Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,512)

Search Parameters:
Keywords = conversion pathway

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 3488 KB  
Review
A Comprehensive Review of Green Methane Production from Biogas and Renewable H2 and Its Techno-Economic Assessment: An Australian Perspective
by Philip Hazewinkel, Ross Swinbourn, Chao’en Li, Jiajia Zhao and Yunxia Yang
Energies 2025, 18(17), 4657; https://doi.org/10.3390/en18174657 - 2 Sep 2025
Abstract
Green methane has been deemed as a low CO2 emission gas. The cost to produce green ethane varies considerably by location and technologies (USD 15/GJ to USD 60/GJ). Although green methane has higher price than the average price of market natural gas [...] Read more.
Green methane has been deemed as a low CO2 emission gas. The cost to produce green ethane varies considerably by location and technologies (USD 15/GJ to USD 60/GJ). Although green methane has higher price than the average price of market natural gas in Australia (USD 11–40/GJ between 2019 and 2023), it is currently significantly lower than the production cost for green hydrogen, with the levelized cost of hydrogen (LCOH) at USD 6.6/kg. Green methane production can utilise different processing steps. Separation processes require energy to separate CO2, with the remaining issue of safely storing the captured CO2 or venting it to the atmosphere. Direct catalytic biogas methanation (e-methane) does not require the separation of CO2 but converts CO2 together with CH4 to a purer stream of CH4, converting the CO2 to an energy product. E-methane consequently can be considered as an alternative energy carrier to store off-peak electricity from the grid, commonly called power-to-gas technology (P2G). Furthermore, injecting green methane into gas pipelines does not require significant gas infrastructure upgrading and has no upper limit, as it is compatible with natural gas. Here we review the status of biogas and direct green methane production from biogas around the world and assess technologies that are used to produce green methane via separation or direct catalytic conversion. We evaluate their techno-economic assessment results, with a particular focus on e-methane, identifying the opportunity as a pathway to supply low-emission gas with the perspective of a future e-methane industry within Australia. Full article
Show Figures

