Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (275)

Search Parameters:
Keywords = conversion cathode

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1830 KB  
Article
Material and Energy Flow Analysis of Hydrometallurgical Recycling for Lithium-Ion Battery Based on Aspen Plus
by Yifei Zhang, Valentin Mussehl and Dequan Piao
Coatings 2025, 15(9), 990; https://doi.org/10.3390/coatings15090990 - 26 Aug 2025
Viewed by 444
Abstract
The exponential growth of global electric vehicle deployment has precipitated a critical need for the sustainable recycling of end-of-life lithium-ion batteries (LIBs), particularly nickel–cobalt–manganese (NCM) ternary cathodes, which dominate the retired battery stream. This study establishes an integrated Aspen Plus-based hydrometallurgical process model, [...] Read more.
The exponential growth of global electric vehicle deployment has precipitated a critical need for the sustainable recycling of end-of-life lithium-ion batteries (LIBs), particularly nickel–cobalt–manganese (NCM) ternary cathodes, which dominate the retired battery stream. This study establishes an integrated Aspen Plus-based hydrometallurgical process model, focusing on “acid dissolution–LiOH precipitation–electrolysis” for closed-loop NCM recycling. Gibbs reactor-based dissolution kinetics is used for selective metal leaching (achieving > 99% efficiency at 185 kg/h acid flow), the thermodynamic prioritization of sequential hydroxide precipitation (Co → Ni → Mn at 10–60 kg/h LiOH), and the electrochemical regeneration of LiOH/H2SO4 from Li2SO4 (70.01 kg/h LiOH at 0.8 conversion). Material balance analysis confirms a net production of 10.01 kg LiOH per 100 kg of NCM feedstock with 41.87 kg of acid consumption, while the energy of electrolysis power is 452.96 kW at 6 V/1360 A/m2. This work provides a techno-economic framework for industrial-scale battery recycling. Full article
Show Figures

Figure 1

29 pages, 5199 KB  
Review
Recent Progress on Synthesis and Electrochemical Performance of Iron Fluoride Conversion Cathodes for Li-Ion Batteries
by Jiabin Tian, Ziyi Yang, Yayun Zheng and Zhengfei Chen
Solids 2025, 6(3), 47; https://doi.org/10.3390/solids6030047 - 22 Aug 2025
Viewed by 386
Abstract
Despite notable advancements in lithium-ion battery (LIB) technology, growing industrialization, rising energy demands, and evolving consumer electronics continue to raise performance requirements. As the primary determinant of battery performance, cathode materials have become a central research focus. Among emerging candidates, iron-based fluorides show [...] Read more.
Despite notable advancements in lithium-ion battery (LIB) technology, growing industrialization, rising energy demands, and evolving consumer electronics continue to raise performance requirements. As the primary determinant of battery performance, cathode materials have become a central research focus. Among emerging candidates, iron-based fluorides show great promise due to their high theoretical specific capacities, elevated operating voltages, low cost (owing to abundant iron and fluorine), and structurally diverse crystalline forms such as pyrochlore and tungsten bronze types. These features make them strong contenders for next-generation high-energy, low-cost LIBs. This review highlights recent progress in iron-based fluoride cathode materials, with an emphasis on structural regulation and performance enhancement strategies. Using pyrochlore-type hydrated iron trifluoride (Fe2F5·H2O), synthesized via ionic liquids like BmimBF4, as a representative example, we discuss key methods for tuning physicochemical properties—such as electronic conductivity, ion diffusion, and structural stability—via doping, compositing, nanostructuring, and surface engineering. Advanced characterization tools (XRD, SEM/TEM, XPS, Raman, synchrotron radiation) and electrochemical analyses are used to reveal structure–property–performance relationships. Finally, we explore current challenges and future directions to guide the practical deployment of iron-based fluorides in LIBs. This review provides theoretical insights for designing high-performance, cost-effective cathode materials. Full article
Show Figures

