARGs in livestock manure. ARGs were found to be widely distributed in global environments, particularly in agriculture-related soils, water bodies, and the atmosphere, posing potential threats to ecological environments and human health. This paper reviewed the degradation mechanisms of ARGs during aerobic composting of livestock manure and the safety evaluation of compost products. Aerobic composting was demonstrated to be an effective method for degrading ARGs, primarily through mechanisms such as high-temperature elimination of ARG-carrying microorganisms, reduction in host bacterial abundance, and inhibition of horizontal gene transfer. Factors including the physicochemical properties of the composting substrate, the use of additives, and the presence of antibiotic and heavy metal residues were shown to influence the degradation efficiency of ARGs, with compost temperature being the core factor. The safety of organic fertilizers encompassed multiple aspects, including heavy metal content, seed germination index, and risk assessments based on ARG residues. The analysis indicated that deficiencies existed in areas such as the persistence of thermotolerant bacteria carrying ARGs, the dissemination of extracellular antibiotic resistance genes (eARGs), and virus-mediated gene transfer. Future research should focus on (1) the removal of thermotolerant bacteria harboring ARGs; (2) the decomposition of eARGs or the blocking of their transmission pathways; (3) the optimization of ultra-high temperature composting parameters; and (4) the analysis of interactions between viruses and resistant hosts. This study reviews the mechanisms, influencing factors, and safety assessment of aerobic composting for degrading ARGs in livestock manure. It not only deepens the understanding of this important environmental biotechnology process but also provides a crucial knowledge base and practical guidance for effectively controlling ARG pollution, ensuring agricultural environmental safety, and protecting public health. Additionally, it clearly outlines the key paths for future technological optimization, thus holding significant implications for the environment, agriculture, and public health. Full article
(This article belongs to the Special Issue Antibiotics and Resistance Genes in Environment)
Show Figures

Graphical abstract

15 pages, 3139 KB  
Review
From Agro-Industrial Waste to Natural Hydrogels: A Sustainable Alternative to Reduce Water Use in Agriculture
by César F. Alonso-Cuevas, Nathiely Ramírez-Guzmán, Liliana Serna-Cock, Marcelo Guancha-Chalapud, Jorge A. Aguirre-Joya, David R. Aguillón-Gutiérrez, Alejandro Claudio-Rizo and Cristian Torres-León
Gels 2025, 11(8), 616; https://doi.org/10.3390/gels11080616 - 7 Aug 2025
Viewed by 470
Abstract
The increasing demand for food necessitates that agri-food systems adopt innovative techniques to enhance food production while optimizing the use of limited resources, such as water. In agriculture, hydrogels are being increasingly used to enhance water retention and reduce irrigation requirements. However, most [...] Read more.
The increasing demand for food necessitates that agri-food systems adopt innovative techniques to enhance food production while optimizing the use of limited resources, such as water. In agriculture, hydrogels are being increasingly used to enhance water retention and reduce irrigation requirements. However, most of these materials are based on synthetic polymers that are not biodegradable. This raises serious environmental and health concerns, highlighting the urgent need for sustainable, biodegradable alternatives. Biomass-derived from agro-industrial waste presents a substantial potential for producing hydrogels, which can effectively function as water collectors and suppliers for crops. This review article provides a comprehensive overview of recent advancements in the application of agro-industrial waste for the formulation of hydrogels. Additionally, it offers a critical analysis of the development of hydrogels utilizing natural and compostable materials. Agro-industrial and food waste, which are rich in hemicellulose and cellulose, have been utilized to enhance the mechanical properties and water absorption capacity of hydrogels. These biomaterials hold significant potential for the development of effective hydrogels in agricultural applications; they can be either hybrid or natural materials that exhibit efficacy in enhancing seed germination, improving water retention capabilities, and facilitating the controlled release of fertilizers. Natural hydrogels derived from agro-industrial waste present a sustainable technological alternative that is environmentally benign. Full article
Show Figures

