Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = conventional SAW resonator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3594 KB  
Article
Numerical Design and Optimization of High Performance Langasite and Hetero-Acoustic Layer-Based Surface Acoustic Wave Device
by Minglong Deng, Jinkai Chen, Jikai Zhang, Weilun Xie, Hao Jin, Weipeng Xuan, Shurong Dong and Jikui Luo
Micromachines 2025, 16(2), 166; https://doi.org/10.3390/mi16020166 - 30 Jan 2025
Cited by 1 | Viewed by 1071
Abstract
La3Ga5SiO14 (langasite, LGS)-based surface acoustic wave (SAW) devices are widely used for industrial health monitoring in harsh high-temperature environments. However, a conventional LGS-based SAW structure has a low quality factor (Q) due to its spurious resonant peaks. A [...] Read more.
La3Ga5SiO14 (langasite, LGS)-based surface acoustic wave (SAW) devices are widely used for industrial health monitoring in harsh high-temperature environments. However, a conventional LGS-based SAW structure has a low quality factor (Q) due to its spurious resonant peaks. A hetero-acoustic layer (HAL)-based structure can effectively enhance the Q factor and the figure of merit (FOM) of SAWs due to its better energy confinement of SAWs. In this work, a HAL-based structure is proposed to achieve a high FOM and high-temperature resistance at the same time. Based on the finite element method (FEM) and coupling-of-model (COM) combined simulation, a systematic numerical investigation was conducted to find the optimal materials and structural parameters considering the viability of an actual fabricating process. After optimizing the layer number, an intermediate-layer material choice and structural parameters, Pt/(0°, 138.5°, 27°) LGS/YX-LGS/SiC HAL structure were chosen. The proposed structure achieves a Q factor and FOM improvement of more than 5 and 2.6 times higher than those of conventional SAW structures, which is important for the development of high temperature SAW sensors. These findings pave a viable method for improving the Q factor and FOM of LGS-based SAW and can provide material and device structural design guidance for fabrication and high-temperature applications in the future. Full article
(This article belongs to the Special Issue Surface and Bulk Acoustic Wave Devices)
Show Figures

Figure 1

12 pages, 5227 KB  
Article
Honeycomb-Shaped Phononic Crystals on 42°Y-X LiTaO3/SiO2/Poly-Si/Si Substrate for Improved Performance and Miniaturization
by Panliang Tang, Hongzhi Pan, Temesgen Bailie Workie, Jia Mi, Jingfu Bao and Ken-ya Hashimoto
Micromachines 2024, 15(10), 1256; https://doi.org/10.3390/mi15101256 - 14 Oct 2024
Cited by 4 | Viewed by 3585
Abstract
A SAW device with a multi-layered piezoelectric substrate has excellent performance due to its high Q value. A multi-layer piezoelectric substrate combined with phononic crystal structures capable of acoustic wave reflection with a very small array can achieve miniaturization and high performance. In [...] Read more.
A SAW device with a multi-layered piezoelectric substrate has excellent performance due to its high Q value. A multi-layer piezoelectric substrate combined with phononic crystal structures capable of acoustic wave reflection with a very small array can achieve miniaturization and high performance. In this paper, a honeycomb-shaped phononic crystal structure based on 42°Y-X LT/SiO2/poly-Si/Si-layered substrate is proposed. The analysis of the bandgap distribution under various filling fractions was carried out using dispersion and transmission characteristics. In order to study the application of PnCs in SAW devices, one-port resonators with different reflectors were compared and analyzed. Based on the frequency response curves and Bode-Q value curves, it was found that when the HC-PnC structure is used as a reflector, it can not only improve the transmission loss of the resonator but also reduce the size of the device. Full article
Show Figures