Graphical abstract

24 pages, 2449 KB  
Article
Synthesis and Characterization of a New Hydrogen-Bond-Stabilized 1,10-Phenanthroline–Phenol Schiff Base: Integrated Spectroscopic, Electrochemical, Theoretical Studies, and Antimicrobial Evaluation
by Alexander Carreño, Evys Ancede-Gallardo, Ana G. Suárez, Marjorie Cepeda-Plaza, Mario Duque-Noreña, Roxana Arce, Manuel Gacitúa, Roberto Lavín, Osvaldo Inostroza, Fernando Gil, Ignacio Fuentes and Juan A. Fuentes
Chemistry 2025, 7(4), 135; https://doi.org/10.3390/chemistry7040135 - 21 Aug 2025
Viewed by 703
Abstract
A new Schiff base, (E)-2-(((1,10-phenanthrolin-5-yl)imino)methyl)-4,6-di-tert-butylphenol (Fen-IHB), was designed to incorporate an intramolecular hydrogen bond (IHB) between the phenolic OH and the azomethine nitrogen with the goal of modulating its physicochemical and biological properties. Fen-IHB was synthesized by condensation of [...] Read more.
A new Schiff base, (E)-2-(((1,10-phenanthrolin-5-yl)imino)methyl)-4,6-di-tert-butylphenol (Fen-IHB), was designed to incorporate an intramolecular hydrogen bond (IHB) between the phenolic OH and the azomethine nitrogen with the goal of modulating its physicochemical and biological properties. Fen-IHB was synthesized by condensation of 5-amino-1,10-phenanthroline with 3,5-di-tert-butyl-2-hydroxybenzaldehyde and exhaustively characterized by HR-ESI-MS, FTIR, 1D/2D NMR (1H, 13C, DEPT-45, HH-COSY, CH-COSY, D2O exchange), and UV–Vis spectroscopy. Cyclic voltammetry in anhydrous CH3CN revealed a single irreversible cathodic peak at −1.43 V (vs. Ag/Ag+), which is consistent with the intramolecular reductive coupling of the azomethine moiety. Density functional theory (DFT) calculations, including MEP mapping, Fukui functions, dual descriptor analysis, and Fukui potentials with dual descriptor potential, identified the exocyclic azomethine carbon as the principal nucleophilic site and the phenolic ring (hydroxyl oxygen and adjacent carbons) as the main electrophilic region. Noncovalent interaction (NCI) analysis further confirmed the strength and geometry of the intramolecular hydrogen bond (IHB). In vitro antimicrobial assays indicated that Fen-IHB was inactive against Gram-negative facultative anaerobes (Salmonella enterica serovar Typhimurium and Typhi, Escherichia coli) and strictly anaerobic Gram-positive species (Clostridioides difficile, Roseburia inulinivorans, Blautia coccoides), as any growth inhibition was indistinguishable from the DMSO control. Conversely, Fen-IHB displayed measurable activity against Gram-positive aerobes and aerotolerant anaerobes, including Bacillus subtilis, Streptococcus pyogenes, Enterococcus faecalis, Staphylococcus aureus, and Staphylococcus haemolyticus. Overall, these comprehensive characterization results confirm the distinctive chemical and electronic properties of Fen-IHB, underlining the crucial role of the intramolecular hydrogen bond and electronic descriptors in defining its reactivity profile and selective biological activity. Full article
Show Figures