Figure 1

28 pages, 15358 KB  
Article
Multi-Scenario Simulation of Land Use/Land Cover Change in a Mountainous and Eco-Fragile Urban Agglomeration: Patterns and Implications
by Yang Chen, Majid Amani-Beni and Laleh Dehghanifarsani
Land 2025, 14(9), 1787; https://doi.org/10.3390/land14091787 - 2 Sep 2025
Abstract
Rapid urbanization within ecologically fragile mountainous regions exacerbates tensions between development needs and land use sustainability, yet few studies have systematically quantified long-term land use/land cover (LULC) dynamics in large-scale mountainous urban agglomerations. Focusing on the Chengdu–Chongqing Urban Agglomeration (CCUA) in Southwest China—an [...] Read more.
Rapid urbanization within ecologically fragile mountainous regions exacerbates tensions between development needs and land use sustainability, yet few studies have systematically quantified long-term land use/land cover (LULC) dynamics in large-scale mountainous urban agglomerations. Focusing on the Chengdu–Chongqing Urban Agglomeration (CCUA) in Southwest China—an archetypal mountainous megaregion undergoing accelerated development—this study analyzed LULC evolution from 1985 to 2019 using multi-period data, identified dominant driving factors through logistic regression, and projected future LULC patterns under various scenarios via the Future Land Use Simulation (FLUS) model. The outcomes indicate that (1) over the past decades, construction land expanded by over 4000 km2, an increase of about 318%, while cultivated land decreased by nearly 8600 km2, a reduction of 6.86%; (2) the dominant transformation type was the conversion of cultivated land to forest, followed by its conversion to construction land; (3) elevation, slope, and average annual temperature emerged as significant predictors of LULC change, highlighting the critical influence of topographical and climatic conditions; and (4) natural development scenarios (NDS) and ecology and cultivated protection scenarios (ECPS) represent suitable development pathways. These findings contribute to evidence-based spatial governance and provide policy guidance for ecological protection in the CCUA and other similarly vulnerable areas. Full article
15 pages, 2542 KB  
Article
Dry-Oxidative Reforming of Biogas for Hydrogen Generation over Ca and Mg-Promoted Titania-Supported Nickel Catalyst
by Himanshu Sharma, Pradeep Kumar Yadav, Sudhanshu Sharma and Amit Dhir
Hydrogen 2025, 6(3), 64; https://doi.org/10.3390/hydrogen6030064 - 2 Sep 2025
Abstract
Hydrogen is gaining significant interest from researchers because of its renewable and clean nature. In this study, we explored the effects of promoters and oxygen addition on biogas reforming. The promotion of catalysts with alkaline earth metals (Ca and Mg) improved the basicity [...] Read more.
Hydrogen is gaining significant interest from researchers because of its renewable and clean nature. In this study, we explored the effects of promoters and oxygen addition on biogas reforming. The promotion of catalysts with alkaline earth metals (Ca and Mg) improved the basicity of the catalyst, leading to enhanced catalytic activity and stability. The promotion of the Ni/TiO2 catalyst with Ca showed higher CH4 conversion and H2 yield compared to the bare and Mg-Ni/TiO2 catalysts. The enhanced activity of Ca-Ni/TiO2 could be attributed to its high dispersion, small particulate size, and strong metal–support interaction. Adding oxygen to the reactor feed improved the activity and stability of the catalyst due to the simultaneous occurrence of dry and partial oxidative reforming. The maximum CH4 conversion and H2 yield of 81.13 and 37.5% were obtained at 800 °C under dry reforming conditions, which increased to 96 and 57.6% under dry-oxidative reforming (O2/CH4 = 0.5). The CHNS analysis of the spent Ca-Ni/TiO2 catalyst also showed carbon deposition of only 0.58% after 24 h of continuous dry-oxidative reforming compared to 25.16% under continuous dry reforming reaction. XRD analysis of the spent catalyst also confirmed the formation of carbon deposits under dry reforming. Adding oxygen to the feed resulted in the simultaneous removal of carbon species formed over the catalytic surface through gasification. These findings demonstrate that Ca promotion combined with oxygen addition significantly improves the catalyst efficiency and durability, offering a promising pathway for stable, long-term hydrogen generation. The results highlight the potential of Ca–Ni/TiO2 catalysts for integration into biogas reforming units at an industrial scale, supporting renewable hydrogen production and carbon mitigation in future energy systems. Full article
Show Figures

Figure 1

13 pages, 3500 KB  
Article
Hierarchical CuO Nanorods via Cyclic Voltammetry Treatment: Freestanding Electrodes for Selective CO2-to-Formate Conversion
by Lili Wang, Xianlong Lu and Bangwei Deng
Nanomaterials 2025, 15(17), 1349; https://doi.org/10.3390/nano15171349 - 2 Sep 2025
Abstract
Electrochemical CO2 reduction reaction (CO2RR) represents a promising pathway for carbon neutralization. Here, we report hierarchical CuO nanorod arrays synthesized via cyclic voltammetry (CV) treatment as freestanding electrodes for selective CO2RR. The CV activation process generates ultrathin nanosheets [...] Read more.
Electrochemical CO2 reduction reaction (CO2RR) represents a promising pathway for carbon neutralization. Here, we report hierarchical CuO nanorod arrays synthesized via cyclic voltammetry (CV) treatment as freestanding electrodes for selective CO2RR. The CV activation process generates ultrathin nanosheets on CuO nanorods, creating abundant interfaces that facilitate formate production. Optimized CV-2000-CuO achieves 42% Faradaic efficiency (FE) for formate at −1.4 V vs. RHE while suppressing hydrogen evolution reaction (HER). Comprehensive characterization reveals that CV treatment promotes partial surface reduction to metallic Cu and generates high-density grain boundaries during CO2RR operation. These structural features enhance CO2RR activity and stability compared to pristine CuO (P-CuO). This work demonstrates a novel electrode engineering strategy combining freestanding architecture with electrochemical activation for efficient CO2-to-formate conversion. Full article
(This article belongs to the Topic Electrocatalytic Advances for Sustainable Energy)
Show Figures