Figure 1

17 pages, 6309 KB  
Article
Modeling for High-Frequency Spurious Responses in Incredible High-Performance Surface Acoustic Wave Devices
by Guanzhen Jiang, Yao Shuai, Zijie Wei, Jialin Yao, Wenbo Luo, Xinqiang Pan, Chuangui Wu and Wanli Zhang
Micromachines 2024, 15(1), 134; https://doi.org/10.3390/mi15010134 - 15 Jan 2024
Cited by 1 | Viewed by 2448
Abstract
To ensure that surface acoustic wave (SAW) filters fulfill the requirements of Carrier Aggregation (CA) applications, the development of modeling tools that can forecast and simulate high-frequency spurious responses has been necessary. This paper presents an advanced methodology for extending the coupling-of-modes (COM) [...] Read more.
To ensure that surface acoustic wave (SAW) filters fulfill the requirements of Carrier Aggregation (CA) applications, the development of modeling tools that can forecast and simulate high-frequency spurious responses has been necessary. This paper presents an advanced methodology for extending the coupling-of-modes (COM) model to obtain precise modeling of the high-frequency spurious responses of incredible high-performance surface acoustic wave (I.H.P. SAW) devices. The extended COM (ECOM) model is derived by modifying the conventional COM model and extending it accordingly. The parameters used in this model are determined through numerical fitting. For validation, firstly, the ECOM model is applied to a one-port synchronous I.H.P. SAW resonator, and the simulation and measurement results match. Then, the structural parameters of the ECOM model are varied, and the accuracy of the model after the structural parameters are varied is verified. It is demonstrated that this model can be applied to the design work of SAW filters. Finally, the ECOM model is applied to the design of the I.H.P. SAW filter based on a 42°YX-LiTaO3 (LT)/SiO2/AlN/Si structure. By using this method, the I.H.P. SAW filter’s high-frequency spurious response can be predicted more accurately. Full article
Show Figures

Figure 1

13 pages, 4049 KB  
Article
High-Performance SAW Resonator with Spurious Mode Suppression Using Hexagonal Weighted Electrode Structure
by Yulong Liu, Hongliang Wang, Feng Zhang, Luhao Gou, Shengkuo Zhang, Gang Cao and Pengcheng Zhang
Sensors 2023, 23(24), 9895; https://doi.org/10.3390/s23249895 - 18 Dec 2023
Cited by 3 | Viewed by 2779
Abstract
Surface acoustic wave resonators are widely applied in electronics, communication, and other engineering fields. However, the spurious modes generally present in resonators can cause deterioration in device performance. Therefore, this paper proposes a hexagonal weighted structure to suppress them. With the construction of [...] Read more.
Surface acoustic wave resonators are widely applied in electronics, communication, and other engineering fields. However, the spurious modes generally present in resonators can cause deterioration in device performance. Therefore, this paper proposes a hexagonal weighted structure to suppress them. With the construction of a finite element resonator model, the parameters of the interdigital transducer (IDT) and the area of the dummy finger weighting are determined. The spurious waves are confined within the dummy finger area, whereas the main mode is less affected by this structure. To verify the suppression effect of the simulation, resonators with conventional and hexagonal weighted structures are fabricated using the micro-electromechanical systems (MEMS) process. After the S-parameter test of the prepared resonators, the hexagonal weighted resonators achieve a high level of spurious mode suppression. Their properties are superior to those of the conventional structure, with a higher Q value (10,406), a higher minimum return loss (25.7 dB), and a lower ratio of peak sidelobe (19%). This work provides a feasible solution for the design of SAW resonators to suppress spurious modes. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Figure 1

14 pages, 5495 KB  
Article
Echo Frequency Estimation Technology for Passive Surface Acoustic Wave Resonant Sensors Based on a Genetic Algorithm
by Yufen Wu, Yanling Li, Xue Wang, Jianchao Zhang and Jin Yang
Sensors 2023, 23(23), 9401; https://doi.org/10.3390/s23239401 - 25 Nov 2023
Viewed by 1271
Abstract
Passive wireless surface acoustic wave (SAW) resonant sensors are widely used in measuring pressure, temperature, and torque, typically detecting sensing parameters by measuring the echo signal frequency of SAW resonators. Therefore, the accuracy of echo signal frequency estimation directly affects the performance index [...] Read more.
Passive wireless surface acoustic wave (SAW) resonant sensors are widely used in measuring pressure, temperature, and torque, typically detecting sensing parameters by measuring the echo signal frequency of SAW resonators. Therefore, the accuracy of echo signal frequency estimation directly affects the performance index of the sensor. Due to the exponential attenuation trend of the echo signal, the duration is generally approximately 10 μs, with conventional frequency domain analysis methods limited by the sampling frequency and data points. Thus, the resolution of frequency estimation is limited. Here, signal time-domain fitting combined with a genetic algorithm is used to estimate SAW echo signal frequency. To address the problem of slow estimation speed and poor timeliness caused by a conventional genetic algorithm, which needs to simultaneously estimate multiple parameters, such as signal amplitude, phase, frequency, and envelope, the Hilbert transform is proposed to remove the signal envelope and estimate its amplitude, and the fast Fourier transform subsection method is used to analyze the initial phase of the signal. The genetic algorithm is thereby optimized to realize the frequency estimation of SAW echo signals under a single parameter. The developed digital signal processing frequency detection system was monitored in real time to estimate the frequency of an SAW echo signal lasting 10 μs and found to have only 100 sampling points. The proposed method has a frequency estimation error within 3 kHz and a frequency estimation time of less than 1 s, which is eight times faster than the conventional genetic algorithm. Full article
(This article belongs to the Special Issue Feature Papers in Electronic Sensors)
Show Figures