Figure 1

13 pages, 2084 KB  
Article
Effects of Applied Voltage on the Microbial Communities at the Anode and Cathode During Methane Fermentation
by Hikaru Kaneko, Mitsuhiko Koyama and Hiroyuki Daimon
Fermentation 2025, 11(8), 488; https://doi.org/10.3390/fermentation11080488 - 21 Aug 2025
Viewed by 462
Abstract
This study investigated the effects of applied voltage on methane fermentation using separate reactors for the anode and cathode, with activated carbon felt as electrodes and a constant voltage of 0.7 V. Compared to the control, the cathode reactor exhibited approximately 1.2 times [...] Read more.
This study investigated the effects of applied voltage on methane fermentation using separate reactors for the anode and cathode, with activated carbon felt as electrodes and a constant voltage of 0.7 V. Compared to the control, the cathode reactor exhibited approximately 1.2 times higher methane production and 1.3 times higher methane concentration, whereas the anode reactor showed a reduction to about 0.5 times and 0.8 times, respectively. Microbial analysis revealed that the anode reactor created an electron-accepting environment, promoting the growth of Clostridium sensu stricto 1 and Fastidiosipila, both contributing to organic acid (electron) production. Conversely, the cathode reactor established an electron-donating environment, enhancing methane production by hydrogenotrophic methanogens such as Methanoculleus and Methanobacterium. Although similar methanogen levels were found in the anode reactor, methane production was higher in the cathode reactor. These findings indicate that the anode facilitates organic acid production via electron acceptance, while the cathode acts as an electron donor that promotes hydrogenotrophic methanogenesis. This study provides a clear evaluation of the effects of microbial electrochemical technologies on methane fermentation, demonstrating their potential to stimulate microbial activities and enhance methane production. Full article
(This article belongs to the Section Industrial Fermentation)
Show Figures

Figure 1

12 pages, 1533 KB  
Article
The Impact of a NiFe-Based Metal Alloy on CO2 Conversion to CH4 and Carboxylic Acids in a Microbial Electrosynthesis Cell
by Emmanuel Nwanebu, Sabahudin Hrapovic, Fabrice Tanguay-Rioux, Rihab Gharbi and Boris Tartakovsky
Methane 2025, 4(3), 19; https://doi.org/10.3390/methane4030019 - 13 Aug 2025
Viewed by 257
Abstract
This study assessed the effects of NiFe-based metal catalysts on CO2 conversion to methane (CH4) and carboxylic acids in microbial electrosynthesis (MES) cells. A NiFeBi alloy, when electrodeposited on a conductive bioring cathode, significantly decreased CH4 production from 0.55 [...] Read more.
This study assessed the effects of NiFe-based metal catalysts on CO2 conversion to methane (CH4) and carboxylic acids in microbial electrosynthesis (MES) cells. A NiFeBi alloy, when electrodeposited on a conductive bioring cathode, significantly decreased CH4 production from 0.55 to 0.12 L (Lc d)−1 while enhancing acetate production to 1.0 g (Lc d)−1, indicating suppressed methanogenic activity and improved acetogenic activity. On the other hand, NiFeMn and NiFeSn catalysts showed varied effects, with NiFeSn increasing both CH4 and acetate production and suggesting potential in promoting both chain elongation and CO2 uptake. When these alloys were electrodeposited on a 3D-printed conductive polylactide (cPLA) lattice, the production of longer-chain carboxylic acids like butyrate and caproate increased significantly, indicating enhanced biocompatibility and nutrient delivery. The NiFeSn-coated cPLA lattice increased caproate production, which was further enhanced using an acetogenic enrichment. However, the overall throughput remained low at 0.1 g (Lc d)−1. Cyclic voltammetric analysis demonstrated improved electrochemical responses with catalyst coatings, indicating better electron transfer. These findings underscore the importance of catalyst selection and cathode design in optimizing MES systems for efficient CO2 conversion to value-added products, contributing to environmental sustainability and industrial applications. Full article
Show Figures