Figure 1

24 pages, 4908 KB  
Article
Transcriptome Analysis and Physiological Response to Salinity Stress in Adzuki Bean (Vigna angularis) at the Seedling Stage
by Baomei Wu, Ying Zhang, Qiang Zhang, Linlin Hao, Yanru Guo, Min Xu, Weizhong Liu and Binbin Wang
Plants 2025, 14(17), 2722; https://doi.org/10.3390/plants14172722 - 1 Sep 2025
Abstract
Adzuki bean (Vigna angularis (Willd.) Ohwi & H. Ohashi) is a significant crop for its applications in both traditional medicine and nutritional diets in China. However, there remains a paucity of exploration employing an RNA-seq approach to investigate the molecular response mechanisms [...] Read more.
Adzuki bean (Vigna angularis (Willd.) Ohwi & H. Ohashi) is a significant crop for its applications in both traditional medicine and nutritional diets in China. However, there remains a paucity of exploration employing an RNA-seq approach to investigate the molecular response mechanisms of the species under salinity stress. In this study, Jin Xiao Dou 6 (JXD6) adzuki bean cultivar was subjected to 0 mmol/L (CK), 32.5 mmol/L, and 65.0 mmol/L NaCl treatments to preliminarily characterize salinity-induced alterations in plant height, chloroplast pigment contents, leaf surface humidity and temperature, H2O2 and O2 accumulation, activities of antioxidative enzymes, and transcriptome profiles. Under increasing NaCl concentrations, the plant height of JXD6 seedlings was progressively inhibited. Conversely, the unifoliate leaves exhibited elevated leaf surface temperature, increased contents of chlorophyll a, total chlorophyll and carotenoids, enhanced accumulation of O2, as well as heightened activities of superoxide dismutase, peroxidase, and catalase. Transcriptome profile analyses suggested that a total of 363 and 858 differentially expressed genes were obtained in the unifoliate leaves of adzuki bean seedlings treated with 32.5 mmol/L and 65.0 mmol/L NaCl groups, respectively. The up-regulated genes were mainly enriched in the spliceosome pathway, while the down-regulated genes were mainly enriched in pathways of plant hormone signal transduction, plant–pathogen interaction, and the MAPK signaling pathway in plants. These results provide new insight into exploring the response mechanisms of adzuki beans to salinity stress via transcriptome analyses. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

19 pages, 5017 KB  
Article
Identifying New Loci and Genes Associated with Feed Efficiency in Broilers
by Na Luo, Peihao Liu, Limin Wei, Jie Wen, Guiping Zhao and Bingxing An
Int. J. Mol. Sci. 2025, 26(17), 8492; https://doi.org/10.3390/ijms26178492 - 1 Sep 2025
Abstract
Feed efficiency is a key economic trait that affects the cost of production in broiler farming. Reducing broiler feed costs contributes to reducing excessive feed consumption and increasing the productivity of broiler breeding. Therefore, identifying genetic regions associated with feed efficiency is crucial [...] Read more.
Feed efficiency is a key economic trait that affects the cost of production in broiler farming. Reducing broiler feed costs contributes to reducing excessive feed consumption and increasing the productivity of broiler breeding. Therefore, identifying genetic regions associated with feed efficiency is crucial for broiler breeding. In this study, we performed genome-wide association (GWAS) analyses of feed conversion ratio (FCR) and residual feed intake (RFI) traits for four growth cycles (72–81, 81–89, 89–113, and 113–120 days of age) using 55K single-nucleotide microarray genotypic data of 4493 Wenchang chickens from two generations. In the single-trait GWAS, a total of 59 SNPs were identified, and 36 genes were annotated within the ±50 kb regions surrounding candidate loci (including ABCC6, CLDN10, DGKB, EXT2, FOXO1, IFT140, JAG2, among others. These candidate loci explained 1.4–7.0% of the phenotypic variance explained, and applying a filtering criterion that required a deleteriousness score greater than 8, one locus-Gallus gallus chromosome (GGA) 5:3550350 (chCADD score = 12.51524) was located within intron 3 of ANOX3. In the FCR and RFI traits in the longitudinal GWAS (LONG-GWAS) model, 80 SNPs and 191 SNPs were identified, respectively, and a total of 43 genes and 121 genes were annotated. A total of 33 candidate loci were screened by combining the locus deleteriousness scores, and 25 candidate genes were annotated within the upper and lower 50 kb ranges. Through KEGG signaling pathway analysis, it was found that the candidate genes were highly enriched mainly in autophagy, mitochondrial phagocytosis, and other pathways. In conclusion, the SNPs and potential genes identified in this study will be helpful for chicken breeding and provide fundamental data for the genetic basis of chicken feed efficiency-related traits. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