Figure 1

15 pages, 4422 KB  
Article
Numerical Study of Particle Separation through Integrated Multi-Stage Surface Acoustic Waves and Modulated Driving Signals
by Yingqi Jiang, Jin Chen, Weipeng Xuan, Yuhao Liang, Xiwei Huang, Zhen Cao, Lingling Sun, Shurong Dong and Jikui Luo
Sensors 2023, 23(5), 2771; https://doi.org/10.3390/s23052771 - 3 Mar 2023
Cited by 6 | Viewed by 2861
Abstract
The manipulation of biomedical particles, such as separating circulating tumor cells from blood, based on standing surface acoustic wave (SSAW) has been widely used due to its advantages of label-free approaches and good biocompatibility. However, most of the existing SSAW-based separation technologies are [...] Read more.
The manipulation of biomedical particles, such as separating circulating tumor cells from blood, based on standing surface acoustic wave (SSAW) has been widely used due to its advantages of label-free approaches and good biocompatibility. However, most of the existing SSAW-based separation technologies are dedicated to isolate bioparticles in only two different sizes. It is still challenging to fractionate various particles in more than two different sizes with high efficiency and accuracy. In this work, to tackle the problems of low efficiency for multiple cell particle separation, integrated multi-stage SSAW devices with different wavelengths driven by modulated signals were designed and studied. A three-dimensional microfluidic device model was proposed and analyzed using the finite element method (FEM). In addition, the effect of the slanted angle, acoustic pressure, and the resonant frequency of the SAW device on the particle separation were systemically studied. From the theoretical results, the separation efficiency of three different size particles based on the multi-stage SSAW devices reached 99%, which was significantly improved compared with conventional single-stage SSAW devices. Full article
(This article belongs to the Special Issue Biosensors and Electrochemical Sensors)
Show Figures

Figure 1

10 pages, 3410 KB  
Article
Dual-Passband SAW Filter Based on a 32°YX-LN/SiO2/SiC Multilayered Substrate
by Huiping Xu, Sulei Fu, Rongxuan Su, Peisen Liu, Rui Wang, Fei Zeng, Cheng Song, Weibiao Wang and Feng Pan
Micromachines 2023, 14(2), 479; https://doi.org/10.3390/mi14020479 - 18 Feb 2023
Cited by 5 | Viewed by 3652
Abstract
To meet the demands of highly integrated and miniaturized radio frequency front-end (RFFE) modules, multi-passband filters which support multi-channel compounding come to the foreground. In this work, we proposed a new design of a dual-passband surface acoustic wave (SAW) filter based on a [...] Read more.
To meet the demands of highly integrated and miniaturized radio frequency front-end (RFFE) modules, multi-passband filters which support multi-channel compounding come to the foreground. In this work, we proposed a new design of a dual-passband surface acoustic wave (SAW) filter based on a 32°YX-LiNbO3 (LN)/SiO2/SiC multilayered structure. The filter is of a standalone ladder topology and comprises dual-mode resonators, in which the shear horizontal (SH) mode and high-order SH mode are simultaneously excited through electrode thickness modulation. The impact of electrode thickness on the performance of the dual-mode resonator was systematically investigated by the finite element method (FEM), and resonators were prepared and verified the simulation results. The electromechanical coupling coefficients (K2) of the SH modes are 15.1% and 17.0%, while the maximum Bode-Q (Qmax) values are 150 and 247, respectively, for the fabricated resonators with wavelengths of 1 μm and 1.1 μm. In terms of the high-order SH modes in these resonators, the K2 values are 9.8% and 8.4%, and Qmax values are 190 and 262, respectively. The fabricated dual-band filter shows the center frequencies (fc) of 3065 MHz and 4808 MHz as two bands, with 3-dB fractional bandwidths (FBW) of 5.1% and 5.9%, respectively. Such a dual-band SAW filter based on a conventional ladder topology is meaningful in terms of its compact layout and diminished area occupancy. This work provides a promising avenue to constitute a high-performance dual-passband SAW filter for sub-6 GHz RF application. Full article
(This article belongs to the Special Issue Advanced Electrostatic Sensors and Actuators)
Show Figures

