Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline

Search Results (414)

Search Parameters:
Keywords = coupled mode theory

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 17879 KB  
Article
Investigation of Vortex-Induced Vibration Characteristics of Small-Scale and Large-Scale Risers in Uniform Oscillatory Flow
by Shuo Gao and Enhao Wang
J. Mar. Sci. Eng. 2025, 13(8), 1552; https://doi.org/10.3390/jmse13081552 - 13 Aug 2025
Viewed by 379
Abstract
A time-domain semi-empirical simulation model based on the wake oscillator approach is developed to investigate the coupled in-line (IL) and cross-flow (CF) vortex-induced vibration (VIV) of a flexible riser in uniform oscillatory flow. A novel nondimensionalization method is introduced by utilizing the dimensionless [...] Read more.
A time-domain semi-empirical simulation model based on the wake oscillator approach is developed to investigate the coupled in-line (IL) and cross-flow (CF) vortex-induced vibration (VIV) of a flexible riser in uniform oscillatory flow. A novel nondimensionalization method is introduced by utilizing the dimensionless parameter StKC, which effectively replicates the fundamental lift frequency caused by the complex vortex motion around the riser. The structural responses of the riser are described using the Euler–Bernoulli beam theory, and the van der Pol equations are used to calculate the fluid forces acting on the riser, which can replicate the nonlinear vortex dynamics. The coupled equations are discretized in both time and space with a finite difference method (FDM), enabling iterative computations of the VIV responses of the riser. A total of six cases are examined with four different Keulegan–Carpenter (KC) numbers (i.e., KC=31, 56, 121, and 178) to investigate the VIV characteristics of small-scale and large-scale risers in uniform oscillatory flow. Key features such as intermittent VIV, amplitude modulation, and hysteresis, as well as the VIV development process, are analyzed in detail. The simulation results show good agreement with the experimental data, indicating that the proposed numerical model is able to reliably reproduce the riser VIV in uniform oscillatory flow. Overall, the VIV characteristics of the large-scale riser resemble those of the small-scale riser but exhibit higher vibration modes, stronger traveling wave features, and more complex energy transfer mechanisms. Full article
Show Figures

Figure 1

37 pages, 2744 KB  
Article
Synergistic Evolution or Competitive Disruption? Analysing the Dynamic Interaction Between Digital and Real Economies in Henan, China, Based on Panel Data
by Yaping Zhu, Qingwei Xu, Chutong Hao, Shuaishuai Geng and Bingjun Li
Data 2025, 10(8), 126; https://doi.org/10.3390/data10080126 - 4 Aug 2025
Viewed by 509
Abstract
In the digital transformation era, understanding the relationship between digital and real economies is vital for regional development. This study analyses the interaction between these two economies in Henan Province using panel data from 18 cities (2011–2023). It incorporates policy support intensity through [...] Read more.
In the digital transformation era, understanding the relationship between digital and real economies is vital for regional development. This study analyses the interaction between these two economies in Henan Province using panel data from 18 cities (2011–2023). It incorporates policy support intensity through fuzzy set theory, applies an integrated weighting method to measure development levels, and uses regression models to assess the digital economy’s impact on the real economy. The coupling coordination degree model, kernel density estimation, and Gini coefficient reveal the coordination status and spatial distribution, while the ecological Lotka–Volterra model identifies the symbiotic patterns. The key findings are as follows: (1) The digital economy does not directly determine the state of the real economy. For example, cities such as Zhoukou and Zhumadian have low digital economy levels but high real economy levels. However, the development of the digital economy promotes the real economy without signs of diminishing returns. (2) The two economies are generally coordinated but differ spatially, with greater coordination in the Central Plains urban agglomeration. (3) The digital and real economies exhibit both collaboration and competition, with reciprocal mutualism as the dominant mode of integration. These insights provide guidance for policymakers and offer a new perspective on the integration of both economies. Full article
Show Figures