Graphical abstract

19 pages, 3321 KB  
Article
Assessing the Biodegradation Characteristics of Poly(Butylene Succinate) and Poly(Lactic Acid) Formulations Under Controlled Composting Conditions
by Pavlo Lyshtva, Viktoria Voronova, Argo Kuusik and Yaroslav Kobets
AppliedChem 2025, 5(3), 17; https://doi.org/10.3390/appliedchem5030017 - 4 Aug 2025
Viewed by 443
Abstract
Biopolymers and bio-based plastics, such as polylactic acid (PLA) and polybutylene succinate (PBS), are recognized as environmentally friendly materials and are widely used, especially in the packaging industry. The purpose of this study was to assess the degradation of PLA- and PBS-based formulations [...] Read more.
Biopolymers and bio-based plastics, such as polylactic acid (PLA) and polybutylene succinate (PBS), are recognized as environmentally friendly materials and are widely used, especially in the packaging industry. The purpose of this study was to assess the degradation of PLA- and PBS-based formulations in the forms of granules and films under controlled composting conditions at a laboratory scale. Biodegradation tests of bio-based materials were conducted under controlled aerobic conditions, following the standard EVS-EN ISO 14855-1:2012. Scanning electron microscopy (SEM) was performed using a high-resolution Zeiss Ultra 55 scanning electron microscope to analyze the samples. After the six-month laboratory-scale composting experiment, it was observed that the PLA-based materials degraded by 47.46–98.34%, while the PBS-based materials exhibited a final degradation degree of 34.15–80.36%. Additionally, the PLA-based compounds displayed a variable total organic carbon (TOC) content ranging from 38% to 56%. In contrast, the PBS-based compounds exhibited a more consistent TOC content, with a narrow range from 53% to 54%. These findings demonstrate that bioplastics can contribute to reducing plastic waste through controlled composting, but their degradation efficiency depends on the material composition and environmental conditions. Future efforts should optimize bioplastic formulations and composting systems while developing supportive policies for wider adoption. Full article
Show Figures

Figure 1

16 pages, 3226 KB  
Article
Sustainable Agronomical Practices Affect Essential Oil Composition of Tanacetum balsamita L.
by Martina Grattacaso, Alessandra Bonetti, Sara Di Lonardo and Luigi Paolo D’Acqui
Plants 2025, 14(15), 2406; https://doi.org/10.3390/plants14152406 - 3 Aug 2025
Viewed by 464
Abstract
This study evaluated the influence of compost and bioinoculants (mycorrhizal fungi and plant growth-promoting bacteria) on the yield and composition of essential oil extracted from Tanacetum balsamita L. over two growing seasons. The plants were cultivated under four treatments: compost, bioinoculants, a combination [...] Read more.
This study evaluated the influence of compost and bioinoculants (mycorrhizal fungi and plant growth-promoting bacteria) on the yield and composition of essential oil extracted from Tanacetum balsamita L. over two growing seasons. The plants were cultivated under four treatments: compost, bioinoculants, a combination (bioinoculants + compost), and a control. At each harvest, essential oil was extracted from fresh leaves via stem-flow distillation and analyzed using gas chromatography coupled with single quadrupole mass spectrometry. Twenty to twenty-four compounds were identified. Based on the dominant terpene derivative, the results indicated that Tanacetum balsamita L. cultivated in Italy belongs to “camphor” chemotype, a pharmacologically active compound known for its antimicrobial, anti-inflammatory, and analgesic properties. Moreover, three compounds, α-, β-phellandrene and myrtenol, were identified as typical of Tanacetum balsamita L. cultivated in Italy. Treatment effects were significant for some compounds (camphor, borneol, terpinen-4-ol, α-terpineol, dehydro sabinene ketone, and 3-thujanol), and the interaction between treatment and year was significant for a few compounds (borneol, terpinen-4-ol, dehydro sabinene ketone, 1,8-cineol, and 3-thujanol). These results emphasize the need to account for seasonal variation and underline the necessity of a deeper understanding of how experimental factors interact with them, especially in long-term essential oil studies. Full article
(This article belongs to the Special Issue Chemical Analysis, Bioactivity, and Application of Essential Oils)
Show Figures