Figure 1

11 pages, 2495 KB  
Article
Fractional Bandwidth up to 24% and Spurious Free SAW Filters on Bulk 15°YX-LiNbO3 Substrates Using Thickness-Modulated IDT Structures
by Zengtian Lu, Sulei Fu, Zhibin Xu, Weibiao Wang, Qiaozhen Zhang, Jianrun Zhang and Hui Zhang
Micromachines 2022, 13(3), 439; https://doi.org/10.3390/mi13030439 - 14 Mar 2022
Cited by 8 | Viewed by 3920
Abstract
To cope with ubiquitous wireless connectivity and the increased and faster data delivery in 5G communication, surface acoustic wave (SAW) filters are progressively requiring wider bandwidths. Conventional bulk 15°YX-LiNbO3 substrates with a large coupling coefficient (K2) are attractive for [...] Read more.
To cope with ubiquitous wireless connectivity and the increased and faster data delivery in 5G communication, surface acoustic wave (SAW) filters are progressively requiring wider bandwidths. Conventional bulk 15°YX-LiNbO3 substrates with a large coupling coefficient (K2) are attractive for the low-cost mass production of wideband SAW filters, but these generally suffer from spurious responses, limiting their practical application. In this work, a novel and simple SAW configuration is proposed that uses thickness-modulated interdigital transducer (IDT) structures to overcome the limitations set by spurious responses. Different from the conventional design where the thicknesses of the IDT electrodes in the series and parallel resonators generally kept the same, the proposed configuration adopts IDT electrodes of different thicknesses in the series and shunt resonators to suppress or remove unwanted spurious Rayleigh modes from the filter passband. Two different ultra-wideband SAW filter designs employing thickness-modulated IDTs were designed and fabricated to validate the effective suppression of spurious modes. The SAW filters experimentally featured spurious-free responses in the passband as well as a large 3 dB fractional bandwidth (FBW) in the 18.0% and 24.1% ranges and low insertion losses below 1 dB. This work can significantly broaden the range of applications for SAW devices and can open a pathway to commercialize ultra-wideband SAW filters in 5G communication systems. Full article
(This article belongs to the Special Issue Acoustic Resonators and Filters)
Show Figures