12 pages, 1741 KB  
Article
Reactive Anti-Solvent Engineering via Kornblum Reaction for Controlled Crystallization in (FA0.83MA0.17Cs0.05)Pb(I0.85Br0.15)3 Perovskite Solar Cells
by Shengcong Wu, Qiu Xiong, Abd. Rashid bin Mohd Yusoff and Peng Gao
Inorganics 2025, 13(9), 295; https://doi.org/10.3390/inorganics13090295 - 1 Sep 2025
Abstract
Regulating the crystallization dynamics of perovskite films is key to improving the efficiency and operational stability of (FA0.83MA0.17Cs0.05)Pb(I0.85Br0.15)3 perovskite solar cells (PSCs). However, precise regulation of the crystallization process remains challenging. Here, [...] Read more.
Regulating the crystallization dynamics of perovskite films is key to improving the efficiency and operational stability of (FA0.83MA0.17Cs0.05)Pb(I0.85Br0.15)3 perovskite solar cells (PSCs). However, precise regulation of the crystallization process remains challenging. Here, we introduce a reactive anti-solvent strategy based on the Kornblum reaction to modulate crystallization via in-situ chemical transformation. Specifically, trans-cinnamoyl chloride (TCC) is employed as a single-component anti-solvent additive that reacts with dimethyl sulfoxide (DMSO) in the perovskite precursor solution. The resulting acylation reaction generates carbonyl-containing products and sulfur ions. The carbonyl oxygen coordinates with Pb2+ ions to form Pb–O bonds, which retard rapid crystallization, suppress heterogeneous nucleation, and facilitate the growth of larger perovskite grains with improved film uniformity. Additionally, the exothermic nature of the reaction accelerates local supersaturation and nucleation. This synergistic crystallization control significantly enhances the film morphology and device performance, yielding a champion power conversion efficiency (PCE) of 23.02% and a markedly improved fill factor (FF). This work provides a new pathway for anti-solvent engineering through in-situ chemical regulation, enabling efficient and scalable fabrication of high-performance PSCs. Full article
(This article belongs to the Special Issue New Semiconductor Materials for Energy Conversion, 2nd Edition)
Show Figures

Figure 1

62 pages, 3631 KB  
Review
Tailoring Electrocatalytic Pathways: A Comparative Review of the Electrolyte’s Effects on Five Key Energy Conversion Reactions
by Goitom K. Gebremariam, Khalid Siraj and Igor A. Pašti
Catalysts 2025, 15(9), 835; https://doi.org/10.3390/catal15090835 - 1 Sep 2025
Abstract
The advancement of efficient energy conversion and storage technologies is fundamentally linked to the development of electrochemical systems, including fuel cells, batteries, and electrolyzers, whose performance depends on key electrocatalytic reactions: hydrogen evolution (HER), oxygen evolution (OER), oxygen reduction (ORR), carbon dioxide reduction [...] Read more.
The advancement of efficient energy conversion and storage technologies is fundamentally linked to the development of electrochemical systems, including fuel cells, batteries, and electrolyzers, whose performance depends on key electrocatalytic reactions: hydrogen evolution (HER), oxygen evolution (OER), oxygen reduction (ORR), carbon dioxide reduction (CO2RR), and nitrogen reduction (NRR). Beyond catalyst design, the electrolyte microenvironment significantly influences these reactions by modulating charge transfer, intermediate stabilization, and mass transport, making electrolyte engineering a powerful tool for enhancing performance. This review provides a comprehensive analysis of how fundamental electrolyte properties, including pH, ionic strength, ion identity, and solvent structure, affect the mechanisms and kinetics of these five reactions. We examine in detail how the electrolyte composition and individual ion contributions impact reaction pathways, catalytic activity, and product selectivity. For HER and OER, we discuss the interplay between acidic and alkaline environments, the effects of specific ions, interfacial electric fields, and catalyst stability. In ORR, we highlight pH-dependent activity, selectivity, and the roles of cations and anions in steering 2e versus 4e pathways. The CO2RR and NRR sections explore how the electrolyte composition, local pH, buffering capacity, and proton sources influence activity and the product distribution. We also address challenges in electrolyte optimization, such as managing competing reactions and maximizing Faradaic efficiency. By comparing the electrolyte’s effects across these reactions, this review identifies general trends and design guidelines for enhancing electrocatalytic performance and outlines key open questions and future research directions relevant to practical energy technologies. Full article
(This article belongs to the Section Computational Catalysis)
Show Figures