Figure 1

22 pages, 780 KB  
Review
Extraction Methods of Microplastics in Environmental Matrices: A Comparative Review
by Garbiñe Larrea, David Elustondo and Adrián Durán
Molecules 2025, 30(15), 3178; https://doi.org/10.3390/molecules30153178 - 29 Jul 2025
Viewed by 603
Abstract
Due to the growing issue of plastic pollution over recent decades, it is essential to establish well-defined and appropriate methodologies for their extraction from diverse environmental samples. These particles can be found in complex agricultural matrices such as compost, sediments, agricultural soils, sludge, [...] Read more.
Due to the growing issue of plastic pollution over recent decades, it is essential to establish well-defined and appropriate methodologies for their extraction from diverse environmental samples. These particles can be found in complex agricultural matrices such as compost, sediments, agricultural soils, sludge, and wastewater, as well as in less complex samples like tap and bottled water. The general steps of MPs extraction typically include drying the sample, sieving to remove larger particles, removal of organic matter, density separation to isolate polymers, filtration using meshes of various sizes, oven drying of the filters, and polymer identification. Complex matrices with high organic matter content require specific removal steps. Most studies employ an initial drying process with temperature control to prevent polymer damage. For removal of organic matter, 30% H2O2 is the most commonly used reagent, and for density separation, saturated NaCl and ZnCl2 solutions are typically applied for low- and high-density polymers, respectively. Finally, filtration is carried out using meshes selected according to the identification technique. This review analyzes the advantages and limitations of the different methodologies to extract microplastics from different sources, aiming to provide in-depth insight for researchers dedicated to the study of environmental samples. Full article
(This article belongs to the Special Issue Applied Chemistry in Europe)
Show Figures

Graphical abstract

19 pages, 2238 KB  
Article
Comparison of Bioaugmentation and Semipermeable Cover as Strategies for Micro-Pollutant Removal in Sewage Sludge Composting
by Gabriela Angeles-de Paz, Miguel Ángel Díaz-Moreno, Ángeles Trujillo-Reyes, Cristina Postigo, Elisabet Aranda, Concepción Calvo and Tatiana Robledo-Mahón
Toxics 2025, 13(8), 620; https://doi.org/10.3390/toxics13080620 - 25 Jul 2025
Viewed by 273
Abstract
Untreated sewage sludge (SS) and misused stabilization technologies have contributed to great contamination and the accumulation of various pollutants in agricultural soils. Regarding micro-pollutants’ degradation, scalable and effective technologies are still scarce. Although many attempts at composting adaptations have been discussed, only a [...] Read more.
Untreated sewage sludge (SS) and misused stabilization technologies have contributed to great contamination and the accumulation of various pollutants in agricultural soils. Regarding micro-pollutants’ degradation, scalable and effective technologies are still scarce. Although many attempts at composting adaptations have been discussed, only a few have been tested individually under outdoor conditions. To investigate different composting methods (bioaugmentation and semipermeable cover) for the removal of micro-pollutants frequently found in SS, we performed a set of on-site experiments. Windrows of SS and olive pruning were used as the compostable material and were subjected to (i) bioaugmentation with the fungus Penicillium oxalicum, (ii) covered composting, (iii) covered and bioaugmented composting, and (iv) a conventional composting pile, which was included as a control. The entire experiment lasted 99 days. Bioaugmentation without cover increased the phosphorus content, favored a reduction in heavy metal content, and was the only treatment that reduced carbamazepine at the end of the process. Moreover, the inoculation of P. oxalicum under semipermeable cover increased the richness, diversity, and dominance of specific microbial taxa and total bacterial abundance. The four mature composts obtained met the standards required to be classified in the B fertilizer category, showing that we reduced most of the micro-pollutants, and passed the germination test. Full article
(This article belongs to the Special Issue Bioremediation of Pollutants in Sewage Sludge)
Show Figures