Figure 1

15 pages, 54486 KB  
Article
Analysis of Embedded Optical Interferometry in Transparent Elastic Grating for Optical Detection of Ultrasonic Waves
by Chayanisa Sukkasem, Suvicha Sasivimolkul, Phitsini Suvarnaphaet and Suejit Pechprasarn
Sensors 2021, 21(8), 2787; https://doi.org/10.3390/s21082787 - 15 Apr 2021
Cited by 5 | Viewed by 3641
Abstract
In this paper, we propose a theoretical framework to explain how the transparent elastic grating structure can be employed to enhance the mechanical and optical properties for ultrasonic detection. Incident ultrasonic waves can compress the flexible material, where the change in thickness of [...] Read more.
In this paper, we propose a theoretical framework to explain how the transparent elastic grating structure can be employed to enhance the mechanical and optical properties for ultrasonic detection. Incident ultrasonic waves can compress the flexible material, where the change in thickness of the elastic film can be measured through an optical interferometer. Herein, the polydimethylsiloxane (PDMS) was employed in the design of a thin film grating pattern. The PDMS grating with the grating period shorter than the ultrasound wavelength allowed the ultrasound to be coupled into surface acoustic wave (SAW) mode. The grating gaps provided spaces for the PDMS grating to be compressed when the ultrasound illuminated on it. This grating pattern can provide an embedded thin film based optical interferometer through Fabry–Perot resonant modes. Several optical thin film-based technologies for ultrasonic detection were compared. The proposed elastic grating gave rise to higher sensitivity to ultrasonic detection than a surface plasmon resonance-based sensor, a uniform PDMS thin film, a PDMS sensor with shearing interference, and a conventional Fabry–Perot-based sensor. The PDMS grating achieved the enhancement of sensitivity up to 1.3 × 10−5 Pa−1 and figure of merit of 1.4 × 10−5 Pa−1 which were higher than those of conventional Fabry–Perot structure by 7 times and 4 times, respectively. Full article
(This article belongs to the Collection Photonic Sensors)
Show Figures

Figure 1

19 pages, 7157 KB  
Article
Ultrasonic Transceiver with a Regular/Periodic 1-3 Piezocomposite Based on the SAW Resonance Mode on Damping Backing
by Alex Mezheritsky
Acoustics 2020, 2(1), 110-127; https://doi.org/10.3390/acoustics2010008 - 18 Feb 2020
Cited by 4 | Viewed by 6071
Abstract
A novel effective vibrational mode was discovered in the conventional transducer with an array of orthogonal (square) regular piezoelectric rods in 1-3 piezocomposite, containing the damping backing and front matching layers. The operational resonance in the structure was determined as the Surface Acoustic [...] Read more.
A novel effective vibrational mode was discovered in the conventional transducer with an array of orthogonal (square) regular piezoelectric rods in 1-3 piezocomposite, containing the damping backing and front matching layers. The operational resonance in the structure was determined as the Surface Acoustic Wave (SAW) on the backing boundary excited by the adjacent piezo-rods, with its frequency typically near 3 times lower the fundamental half-lambda conventional piezocomposite resonance. Pulse-echo sensitivity and transmitting sound pressure level (SPL) in air showed that the signal strength is roughly comparable to the industrial similar air transducers at the frequency range 100–700 kHz, where at these frequencies the lateral and longitudinal piezoelement dimensions in the conventional transducer design are typically close to each other causing interference with unwanted coupling modes. As was determined theoretically and proved in experiments, the backing SAW resonance effect in the transducer performance is inherent just to the regular periodic 1-3 piezocomposite structure and does occur neither with randomly located/oriented piezo-rods nor in the homogeneous piezo-plate at least with the same lateral cross-section as the connected to it backing. The purpose of the article is to investigate a newly discovered operational vibrational mode of a SAW type in 1-3 regular piezocomposite, other than piezoelectric resonance. The investigated phenomena can improve the transceiver sensitivity and bandwidth, providing lower drive voltage and smaller and lighter weight ultrasonic transducers. Based on the piezocomposites with thickness’ 1–1.5 mm (rod resonance near 2–3 MHz), pillar width 0.2–0.8 mm, kerf width 0.1–0.4 mm, the transceivers with an operating frequency from 140 kHz to 650 kHz were designed and fabricated with a conventional backing of a mixture of high-density tungsten powder and epoxy and a matching layer of a mixture of low-density glass bubbles and epoxy. Experimental evaluation of their acoustical performance showed expected characteristics suitable for practical applications. Full article
Show Figures