Figure 1

15 pages, 5672 KB  
Article
Enhanced Electrocatalytic Performance for Selective Glycerol Oxidation to Formic Acid at a Multiphase AuCu-Ag/AgBr Interface
by Jianchuan Jin, Luyao Sun, Zhiqing Wang, Shiyu Li, Lingqin Shen and Hengbo Yin
Catalysts 2025, 15(9), 831; https://doi.org/10.3390/catal15090831 - 1 Sep 2025
Abstract
Electrochemical glycerol oxidation presents a sustainable and environmentally friendly pathway for formic acid production, addressing the significant carbon emissions and resource dependency associated with conventional industrial processes. However, the development of advanced electrocatalysts with high formic acid selectivity and durability remains challenging due [...] Read more.
Electrochemical glycerol oxidation presents a sustainable and environmentally friendly pathway for formic acid production, addressing the significant carbon emissions and resource dependency associated with conventional industrial processes. However, the development of advanced electrocatalysts with high formic acid selectivity and durability remains challenging due to the polyhydroxy structure and carbon chain complexity of glycerol, which lead to intricate oxidation pathways and a wide variety of products. To tackle this issue, we report a AuCu-Ag/AgBr catalyst with a multiphase interface, referring to the integrated boundaries among AuCu, Ag, and AgBr phases that interact with the liquid electrolyte, for high-rate and high-efficiency glycerol oxidation. Comprehensive characterizations reveal that the multiphase interface may effectively modulate the adsorption configurations of glycerol molecules and enhance charge transfer efficiency. Under ambient conditions, glycerol electro-oxidation at 1.43 V for 8 h yielded a conversion of 38% and a formic acid selectivity of 81%, and recycling tests confirmed its high stability under prolonged electrolysis. This synergistic catalytic effect provides a kinetically favorable pathway for formic acid production, demonstrating the potential of AuCu-Ag/AgBr catalysts in advancing sustainable glycerol valorization. Full article
(This article belongs to the Special Issue Heterogeneous Catalysts for Biomass Conversions)
Show Figures

Graphical abstract

13 pages, 1794 KB  
Article
Ribosome-Associated Quality Control Mediated by Rqc2 Contributes to the Lytic Cycle and Stage Conversion of Toxoplasma gondii
by Yuxue Li, Keqin Huang, Honglin Jia, Xu Gao and Huanping Guo
Microorganisms 2025, 13(9), 2041; https://doi.org/10.3390/microorganisms13092041 - 31 Aug 2025
Viewed by 33
Abstract
The conversion from fast-growing tachyzoites to slow-growing bradyzoites is the key factor in establishing the chronic infection and long-term persistence of Toxoplasma gondii. Environmental stressors, such as amino acid starvation and alkaline medium, can trigger the transformation of tachyzoites into bradyzoites. Under [...] Read more.
The conversion from fast-growing tachyzoites to slow-growing bradyzoites is the key factor in establishing the chronic infection and long-term persistence of Toxoplasma gondii. Environmental stressors, such as amino acid starvation and alkaline medium, can trigger the transformation of tachyzoites into bradyzoites. Under such stress conditions, ribosomes slow down, potentially leading to stalling, and ribosomal collisions typically activate ribosome-associated quality control (RQC) pathways. In this study, we investigated the role of T. gondii ribosome quality control complex subunit 2 (TgRqc2), which contains both NFACT and coiled-coil domains, in the parasite’s survival and stage conversion. NFACT represents the “domain” found in the central players involved in RQC, human NEMF and its orthologs FbpA (known as RqcH), Caliban, and Tae2 (known as Rqc2). Phylogenetic analyses revealed that TgRqc2 formed a distinct clade with its orthologs in apicomplexan parasites. The deletion of TgRqc2 impaired T. gondii’s invasion and replication. The Rqc2-knockout strain showed defects in plaque formation and bradyzoite development. Our findings demonstrate that TgRqc2 is essential for T. gondii’s lytic cycle and the conversion of tachyzoites into bradyzoites. RNA-seq analysis further showed that the depletion of TgRqc2 significantly disrupted global transcriptional activity. However, the detailed molecular mechanisms involved remain to be elucidated. In conclusion, our results proved valuable insights that may aid in the development of therapeutic strategies to prevent chronic infection. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