Graphical abstract

22 pages, 2743 KB  
Article
Effects of the Application of Different Types of Vermicompost Produced from Wine Industry Waste on the Vegetative and Productive Development of Grapevine in Two Irrigation Conditions
by Fernando Sánchez-Suárez, María del Valle Palenzuela, Cristina Campos-Vazquez, Inés M. Santos-Dueñas, Víctor Manuel Ramos-Muñoz, Antonio Rosal and Rafael Andrés Peinado
Agriculture 2025, 15(15), 1604; https://doi.org/10.3390/agriculture15151604 - 25 Jul 2025
Viewed by 416
Abstract
This study evaluates the agronomic potential of two types of vermicompost—one produced solely from wine industry residues (WIR) and one incorporating sewage sludge (WIR + SS)—under rainfed and deficit irrigation conditions in Mediterranean vineyards. The vermicompost was obtained through a two-phase process involving [...] Read more.
This study evaluates the agronomic potential of two types of vermicompost—one produced solely from wine industry residues (WIR) and one incorporating sewage sludge (WIR + SS)—under rainfed and deficit irrigation conditions in Mediterranean vineyards. The vermicompost was obtained through a two-phase process involving initial thermophilic pre-composting, followed by vermicomposting using Eisenia fetida for 90 days. The conditions were optimized to ensure aerobic decomposition and maintain proper moisture levels (70–85%) and temperature control. This resulted in end products that met the legal standards required for agricultural use. However, population dynamics revealed significantly higher worm reproduction and biomass in the WIR treatment, suggesting superior substrate quality. When applied to grapevines, WIR vermicompost increased soil organic matter, nitrogen availability, and overall fertility. Under rainfed conditions, it improved vegetative growth, yield, and must quality, with increases in yeast assimilable nitrogen (YAN), sugar content, and amino acid levels comparable to those achieved using chemical fertilizers, as opposed to the no-fertilizer trial. Foliar analyses at veraison revealed stronger nutrient uptake, particularly of nitrogen and potassium, which was correlated with improved oenological parameters compared to the no-fertilizer trial. In contrast, WIR + SS compost was less favorable due to lower worm activity and elevated trace elements, despite remaining within legal limits. These results support the use of vermicompost derived solely from wine residues as a sustainable alternative to chemical fertilizers, in line with the goals of the circular economy in viticulture. Full article
(This article belongs to the Special Issue Vermicompost in Sustainable Crop Production—2nd Edition)
Show Figures

Figure 1

19 pages, 722 KB  
Review
Karst Multi-Source Organic Solid Waste Bio-Enhanced Composting: The Potential of Circular Utilization to Enhance Soil Quality and Control Contaminants
by Chen Huang, Xinyu Zhao, Hui Zhang, Zihan Wang and Beidou Xi
Fermentation 2025, 11(8), 426; https://doi.org/10.3390/fermentation11080426 - 24 Jul 2025
Viewed by 545
Abstract
The dual environmental challenges of karst areas lie in organic solid waste’s (OSW) massive generation scale and diffuse dispersion, which accelerate bedrock exposure and soil contamination, while simultaneously representing an underutilized resource for soil amendments through optimized composting. Bio-enhanced composting of multi-source OSW [...] Read more.
The dual environmental challenges of karst areas lie in organic solid waste’s (OSW) massive generation scale and diffuse dispersion, which accelerate bedrock exposure and soil contamination, while simultaneously representing an underutilized resource for soil amendments through optimized composting. Bio-enhanced composting of multi-source OSW yields compounds with dual redox/adsorption capabilities, effectively improving soil quality and restoring ecological balance. The recycling and circular utilization of OSW resources become particularly critical in karst regions with vulnerable soil ecosystems, where sustainable resource management is urgently needed to maintain ecological balance. This review elucidates the ecological impacts of multi-source OSW compost applications on soil environments in ecologically fragile karst regions, specifically elucidating the mechanisms of heavy metals (HMs) migration–transformation and organic contaminant degradation (with emphasis on emerging pollutants), and the functional role of microbial carbon pumps in these processes. Furthermore, establishing a sustainable “multi-source OSW−compost−organic matter (adsorption and redox sites)−microorganisms−pollution remediation” cycle creates a green, low-carbon microenvironment for long-term soil remediation. Finally, this study evaluates the application prospects of the refined composting technology utilizing multi-objective regulation for OSW resource recycling and utilization in karst areas. This review provides critical insights for optimizing soil remediation strategies in karst ecosystems through organic waste valorization. Full article
Show Figures