Figure 1

31 pages, 2421 KB  
Article
Optimization of Cooperative Operation of Multiple Microgrids Considering Green Certificates and Carbon Trading
by Xiaobin Xu, Jing Xia, Chong Hong, Pengfei Sun, Peng Xi and Jinchao Li
Energies 2025, 18(15), 4083; https://doi.org/10.3390/en18154083 - 1 Aug 2025
Viewed by 354
Abstract
In the context of achieving low-carbon goals, building low-carbon energy systems is a crucial development direction and implementation pathway. Renewable energy is favored because of its clean characteristics, but the access may have an impact on the power grid. Microgrid technology provides an [...] Read more.
In the context of achieving low-carbon goals, building low-carbon energy systems is a crucial development direction and implementation pathway. Renewable energy is favored because of its clean characteristics, but the access may have an impact on the power grid. Microgrid technology provides an effective solution to this problem. Uncertainty exists in single microgrids, so multiple microgrids are introduced to improve system stability and robustness. Electric carbon trading and profit redistribution among multiple microgrids have been challenges. To promote energy commensurability among microgrids, expand the types of energy interactions, and improve the utilization rate of renewable energy, this paper proposes a cooperative operation optimization model of multi-microgrids based on the green certificate and carbon trading mechanism to promote local energy consumption and a low carbon economy. First, this paper introduces a carbon capture system (CCS) and power-to-gas (P2G) device in the microgrid and constructs a cogeneration operation model coupled with a power-to-gas carbon capture system. On this basis, a low-carbon operation model for multi-energy microgrids is proposed by combining the local carbon trading market, the stepped carbon trading mechanism, and the green certificate trading mechanism. Secondly, this paper establishes a cooperative game model for multiple microgrid electricity carbon trading based on the Nash negotiation theory after constructing the single microgrid model. Finally, the ADMM method and the asymmetric energy mapping contribution function are used for the solution. The case study uses a typical 24 h period as an example for the calculation. Case study analysis shows that, compared with the independent operation mode of microgrids, the total benefits of the entire system increased by 38,296.1 yuan and carbon emissions were reduced by 30,535 kg through the coordinated operation of electricity–carbon coupling. The arithmetic example verifies that the method proposed in this paper can effectively improve the economic benefits of each microgrid and reduce carbon emissions. Full article
Show Figures

Figure 1

17 pages, 6326 KB  
Article
Dynamic Stress Wave Response of Thin-Walled Circular Cylindrical Shell Under Thermal Effects and Axial Harmonic Compression Boundary Condition
by Desejo Filipeson Sozinando, Patrick Nziu, Bernard Xavier Tchomeni and Alfayo Anyika Alugongo
Appl. Mech. 2025, 6(3), 55; https://doi.org/10.3390/applmech6030055 - 28 Jul 2025
Viewed by 644
Abstract
The interaction between thermal fields and mechanical loads in thin-walled cylindrical shells introduces complex dynamic behaviors relevant to aerospace and mechanical engineering applications. This study investigates the axial stress wave propagation in a circular cylindrical shell subjected to combined thermal gradients and time-dependent [...] Read more.
The interaction between thermal fields and mechanical loads in thin-walled cylindrical shells introduces complex dynamic behaviors relevant to aerospace and mechanical engineering applications. This study investigates the axial stress wave propagation in a circular cylindrical shell subjected to combined thermal gradients and time-dependent harmonic compression. A semi-analytical model based on Donnell–Mushtari–Vlasov (DMV) shells theory is developed to derive the governing equations, incorporating elastic, inertial, and thermal expansion effects. Modal solutions are obtained to evaluate displacement and stress distributions across varying thermal and mechanical excitation conditions. Empirical Mode Decomposition (EMD) and Instantaneous Frequency (IF) analysis are employed to extract time–frequency characteristics of the dynamic response. Complementary Finite Element Analysis (FEA) is conducted to assess modal deformations, stress wave amplification, and the influence of thermal softening on resonance frequencies. Results reveal that increasing thermal gradients leads to significant reductions in natural frequencies and amplifies stress responses at critical excitation frequencies. The combination of analytical and numerical approaches captures the coupled thermomechanical effects on shell dynamics, providing an understanding of resonance amplification, modal energy distribution, and thermal-induced stiffness variation under axial harmonic excitation across thin-walled cylindrical structures. Full article
Show Figures