19 pages, 2631 KB  
Article
AI-HOPE-TP53: A Conversational Artificial Intelligence Agent for Pathway-Centric Analysis of TP53-Driven Molecular Alterations in Early-Onset Colorectal Cancer
by Ei-Wen Yang, Brigette Waldrup and Enrique Velazquez-Villarreal
Cancers 2025, 17(17), 2865; https://doi.org/10.3390/cancers17172865 - 31 Aug 2025
Viewed by 63
Abstract
Background/Objectives: The incidence of early onset colorectal cancer (EOCRC) is increasing globally, particularly among underrepresented populations such as Hispanic/Latino individuals. TP53 is among the most frequently mutated pathways in CRC; however, its role in EOCRC, especially in relation to disparities and treatment outcomes, [...] Read more.
Background/Objectives: The incidence of early onset colorectal cancer (EOCRC) is increasing globally, particularly among underrepresented populations such as Hispanic/Latino individuals. TP53 is among the most frequently mutated pathways in CRC; however, its role in EOCRC, especially in relation to disparities and treatment outcomes, remains poorly defined. We developed AI-HOPE-TP53, a novel conversational AI agent, to enable a real-time, disparity-aware analysis of TP53 pathway alterations in EOCRC. Methods: AI-HOPE-TP53 integrates a fine-tuned biomedical large language model (LLaMA 3) with harmonized datasets from cBioPortal (TCGA, MSK-IMPACT, AACR Project GENIE). Natural language queries are translated into workflows for mutation profiling, Kaplan–Meier survival analysis, and odds ratio estimation across clinical and demographic subgroups. Results: The platform replicated known genotype–phenotype associations, including elevated TP53 mutation frequency in EOCRC and poorer prognosis in TP53-mutated tumors. Significant findings included a survival benefit for patients with early-onset TP53-mutant CRC treated with FOLFOX (p = 0.0149). Additional exploratory analyses showed a trend toward higher prevalence of TP53 pathway alterations in Hispanic/Latino EOCRC patients (OR = 2.13, p = 0.084) and identified sex-based disparities in treatment, with women being less likely than men to receive FOLFOX (OR = 0.845, p = 0.0138). Conclusions: AI-HOPE-TP53, developed in this study and made publicly available, is the first conversational AI platform tailored for pathway-specific and disparity-aware EOCRC research. By integrating clinical, genomic, and demographic data through natural language interaction, hypothesis generation and equity-focused analyses are enabled, with significant potential to advance precision oncology. Full article
Show Figures