Figure 1

16 pages, 1665 KB  
Article
Challenges of Organic Amendments: Impact of Vermicompost Leachate and Biochar on Popcorn Maize in Saline Soil
by Brenda Rivas-Aratoma, Wendy E. Pérez, Luis Felipe Ortiz-Dongo, Yuri Arévalo-Aranda and Richard Solórzano-Acosta
Appl. Sci. 2025, 15(14), 8041; https://doi.org/10.3390/app15148041 - 19 Jul 2025
Viewed by 530
Abstract
Organic amendments provide a sustainable strategy to enhance soil quality in degraded environments while also helping to reduce greenhouse gas emissions, for example, by improving soil structure, minimizing the use of synthetic fertilizers, and promoting a green economy. This study assessed the comparative [...] Read more.
Organic amendments provide a sustainable strategy to enhance soil quality in degraded environments while also helping to reduce greenhouse gas emissions, for example, by improving soil structure, minimizing the use of synthetic fertilizers, and promoting a green economy. This study assessed the comparative effects of two organic amendments—vermicompost leachate and biochar—on the performance of popcorn maize (Zea mays L. var. everta) cultivated in saline soil conditions. Four treatments were evaluated: T0 (Control), T1 (Vermicompost leachate), T2 (Biochar), and T3 (Vermicompost leachate + Biochar), each with 10 replicates arranged in a Completely Randomized Design (CRD). Although various soil physicochemical, microbiological, and agronomic parameters displayed no significant differences compared to the control, the application of biochar resulted in considerable improvements in soil total organic carbon, the microbial community (mesophilic aerobic bacteria, molds, and yeasts), and increased seed length and diameter. In contrast, vermicompost leachate alone negatively impacted plant growth, leading to decreases in leaf area, stem thickness, and grain yield. Specifically, grain yield declined by 46% with leachate alone and by 31% when combined with biochar, compared to the control. These findings emphasize the superior effectiveness of biochar over vermicompost leachate as a soil amendment under saline conditions and highlight the potential risks of widely applying compost teas in stressed soils. It is recommended to conduct site-specific assessments and screenings for phytotoxins and phytopathogens prior to use. Additionally, the combined application of leachate and biochar may not be advisable given the tested soil characteristics. Full article
Show Figures

Figure 1

21 pages, 1206 KB  
Article
Evaluation of Olive Mill Waste Compost as a Sustainable Alternative to Conventional Fertilizers in Wheat Cultivation
by Ana García-Rández, Silvia Sánchez Méndez, Luciano Orden, Francisco Javier Andreu-Rodríguez, Miguel Ángel Mira-Urios, José A. Sáez-Tovar, Encarnación Martínez-Sabater, María Ángeles Bustamante, María Dolores Pérez-Murcia and Raúl Moral
Agriculture 2025, 15(14), 1543; https://doi.org/10.3390/agriculture15141543 - 17 Jul 2025
Viewed by 539
Abstract
This study evaluates the agronomic and environmental performance of pelletized compost derived from olive mill waste as a sustainable alternative to mineral fertilizers for cultivating wheat (Triticum turgidum L.) under conventional tillage methods. A field experiment was conducted in semi-arid Spain, employing [...] Read more.
This study evaluates the agronomic and environmental performance of pelletized compost derived from olive mill waste as a sustainable alternative to mineral fertilizers for cultivating wheat (Triticum turgidum L.) under conventional tillage methods. A field experiment was conducted in semi-arid Spain, employing three fertilization strategies: inorganic (MAP + Urea), sewage sludge (SS), and organic compost pellets (OCP), each providing 150 kg N ha−1. The parameters analyzed included wheat yield, grain quality, soil properties, and greenhouse gas (GHG) emissions. Inorganic fertilization yielded the highest productivity and nutrient uptake. However, the OCP treatment reduced grain yield by only 15%, while improving soil microbial activity and enzymatic responses. The SS and OCP treatments showed increased CO2 and N2O emissions compared to the control and inorganic plots. However, the OCP treatment also acted as a CH4 sink. Nutrient use efficiency was greatest under mineral fertilization, though the OCP treatment outperformed the SS treatment. These results highlight the potential of OCP as a circular bio-based fertilizer that can enhance soil function and partially replace mineral inputs. Optimizing application timing is critical to aligning nutrient release with crop demand. Further long-term trials are necessary to evaluate their impact on the soil and improve environmental outcomes. Full article
Show Figures