Figure 1

22 pages, 7389 KB  
Article
FeCo-LDH/CF Cathode-Based Electrocatalysts Applied to a Flow-Through Electro-Fenton System: Iron Cycling and Radical Transformation
by Heng Dong, Yuying Qi, Zhenghao Yan, Yimeng Feng, Wenqi Song, Fengxiang Li and Tao Hua
Catalysts 2025, 15(7), 685; https://doi.org/10.3390/catal15070685 - 15 Jul 2025
Viewed by 443
Abstract
In this investigation, a hierarchical FeCo-layered double hydroxide (FeCo-LDH) electrochemical membrane material was prepared by a simple in situ hydrothermal method. The prepared material formed a 3D honeycomb-structured FeCo-LDH-modified carbon felt (FeCo-LDH/CF) catalytic layer with uniform open pores on a CF substrate with [...] Read more.
In this investigation, a hierarchical FeCo-layered double hydroxide (FeCo-LDH) electrochemical membrane material was prepared by a simple in situ hydrothermal method. The prepared material formed a 3D honeycomb-structured FeCo-LDH-modified carbon felt (FeCo-LDH/CF) catalytic layer with uniform open pores on a CF substrate with excellent catalytic activity and was served as the cathode in a flow-through electro-Fenton (FTEF) reactor. The electrocatalyst demonstrated excellent treatment performance (99%) in phenol simulated wastewater (30 mg L−1) under the optimized operating conditions (applied voltage = 3.5 V, pH = 6, influent flow rate = 15 mL min−1) of the FTEF system. The high removal rate could be attributed to (i) the excellent electrocatalytic oxidation performance and low interfacial charge transfer resistance of the FeCo-LDH/CF electrode as the cathode, (ii) the ability of the synthesized FeCo-LDH to effectively promote the conversion of H2O2 to •OH under certain conditions, and (iii) the flow-through system improving the mass transfer efficiency. In addition, the degradation process of pollutants within the FTEF system was additionally illustrated by the •OH dominant ROS pathway based on free radical burst experiments and electron paramagnetic resonance tests. This study may provide new insights to explore reaction mechanisms in FTEF systems. Full article
(This article belongs to the Special Issue Environmentally Friendly Catalysis for Green Future)
Show Figures

Figure 1

32 pages, 4753 KB  
Review
Prospective Obstacles and Improvement Strategies of Manganese-Based Materials in Achieving High-Performance Rechargeable Zinc–Air Batteries
by Zhangli Ye, Tianjing Wu, Lanhua Yi and Mingjun Jing
Batteries 2025, 11(7), 255; https://doi.org/10.3390/batteries11070255 - 8 Jul 2025
Viewed by 1164
Abstract
Zinc–air batteries (ZABs) are crucial for renewable energy conversion and storage due to their cost-effectiveness, excellent safety, and superior cycling stability. However, developing efficient and affordable bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) at the air [...] Read more.
Zinc–air batteries (ZABs) are crucial for renewable energy conversion and storage due to their cost-effectiveness, excellent safety, and superior cycling stability. However, developing efficient and affordable bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER) at the air cathode remains a significant challenge. Manganese (Mn)-based materials, known for their tunable oxidation states, adaptable crystal structures, and environmental friendliness, are regarded as the most promising candidates. This review systematically summarizes recent advances in Mn-based bifunctional catalysts, concentrating on four primary categories: Mn–N–C electrocatalysts, manganese oxides, manganates, and other Mn-based compounds. By examining the intrinsic merits and limitations of each category, we provide a comprehensive discussion of optimization strategies, which include morphological modulation, structural engineering, carbon hybridization, heterointerface construction, heteroatom doping, and defect engineering, aimed at enhancing catalytic performance. Additionally, we critically address existing challenges and propose future research directions for Mn-based materials in rechargeable ZABs, offering theoretical insights and design principles to advance the development of next-generation energy storage systems. Full article
Show Figures

Graphical abstract

19 pages, 1487 KB  
Review
Progress in Materials and Metal Substrates for Solid Oxide Fuel Cells
by Young-Wan Ju
Energies 2025, 18(13), 3379; https://doi.org/10.3390/en18133379 - 27 Jun 2025
Viewed by 637
Abstract
Solid oxide fuel cells (SOFCs) have been considered as alternative energy conversion devices because of their high energy conversion efficiency, fuel flexibility, and cost efficiency without precious metal catalysts. In current SOFCs, the cermet anode consists of nickel and ion-conducting ceramic materials, and [...] Read more.
Solid oxide fuel cells (SOFCs) have been considered as alternative energy conversion devices because of their high energy conversion efficiency, fuel flexibility, and cost efficiency without precious metal catalysts. In current SOFCs, the cermet anode consists of nickel and ion-conducting ceramic materials, and solid oxide electrolytes and ceramic cathodes have been used. SOFCs normally operate at high temperatures because of the lower ion conductivity of ceramic components at low temperatures, and they have weaknesses in terms of mechanical strength and durability against thermal shock originating from the properties of ceramic materials. To solve these problems, metal-supported solid oxide fuel cells (MS-SOFCs) have been designed. SOFCs using metal substrates, such as Ni-based and Cr-based alloys, provide significant advantages, such as a low material cost, ruggedness, and tolerance to rapid thermal cycling. In this article, SOFCs are introduced briefly, and the types of metal substrate used in MS-SOFCs, as well as the advantages and disadvantages of each metal support, are reviewed. Full article
Show Figures

