Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = copra meal hydrolysate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 5093 KB  
Article
Simulated Swine Digestion and Gut Microbiota Fermentation of Hydrolyzed Copra Meal
by Jurairat Rungruangsaphakun, Francis Ayimbila, Massalin Nakphaichit and Suttipun Keawsompong
Animals 2024, 14(11), 1677; https://doi.org/10.3390/ani14111677 - 4 Jun 2024
Viewed by 1778
Abstract
This study aimed to compare the effects of hydrolyzed copra meal (HCM) inclusion at 1% on its in vitro digestibility and the microbiota and cecum fermentation using the gut microbiota of weaned swine, targeting microbial community and short-chain fatty acids (SCF). For this [...] Read more.
This study aimed to compare the effects of hydrolyzed copra meal (HCM) inclusion at 1% on its in vitro digestibility and the microbiota and cecum fermentation using the gut microbiota of weaned swine, targeting microbial community and short-chain fatty acids (SCF). For this reason, three treatments were considered: control (no copra meal), 1% non-hydrolyzed copra meal (CM), and 1% HCM. Non-defatted copra meal was hydrolyzed and analyzed (reducing sugars and total carbohydrates) in our laboratory. For digestion, microbiota identification, and fermentation assays, fresh fecal samples from two weaned pigs (1 month old) were used. Three replicates of each treatment were employed. HCM was more digestible, with approximately 0.68 g of hydrolysate recovered after simulated digestion compared to 0.82 g of hydrolysate recovered from CM. This was shown by Scanning Electron Microscope (SEM) images. Also, the three swine shared the majority of microbial species identified at the phylum and family levels. There were no differences (p > 0.05) between treatments in the microbial community and SCFA during fermentation. However, higher Chao-1 and Shannon indexes were observed in CM and HCM treatments. HCM was also found to be capable of preserving Actinobacterota and Proteobacteria at the phylum level, while at the family level, both treatments may help Lactobacillaceae, Peptostreptococcaceae, Lachnospiraceae, and Ruminococcaceae survive in the long term. Also, there was a potential trend of increasing acetic acid and butyric acid in the CM and HCM treatments. While HCM shows promise in potentially modulating the gut microbiota of weaned swine, additional research is required to investigate the effects of higher doses of HCM on swine performance parameters. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

13 pages, 4361 KB  
Article
Analyzing Predominant Bacterial Species and Potential Short-Chain Fatty Acid-Associated Metabolic Routes in Human Gut Microbiome Using Integrative Metagenomics
by Amornthep Kingkaw, Nachon Raethong, Preecha Patumcharoenpol, Narissara Suratannon, Massalin Nakphaichit, Suttipun Keawsompong, Sittiruk Roytrakul and Wanwipa Vongsangnak
Biology 2023, 12(1), 21; https://doi.org/10.3390/biology12010021 - 22 Dec 2022
Cited by 9 | Viewed by 4461
Abstract
Gut microbiome plays an essential role in host health, and there is interest in utilizing diet to modulate the composition and function of microbial communities. Copra meal hydrolysate (CMH) is commonly used as a natural additive to enhance health. However, the gut microbiome [...] Read more.
Gut microbiome plays an essential role in host health, and there is interest in utilizing diet to modulate the composition and function of microbial communities. Copra meal hydrolysate (CMH) is commonly used as a natural additive to enhance health. However, the gut microbiome is largely unknown at species level and is associated with metabolic routes involving short-chain fatty acids (SCFAs). In this study, we aimed to analyze, using integrative metagenomics, the predominant species and metabolic routes involved in SCFAs production in the human gut microbiome after treatment with CMH. The effect of CMH treatment on the Thai gut microbiome was demonstrated using 16S rRNA genes with whole-metagenome shotgun (WMGS) sequencing technology. Accordingly, these results revealed that CMH has potentially beneficial effects on the gut microbiome. Twelve predominant bacterial species, as well as their potential metabolic routes, were involved in cooperative microbiome networks under sugar utilization (e.g., glucose, mannose, or xylose) and energy supply (e.g., NADH and ATP) in relation to SCFAs biosynthesis. These findings suggest that CMH may be used as a potential prebiotic diet for modulating and maintaining the gut microbiome. To our knowledge, this is the first study to reveal the predominant bacterial species and metabolic routes in the Thai gut microbiome after treatment with potential prebiotics. Full article
(This article belongs to the Special Issue Gut Microbiome in Health and Disease)
Show Figures

Figure 1

Back to TopTop