Figure 1

21 pages, 2903 KB  
Article
Compost Tea Combined with Fungicides Modulates Grapevine Bacteriome and Metabolome to Suppress Downy Mildew
by Giuliano Bonanomi, Giuseppina Iacomino, Ayoub Idbella, Giandomenico Amoroso, Alessia Staropoli, Andrea De Sio, Franco Saccocci, Ahmed M. Abd-ElGawad, Mauro Moreno and Mohamed Idbella
J. Fungi 2025, 11(7), 527; https://doi.org/10.3390/jof11070527 - 16 Jul 2025
Viewed by 388
Abstract
Downy mildew, caused by Plasmopara viticola, is a major threat to grapevine (Vitis vinifera) cultivation in humid climates. Restrictions on synthetic pesticides and inconsistent efficacy of current biocontrol agents, especially under rainy conditions, complicate disease management. This study evaluated the [...] Read more.
Downy mildew, caused by Plasmopara viticola, is a major threat to grapevine (Vitis vinifera) cultivation in humid climates. Restrictions on synthetic pesticides and inconsistent efficacy of current biocontrol agents, especially under rainy conditions, complicate disease management. This study evaluated the potential of compost tea to suppress downy mildew in a two-year field experiment (2023 and 2024), combined with reduced synthetic fungicide applications. The study design compared two phytosanitary management strategies on a commercial vineyard: a conventional fungicide against a compost tea strategy supplemented with two cymoxanil applications. The experiment set up had three replicated blocks, each consisting of 100 plants for a total of 600 plants. Mechanistic insights were provided through controlled laboratory experiments involving pre- and post-infection leaf assays, vineyard bacteriome profiling, via 16S rRNA gene sequencing for bacterial communities, across vineyard compartments, i.e., bulk soil, rhizosphere, and phyllosphere, and grapevine metabolomic analysis by GC-MS analysis. Field trials demonstrated that compost tea combined with two fungicide applications effectively reduced disease severity, notably outperforming the fungicide alone in the particularly rainy year of 2023. Bacteriome analysis revealed that compost tea treatment enriched beneficial bacterial genera, including Pseudomonas, Sphingomonas, Enterobacter, Massilia, and Bacillus, known for their growth-promoting and biocontrol activity in the rhizosphere and phyllosphere. Laboratory assays on detached leaves further showed that compost tea alone could suppress both infection and sporulation of P. viticola. Metabolomic analysis highlighted the accumulation of compounds such as tartaric and shikimic acids in compost tea treated leaves, suggesting a potential role in induced resistance. The findings indicate that applying compost tea with reduced fungicide treatments represents a promising and sustainable strategy for managing grapevine downy mildew, even in challenging climates. Full article
(This article belongs to the Special Issue Biological Control of Fungal Plant Pathogens)
Show Figures

Figure 1

15 pages, 1686 KB  
Article
Effect of Sugar Beet Molasses and Compost from Brewery Sludge on Celery (Apium graveolens var. rapaceum) Yield and Nutrient Uptake
by Boris Adamović, Đorđe Vojnović, Ivana Maksimović, Marina Putnik Delić, Dragan Kovačević, Ranko Čabilovski, Milorad Živanov, Maja Ignjatov, Janko Červenski and Dragana Latković
Horticulturae 2025, 11(7), 836; https://doi.org/10.3390/horticulturae11070836 - 15 Jul 2025
Viewed by 401
Abstract
The rising cost of mineral fertilizers and the decreasing availability of manure in vegetable farming highlight the need for alternative fertilization strategies. To examine the possibility of applying byproducts from the food processing industry, sugar beet molasses, and compost from brewery sewage sludge [...] Read more.
The rising cost of mineral fertilizers and the decreasing availability of manure in vegetable farming highlight the need for alternative fertilization strategies. To examine the possibility of applying byproducts from the food processing industry, sugar beet molasses, and compost from brewery sewage sludge in celery production, the field experiment was conducted over two years, using a randomized complete block design with three replications. The examined variants were T0—control (without fertilizer); T1—mineral fertilizer; T2—cattle manure; T3—sheep manure; T4—poultry manure; T5—supercompost; and T6—molasses. In the first year, there was no significant difference between T1 and T5 in thickened root yield, while these two variants achieved significantly higher yield compared with other variants. In both years, the highest leaf yield was achieved with T1, while no significant difference was found between T5, T6, and conventional organic fertilizers of animal origin. The highest amount of N was absorbed by roots in T1 (42.0 kg/ha and 51.2 kg/ha, respectively), while the lowest amount was absorbed in T0 (25.5 kg/ha and 26.7 kg/ha, respectively). A significantly higher amount of P2O5 was absorbed by roots in all organic fertilizer variants compared to T0 and T1. In both years, of all the nutrients, K2O was the most absorbed nutrient by the celery root, while CaO was absorbed in greater quantities than N. Based on two years of research, it can be concluded that compost from brewery sludge and sugar beet molasses can be used as an alternative source of nutrients for plants. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

Back to TopTop