Figure 1

21 pages, 3325 KB  
Article
Numerical Modelling of 1d Isothermal Lithium-Ion Battery with Varied Electrolyte and Electrode Materials
by Elif Kaya and Alessandro d’Adamo
Energies 2025, 18(13), 3288; https://doi.org/10.3390/en18133288 - 23 Jun 2025
Viewed by 648
Abstract
In this study, the lithium-ion (Li-ion) battery type, which has a high-power density and utilizes lithium as the primary conductive terminal, has been employed. Within the scope of this research, a one-dimensional isothermal Li-ion battery model has been investigated under various electrolyte (both [...] Read more.
In this study, the lithium-ion (Li-ion) battery type, which has a high-power density and utilizes lithium as the primary conductive terminal, has been employed. Within the scope of this research, a one-dimensional isothermal Li-ion battery model has been investigated under various electrolyte (both liquid and solid) and electrode materials using the COMSOL Multiphysics software. The obtained simulation results have been corroborated with information sourced from the literature and establish a foundational framework for future studies. The average range of electrolyte salt concentration in battery components is slightly higher for batteries utilizing polymer electrolytes compared to those with liquid electrolytes. During discharge at five different C-rates, Li-ion batteries with liquid electrolytes displayed higher voltage than those with polymer electrolytes. On the other hand, the one with the lithium iron phosphate (LFP) positive electrode exhibits the greatest variation in lithium concentration at the surface of the positive electrode at the end of discharge. Conversely, the battery using a LiNiO2 cathode shows the smallest surface lithium concentration variation during the same period. This pattern is similarly observed for the lithium concentration at the center of the electrode particles. The presented model can be used to explore innovative electrolyte and electrode materials to improve the design of Li-ion batteries. Full article
(This article belongs to the Special Issue Current Advances in Fuel Cell and Batteries)
Show Figures

Figure 1

22 pages, 3738 KB  
Article
Field Experiments of Mineral Deposition by Cathodic Polarization as a Sustainable Management Strategy for the Reuse of Marine Steel Structures
by Tiziano Bellezze, Giuseppina Colaleo, Pasquale Contestabile, Pietro Forcellese, Simone Ranieri, Nicola Simoncini, Gianni Barucca, Cinzia Corinaldesi, Fabio Conversano, Oriano Francescangeli, Luigi Montalto, Michela Pisani, Simona Sabbatini, Francesco Vita, Diego Vicinanza and Antonio Dell’Anno
Sustainability 2025, 17(13), 5720; https://doi.org/10.3390/su17135720 - 21 Jun 2025
Viewed by 2826
Abstract
This paper presents field experiments of mineral deposition on steel, induced by cathodic polarization in natural seawater, as a sustainable strategy for the life extension of marine steel structures. Although this approach is quite well known, the ability of the mineral deposit to [...] Read more.
This paper presents field experiments of mineral deposition on steel, induced by cathodic polarization in natural seawater, as a sustainable strategy for the life extension of marine steel structures. Although this approach is quite well known, the ability of the mineral deposit to both protect steel from corrosion in the absence of a cathodic current, thus operating as an inorganic coating, and provide an effective substrate for colonization by microorganisms still needs to be fully explained. To this end, two identical steel structure prototypes were installed at a depth of 20 m: one was submitted to cathodic polarization, while the other was left under free corrosion for comparison. After 6 months, the current supplied to the electrified structure was interrupted. A multidisciplinary approach was used to analyze the deposits on steel round bars installed in the prototypes over time, in the presence and in the absence of a cathodic current. Different investigation techniques were employed to provide the following information on the deposit: the composition in terms of elements, compounds and macro-biofouling; the morphology; the thickness and the degree of protection estimated by electrochemical impedance spectroscopy (EIS). The results showed that under cathodic polarization, the thickness of the deposit increased to 2.5 mm and then remained almost constant after the current was interrupted. Conversely, the surface impedance decreased from 3 kΩ cm2 to about 1.5 kΩ cm2 at the same time, and the aragonite–brucite ratio also decreased. This indicates a deterioration in the protection performance and soundness of the deposit, respectively. Considering the trends in thickness and impedance together, it can be concluded that the preformed mineral deposit does not undergo generalized deterioration after current interruption, which would result in a reduction in thickness, but rather localized degradation. This phenomenon was attributed to the burrowing action of marine organisms, which created porosities and/or capillary pathways through the deposit. Therefore, the corrosion protection offered by the mineral deposit without a cathodic current is insufficient because it loses its protective properties. However, the necessary current can be quite limited in the presence of the deposit, which in any case provides a suitable substrate for sustaining the colonization and growth of sessile marine organisms, thus promoting biodiversity. Full article
Show Figures