Figure 1

17 pages, 13754 KB  
Article
Identifying Key Genes of Proanthocyanidin Intervention in Fluoride-Induced Liver Injury: Integrated Molecular Docking and Experimental Validation
by Zhiyu Wu, Menghuan Xiao, Zelin Gong, Benjie Wang, Wenxin Zhao, Yiyuan Guo and Lu Yang
Genes 2025, 16(9), 1037; https://doi.org/10.3390/genes16091037 - 31 Aug 2025
Viewed by 72
Abstract
Objectives: The objectives of this study are to investigate the therapeutic targets and mechanisms of proanthocyanidins in alleviating fluoride-induced liver injury through network pharmacology and animal experimental validation and to explore the medicinal value of grape seed proanthocyanidins. Methods: Potential targets [...] Read more.
Objectives: The objectives of this study are to investigate the therapeutic targets and mechanisms of proanthocyanidins in alleviating fluoride-induced liver injury through network pharmacology and animal experimental validation and to explore the medicinal value of grape seed proanthocyanidins. Methods: Potential targets of proanthocyanidins were predicted using databases such as PubChem, SwissTargetPrediction, and GeneCards, and disease-related targets of fluoride-induced liver injury were retrieved to identify common targets between proanthocyanidins and fluoride-induced liver injury. The STRING database was utilized to construct a protein–protein interaction network, and key targets were analyzed for network topology using Cytoscape software. GO and KEGG enrichment analyses were performed on core target genes to explore the potential molecular mechanisms by which proanthocyanidins alleviate fluoride-induced liver injury. The Genes-miRNA interaction network was generated using Networkanalyst, and the molecular docking results between active components and key targets were validated using the CB-Dock2 visualization tool. In the academic context, a rat model of chronic fluoride poisoning was successfully established by means of intragastric administration of sodium fluoride. The protein expression levels of p-mTOR, p-p70s6, p62, LC3-II, and PARP1 in rat liver tissues were detected via Western blot analysis. Results: Network pharmacological analysis successfully identified 96 key genes, through which proanthocyanidins mitigate fluoride-induced liver injury. KEGG enrichment analysis predicted that proanthocyanidins mainly exert their therapeutic effects through the mTOR signaling pathway. The molecular docking results further demonstrated strong binding affinities between proanthocyanidins and key targets, including mTOR and PARP1. The in vivo experimental results indicate that, compared with the control group, the protein expression levels of p-mTOR, p-p70s6k, and p62 in the liver tissues of rats exposed to sodium fluoride significantly increase. Conversely, the protein expression levels of LC3-II and PARP1 significantly decrease (p < 0.05). The outcome of liver intervention with proanthocyanidins is exactly the opposite. Conclusions: Proanthocyanidins can effectively alleviate fluoride-induced liver injury, potentially by regulating the mTOR signaling pathway, autophagy, and apoptosis mechanisms. This study provides valuable insights into the protective effects of proanthocyanidins against fluoride-induced hepatic damage and offers a theoretical basis for further research in this field. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

20 pages, 9752 KB  
Article
Satellite Remote Sensing Reveals Global Dam Impacts on Riparian Vegetation Dynamics Under Future Climate Scenarios
by Yunlong Liu, Mengxi He, Zhucheng Zhang, Tong Sun, Yanyi Li and Li He
Remote Sens. 2025, 17(17), 3018; https://doi.org/10.3390/rs17173018 - 30 Aug 2025
Viewed by 183
Abstract
The rapid global expansion of hydropower poses questions about the resilience and sustainability of riparian vegetation, especially in the context of ongoing climate change. Satellite remote sensing provides a valuable means for monitoring long-term and spatially continuous changes in vegetation, offering insights into [...] Read more.
The rapid global expansion of hydropower poses questions about the resilience and sustainability of riparian vegetation, especially in the context of ongoing climate change. Satellite remote sensing provides a valuable means for monitoring long-term and spatially continuous changes in vegetation, offering insights into how dams influence RV dynamics worldwide. Here, we integrated satellite-derived environmental indicators, including Normalized Difference Vegetation Index (NDVI), to quantify and compare riparian vegetation trends upstream and downstream of dams globally. By applying paired linear regression analyses to pre- and post-construction NDVI time series, we identified dams associated with significant RV degradation following impoundment. Furthermore, we employed Gradient Boosting Regression Models (GBRM), calibrated using current observational data and driven by CMIP6 climate projections, to forecast global riparian vegetation trends through the year 2100 under various climate scenarios. Our analysis reveals that, although widespread vegetation degradation was not evident up to 2017—and many regions showed slight improvements—future projections under higher-emission pathways (SSP3-7.0 and SSP5-8.5) indicate substantial RV declines after 2040, particularly in high-latitude forests, grasslands, and arid regions. Conversely, tropical and subtropical riparian forests are predicted to maintain stable or increasing NDVI under moderate emission scenarios (SSP1-2.6). These results highlight the potential for adaptive dam development strategies supported by continued satellite-based monitoring to help reduce climate-related risks to riparian vegetation in regions. Full article
Show Figures