Figure 1

15 pages, 2267 KB  
Article
Significance Testing and Multivariate Analysis of Datasets from Surface Plasmon Resonance and Surface Acoustic Wave Biosensors: Prediction and Assay Validation for Surface Binding of Large Analytes
by Mihaela Puiu, Lucian-Gabriel Zamfir, Valentin Buiculescu, Angela Baracu, Cristina Mitrea and Camelia Bala
Sensors 2018, 18(10), 3541; https://doi.org/10.3390/s18103541 - 19 Oct 2018
Cited by 7 | Viewed by 3853
Abstract
In this study, we performed uni- and multivariate data analysis on the extended binding curves of several affinity pairs: immobilized acetylcholinesterase (AChE)/bioconjugates of aflatoxin B1(AFB1) and immobilized anti-AFB1 monoclonal antibody/AFB1-protein carriers. The binding curves were recorded [...] Read more.
In this study, we performed uni- and multivariate data analysis on the extended binding curves of several affinity pairs: immobilized acetylcholinesterase (AChE)/bioconjugates of aflatoxin B1(AFB1) and immobilized anti-AFB1 monoclonal antibody/AFB1-protein carriers. The binding curves were recorded on three mass sensitive cells operating in batch configurations: one commercial surface plasmon resonance (SPR) sensor and two custom-made Love wave surface-acoustic wave (LW-SAW) sensors. We obtained 3D plots depicting the time-evolution of the sensor response as a function of analyte concentration using real-time SPR binding sensograms. These “calibration” surfaces exploited the transient periods of the extended kinetic curves, prior to equilibrium, creating a “fingerprint” for each analyte, in considerably shortened time frames compared to the conventional 2D calibration plots. The custom-made SAW sensors operating in different experimental conditions allowed the detection of AFB1-protein carrier in the nanomolar range. Subsequent statistical significance tests were performed on unpaired data sets to validate the custom-made LW-SAW sensors. Full article
(This article belongs to the Special Issue Immunosensors - 2018 Trends and Perspective)
Show Figures

Graphical abstract

29 pages, 3853 KB  
Article
Feasibility of Ocean Acoustic Waveguide Remote Sensing (OAWRS) of Atlantic Cod with Seafloor Scattering Limitations
by Ankita D. Jain, Anamaria Ignisca, Dong Hoon Yi, Purnima Ratilal and Nicholas C. Makris
Remote Sens. 2014, 6(1), 180-208; https://doi.org/10.3390/rs6010180 - 20 Dec 2013
Cited by 11 | Viewed by 8352
Abstract
Recently reported declines in the population of Atlantic cod have led to calls for additional survey methods for stock assessments. In combination with conventional line-transect methods that may have ambiguities in sampling fish populations, Ocean Acoustic Waveguide Remote Sensing (OAWRS) has been shown [...] Read more.
Recently reported declines in the population of Atlantic cod have led to calls for additional survey methods for stock assessments. In combination with conventional line-transect methods that may have ambiguities in sampling fish populations, Ocean Acoustic Waveguide Remote Sensing (OAWRS) has been shown to have a potential for providing accurate stock assessments (Makris N.C., et al. Science 2009, 323, 1,734–1,737; 54th Northeast Regional Stock Assessment Workshop (54th SAW) US Department of Commerce, Northeast Fisheries Science Center, 2012). The use of OAWRS technology enables instantaneous wide-area sensing of fish aggregations over thousands of square kilometers. The ratio of the intensity of scattered returns from fish versus the seafloor in any resolution cell typically determines the maximum fish detection range of OAWRS, which then is a function of fish population density, scattering amplitude and depth distribution, as well as the level of seafloor scattering. With the knowledge of oceanographic parameters, such as bathymetry, sound speed structure and attenuation, we find that a Rayleigh–Born volume scattering approach can be used to efficiently and accurately estimate seafloor scattering over wide areas. From hundreds of OAWRS measurements of seafloor scattering, we determine the Rayleigh–Born scattering amplitude of the seafloor, which we find has a ƒ2,4 frequency dependence below roughly 2 kHz in typical continental shelf environments along the US northeast coast. We then find that it is possible to robustly detect cod aggregations across frequencies at and near swim bladder resonance for observed spawningconfigurations along the U.S. northeast coast, roughly the two octave range 150–600 Hzfor water depths up to roughly 100 m. This frequency range is also optimal for long-rangeocean acoustic waveguide propagation, because it enables multimodal acoustic waveguidepropagation with minimal acoustic absorption and forward scattering losses. As the sensingfrequency moves away from the resonance peak, OAWRS detection of cod becomesincreasingly less optimal, due to a rapid decrease in cod scattering amplitude. In otherenvironments where cod depth may be greater, the optimal frequencies for cod detectionare expected to increase with swim bladder resonance frequency. Full article
Show Figures

Back to TopTop