Figure 1

19 pages, 2511 KB  
Article
Electrochemical Production of Hypochlorous Acid and Sodium Hydroxide Using Ion Exchange Membranes
by Juan Taumaturgo Medina Collana, Kevin Azorza Guillen, Edgar Williams Villanueva Martinez, Carlos Ancieta Dextre, Luis Carrasco Venegas, Oscar Rodriguez Taranco, Jorge Lopez Herrera, Pablo Diaz Bravo, Jose Porlles Loarte and Jorge Montaño Pisfil
Sustainability 2025, 17(12), 5465; https://doi.org/10.3390/su17125465 - 13 Jun 2025
Viewed by 1669
Abstract
Given the problems related to drinking water supplies in rural and economically disadvantaged regions, point-of-use disinfection technologies are a viable alternative to improve access to drinking. Electrochlorinators are devices that produce chlorine-based disinfectants onsite via the electrolysis of a sodium chloride solution. In [...] Read more.
Given the problems related to drinking water supplies in rural and economically disadvantaged regions, point-of-use disinfection technologies are a viable alternative to improve access to drinking. Electrochlorinators are devices that produce chlorine-based disinfectants onsite via the electrolysis of a sodium chloride solution. In this research, we have constructed an innovative laboratory-scale three-compartment cell that includes two ion exchange membranes, fixed between two electrodes; in the anodic compartment, an acidic mixture of chlorine-based species (Cl2, HClO, HCl and ClO) is obtained, and, in the cathodic compartment, an alkaline solution is present (NaOH and hydrogen gas), while the central compartment is fed with a sodium chloride solution. The Taguchi methodology was used to examine the impact of the process operating conditions on the results obtained. The effects of the electrical potential levels (4.5, 6 and 7 V), electrolysis times (30, 60 and 90 min) and initial sodium chloride concentrations (5, 15 and 30 g/L) on the physical and chemical characteristics (concentrations of available chlorine and sodium hydroxide and pH of the solutions) and energy consumption were investigated. Variations in the electrical potential significantly influenced the concentration levels of active chlorine and sodium hydroxide produced, as well as the pH values of the respective solutions. The most favorable conditions for the production of electrolyzed water were an electrical potential of 7 volts, an electrolysis time of 90 min and a concentration of 30 g/L of sodium chloride, which was verified by ANOVA. The maximum concentration of active chlorine reached 290 mg/L and that of sodium hydroxide reached 1450 mg/L without the presence of hypochlorite ions under the best synthesis conditions. The energy consumption was 18.6 kWh/kg Cl2 and 4.4 kWh/kg NaOH, while the average electric current efficiency for sodium hydroxide formation reached 88.9%. Similarly, the maximum conversion of chloride ions reached 24.37% under the best operating conditions. Full article
Show Figures