Figure 1

23 pages, 3077 KB  
Review
Research Progress on the Pyrolysis Characteristics of Oil Shale in Laboratory Experiments
by Xiaolei Liu, Ruiyang Yi, Dandi Zhao, Wanyu Luo, Ling Huang, Jianzheng Su and Jingyi Zhu
Processes 2025, 13(9), 2787; https://doi.org/10.3390/pr13092787 - 30 Aug 2025
Viewed by 114
Abstract
With the progressive depletion of conventional oil and gas resources and the increasing demand for alternative energy, organic-rich sedimentary rock—oil shale—has attracted widespread attention as a key unconventional hydrocarbon resource. Pyrolysis is the essential process for converting the organic matter in oil shale [...] Read more.
With the progressive depletion of conventional oil and gas resources and the increasing demand for alternative energy, organic-rich sedimentary rock—oil shale—has attracted widespread attention as a key unconventional hydrocarbon resource. Pyrolysis is the essential process for converting the organic matter in oil shale into recoverable hydrocarbons, and a detailed understanding of its behavior is crucial for improving development efficiency. This review systematically summarizes the research progress on the pyrolysis characteristics of oil shale under laboratory conditions. It focuses on the applications of thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) in identifying pyrolysis stages, extracting kinetic parameters, and analyzing thermal effects; the role of coupled spectroscopic techniques (e.g., TG-FTIR, TG-MS) in elucidating the evolution of gaseous products; and the effects of key parameters such as pyrolysis temperature, heating rate, particle size, and reaction atmosphere on product distribution and yield. Furthermore, the mechanisms and effects of three distinct heating strategies—conventional heating, microwave heating, and autothermic pyrolysis—are compared, and the influence of inherent minerals and external catalysts on reaction pathways is discussed. Despite significant advances, challenges remain in quantitatively describing reaction mechanisms, accurately predicting product yields, and generalizing kinetic models. Future research should integrate multiscale experiments, in situ characterization, and molecular simulations to construct pyrolysis mechanism models tailored to various oil shale types, thereby providing theoretical support for the development of efficient and environmentally friendly oil shale conversion technologies. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

19 pages, 10217 KB  
Article
Mycoplasma bovis Infection Induces Apoptosis Through Gadd45/XIAP in Bovine Macrophages
by Ruirui Li, Xiaojiao Yu, Tian Tang, Jinliang Sheng, Hui Zhang, Chuangfu Chen, Yong Wang and Zhongchen Ma
Microorganisms 2025, 13(9), 2031; https://doi.org/10.3390/microorganisms13092031 - 30 Aug 2025
Viewed by 153
Abstract
Mycoplasma bovis (M. bovis) adheres to host cells and persists intracellularly, causing chronic inflammation and significant economic losses in the cattle industry. The role of host cell apoptosis in this host–pathogen interaction remains unclear. This study isolated and identified the M. [...] Read more.
Mycoplasma bovis (M. bovis) adheres to host cells and persists intracellularly, causing chronic inflammation and significant economic losses in the cattle industry. The role of host cell apoptosis in this host–pathogen interaction remains unclear. This study isolated and identified the M. bovis Xinjiang strain XJ01 from diseased cattle in China. XJ01 exhibited typical “fried egg” colony morphology, distinct biochemical characteristics, and a 1.02 Mb genome (29.33% GC content) encoding 939 genes, including 93 unique genes. Functional analysis under optimal infection conditions (MOI = 1000, 24 h) revealed that XJ01 induced significant apoptosis and reduced viability in bovine macrophages (BoMac). This was accompanied by mitochondrial homeostasis disruption, characterized by increased Bax expression and suppressed Bcl-2 levels. Transcriptome analysis identified 9926 differentially expressed genes. KEGG pathway enrichment indicated significant activation of apoptosis and P53 signaling pathways, with Gadd45 and XIAP identified as key regulators. Mechanistic validation demonstrated that Gadd45 overexpression or XIAP knockdown enhanced Bax expression, inhibited Bcl-2, increased apoptosis rates, and consequently significantly reduced intracellular bacterial load at 24 h post-infection. Conversely, suppressing Gadd45 or overexpressing XIAP promoted pathogen survival. Collectively, this study reveals that M. bovis XJ01 activates host stress signaling to upregulate Gadd45 and suppress XIAP, thereby triggering mitochondrial apoptosis as a mechanism to eliminate intracellular bacteria—illustrating a self-limiting antibacterial mechanism. Full article
(This article belongs to the Section Veterinary Microbiology)
Show Figures

Figure 1

Back to TopTop