Figure 1

17 pages, 2382 KB  
Article
Hydrothermally Synthesized PPy/VO2 Nanorod Composites for High-Performance Aqueous Zinc-Ion Battery Cathodes
by Taoyun Zhou, Shilin Li, Dong Xie, Yi Liu, Yun Cheng and Xinyu Li
Micromachines 2025, 16(6), 705; https://doi.org/10.3390/mi16060705 - 13 Jun 2025
Viewed by 577
Abstract
The rapid development of energy storage technologies has led to an increasing demand for high-performance electrode materials that can enhance both the energy density and the cycling stability of batteries. In this study, polypyrrole (PPy) nanorods with partial hollow features are utilized as [...] Read more.
The rapid development of energy storage technologies has led to an increasing demand for high-performance electrode materials that can enhance both the energy density and the cycling stability of batteries. In this study, polypyrrole (PPy) nanorods with partial hollow features are utilized as a conductive and flexible framework for the in situ growth of VO2 nanospheres via a simple hydrothermal method, forming a well-defined core–shell PPy/VO2 nanocomposite. This hierarchical nanostructure combines the excellent electrical conductivity and mechanical flexibility of PPy with the high theoretical capacity of VO2, creating a synergistic effect that significantly enhances the electrochemical performance. The well-integrated interface between PPy and VO2 reduces interfacial resistance, promotes efficient electron and ion transport, and improves the overall energy conversion efficiency. Electrochemical testing reveals that the PPy/VO2 nanocomposite delivers a high specific capacity of 413 mAh g−1 at 100 mA g−1 and retains 87.2% of its initial capacity after 1200 cycles, demonstrating exceptional rate capability and long-term cycling stability. This work provides a versatile strategy for designing high-performance cathode materials and highlights the promising potential of PPy/VO2 nanocomposites for next-generation high-energy-density aqueous zinc-ion batteries. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

27 pages, 11185 KB  
Article
The Impact of Flow Rate Variations on the Power Performance and Efficiency of Proton Exchange Membrane Fuel Cells: A Focus on Anode Flooding Caused by Crossover Effect and Concentration Loss
by Byung-Yeon Seo and Hyun Kyu Suh
Energies 2025, 18(12), 3084; https://doi.org/10.3390/en18123084 - 11 Jun 2025
Viewed by 538
Abstract
This study investigates the effects of anode and cathode inlet flow rates (ṁ) on the power performance of bipolar plates in a polymer electrolyte membrane fuel cell (PEMFC). The primary objective is to derive optimal flow rate conditions by comparatively analyzing concentration loss [...] Read more.
This study investigates the effects of anode and cathode inlet flow rates (ṁ) on the power performance of bipolar plates in a polymer electrolyte membrane fuel cell (PEMFC). The primary objective is to derive optimal flow rate conditions by comparatively analyzing concentration loss in the I−V curve and crossover phenomena at the anode, thereby establishing flow rates that prevent reactant depletion and water flooding. A single-cell computational model was constructed by assembling a commercial bipolar plate with a gas diffusion layer (GDL), catalyst layer (CL), and proton exchange membrane (PEM). The model simulates current density generated by electrochemical oxidation-reduction reactions. Hydrogen and oxygen were supplied at a 1:3 ratio under five proportional flow rate conditions: hydrogen (m˙H2 = 0.76–3.77 LPM) and oxygen (m˙O2 = 2.39–11.94 LPM). The Butler–Volmer equation was employed to model voltage drop due to overpotential, while numerical simulations incorporated contact resistivity, surface permeability, and porous media properties. Simulation results demonstrated a 24.40% increase in current density when raising m˙H2 from 2.26 to 3.02 LPM and m˙O2 from 7.17 to 9.56 LPM. Further increases to m˙H2 = 3.77 LPM and m˙O2 = 11.94 LPM yielded a 10.20% improvement, indicating that performance enhancements diminish beyond a critical threshold. Conversely, lower flow rates (m˙H2 = 0.76 and 1.5 LPM, m˙O2 = 2.39 and 4.67 LPM) induced hydrogen-depleted regions, triggering crossover phenomena that exacerbated anode contamination and localized flooding. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

18 pages, 2275 KB  
Article
In Situ Phase Separation Strategy to Construct Zinc Oxide Dots-Modified Vanadium Nitride Flower-like Heterojunctions as an Efficient Sulfur Nanoreactor for Lithium-Sulfur Batteries
by Ningning Chen, Wei Zhou, Minzhe Chen, Ke Yuan, Haofeng Zuo, Aocheng Wang, Dengke Zhao, Nan Wang and Ligui Li
Materials 2025, 18(11), 2639; https://doi.org/10.3390/ma18112639 - 4 Jun 2025
Viewed by 456
Abstract
Exploring advanced sulfur cathode materials is important for the development of lithium-sulfur batteries (LSBs), but they still present challenges. Herein, zinc oxide dots-modified vanadium nitride flower-like heterojunctions (Zn-QDs-VN) as sulfur hosts are prepared by a phase separation strategy. Characterizations confirm that the flower [...] Read more.
Exploring advanced sulfur cathode materials is important for the development of lithium-sulfur batteries (LSBs), but they still present challenges. Herein, zinc oxide dots-modified vanadium nitride flower-like heterojunctions (Zn-QDs-VN) as sulfur hosts are prepared by a phase separation strategy. Characterizations confirm that the flower structure with high specific surface area and pores improves active site exposure and electron/mass transfer. In situ phase separation enriches the Zn-QDs-VN interface, addressing the issues of uneven distribution and interface reduction of Zn-QDs-VN. Further theoretical computations reveal that ZnO-QDs-VN with optimized intermediate spin states can constitute a stable LiS* bond sequence, which can conspicuously facilitate the adsorption and conversion of LiPSs and reduce the battery reaction energy barrier. Therefore, the ZnO-QDs-VN@S cathode shows a high initial specific capacity of 1109.6 mAh g−1 at 1.0 C and long cycle stability (maintaining 984.2 mAh g−1 after 500 cycles). Under high S loading (8.5 mg cm−2) and lean electrolyte conditions (E/S = 6.5 μL mg−1), it also exhibits a high initial area capacity (10.26 mAh cm−2) at 0.2 C. The interfacial synergistic effect accelerates the adsorption and conversion of LiPSs and reduces the energy barriers in cell reactions. The study provides a new method for designing heterojunctions to achieve high-performance LSBs. Full article
(This article belongs to the Special Issue Advanced Electrode Materials for Batteries: Design and Performance)
Show Figures

Graphical abstract

17 pages, 3126 KB  
Article
A Bench-Scale Woodchip-Enhanced Bioelectrochemical Denitrification Remediation Wall for Simulating Nitrate-Contaminated Groundwater In Situ Treatment
by Chen Yang, Yiheng Cao and Chuanping Feng
Water 2025, 17(11), 1593; https://doi.org/10.3390/w17111593 - 24 May 2025
Viewed by 575
Abstract
Excessive nitrogen fertilizer use has resulted in growing nitrate contamination of groundwater. In this study, an in situ bioelectrochemical reactor (isBER) reinforced with woodchips was developed for the treatment of actual nitrate-contaminated groundwater. During the 75-day experiment, the denitrification performance, grid permeability, and [...] Read more.
Excessive nitrogen fertilizer use has resulted in growing nitrate contamination of groundwater. In this study, an in situ bioelectrochemical reactor (isBER) reinforced with woodchips was developed for the treatment of actual nitrate-contaminated groundwater. During the 75-day experiment, the denitrification performance, grid permeability, and microbial community structure were investigated under different flow rates and current densities. The reactor achieved a remarkable nitrate removal efficiency of 97.6% ± 0.4% and a rate of 2.09 ± 0.14 mg-N/(L·h). These results were obtained at a temperature of 18.5 ± 0.8 °C, a current density of 350 mA/m2, and a flow rate of 10 cm/d. Notably, the reactor can adapt to a wide flow-rate range of 5~20 cm/d and the operation proceeded smoothly without any blockages. Furthermore, the cathode module demonstrated enrichment of hydrogen autotrophic denitrifying bacteria (Pseudomonas, Stenotrophomonas) and heterotrophic denitrifying bacteria (Brucella, Enterobacteriaceae). Conversely, the anode module exhibited relatively high enrichment levels of aerobic microorganisms and lignin-degrading bacteria (Cellvibrio). The research results can provide novel insights and technical support for in situ remediation of groundwater nitrate contamination. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

Back to TopTop