Figure 1

17 pages, 1725 KB  
Article
Ring Opening upon Valence Shell Excitation in β-Butyrolactone: Experimental and Theoretical Methods
by Pedro A. S. Randi, Márcio H. F. Bettega, Nykola C. Jones, Søren V. Hoffmann, Małgorzata A. Śmiałek and Paulo Limão-Vieira
Molecules 2025, 30(15), 3137; https://doi.org/10.3390/molecules30153137 - 26 Jul 2025
Viewed by 367
Abstract
The valence-shell electronic state spectroscopy of β-butyrolactone (CH3CHCH2CO2) is comprehensively investigated by employing experimental and theoretical methods. We report a novel vacuum ultraviolet (VUV) absorption spectrum in the photon wavelength range from 115 to 320 nm (3.9–10.8 [...] Read more.
The valence-shell electronic state spectroscopy of β-butyrolactone (CH3CHCH2CO2) is comprehensively investigated by employing experimental and theoretical methods. We report a novel vacuum ultraviolet (VUV) absorption spectrum in the photon wavelength range from 115 to 320 nm (3.9–10.8 eV), together with ab initio quantum chemical calculations at the time-dependent density functional (TD-DFT) level of theory. The dominant electronic excitations are assigned to mixed valence-Rydberg and Rydberg transitions. The fine structure in the CH3CHCH2CO2 photoabsorption spectrum has been assigned to C=O stretching, v7a, CH2 wagging, v14a, C–O stretching, v22a, and C=O bending, v26a modes. Photolysis lifetimes in the Earth’s atmosphere from 0 km up to 50 km altitude have been estimated, showing to be a non-relevant sink mechanism compared to reactions with the OH radical. The nuclear dynamics along the C=O and C–C–C coordinates have been investigated at the TD-DFT level of theory, where, upon electronic excitation, the potential energy curves show important carbonyl bond breaking and ring opening, respectively. Within such an intricate molecular landscape, the higher-lying excited electronic states may keep their original Rydberg character or may undergo Rydberg-to-valence conversion, with vibronic coupling as an important mechanism contributing to the spectrum. Full article
(This article belongs to the Special Issue Advances in Density Functional Theory (DFT) Calculation)
Show Figures

Figure 1

11 pages, 7608 KB  
Article
A Theoretical Raman Spectra Analysis of the Effect of the Li2S and Li3PS4 Content on the Interface Formation Between (110)Li2S and (100)β-Li3PS4
by Naiara Leticia Marana, Eleonora Ascrizzi, Fabrizio Silveri, Mauro Francesco Sgroi, Lorenzo Maschio and Anna Maria Ferrari
Materials 2025, 18(15), 3515; https://doi.org/10.3390/ma18153515 - 26 Jul 2025
Viewed by 513
Abstract
In this study, we perform density functional theory (DFT) simulations to investigate the Raman spectra of the bulk and surface phases of β-Li3PS4 (LPS) and Li2S, as well as their interfaces at varying compositional ratios. This analysis is [...] Read more.
In this study, we perform density functional theory (DFT) simulations to investigate the Raman spectra of the bulk and surface phases of β-Li3PS4 (LPS) and Li2S, as well as their interfaces at varying compositional ratios. This analysis is relevant given the widespread application of these materials in Li–S solid-state batteries, where Li2S functions not only as a cathode material but also as a protective layer for the lithium anode. Understanding the interfacial structure and how compositional variations influence its chemical and mechanical stability is therefore crucial. Our results demonstrate that the LPS/Li2S interface remains stable regardless of the compositional ratio. However, when the content of both materials is low, the Raman-active vibrational mode associated with the [PS4]3− tetrahedral cluster dominates the interface spectrum, effectively obscuring the characteristic peaks of Li2S and other interfacial features. Only when sufficient amounts of both LPS and Li2S are present does the coupling between their vibrational modes become sufficiently pronounced to alter the Raman profile and reveal distinct interfacial fingerprints. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Graphical abstract

12 pages, 3174 KB  
Article
Modeling and Control for an Aerial Work Quadrotor with a Robotic Arm
by Wenwu Zhu, Fanzeng Wu, Haibo Du, Lei Li and Yao Zhang
Actuators 2025, 14(7), 357; https://doi.org/10.3390/act14070357 - 21 Jul 2025
Viewed by 400
Abstract
This paper focuses on the integrated modeling and disturbance rejection of the aerial work quadrotor with a robotic arm. First, to address the issues of model incompleteness and parameter uncertainty commonly encountered in traditional Newton–Euler-based modeling approaches for such a system, the Lagrangian [...] Read more.
This paper focuses on the integrated modeling and disturbance rejection of the aerial work quadrotor with a robotic arm. First, to address the issues of model incompleteness and parameter uncertainty commonly encountered in traditional Newton–Euler-based modeling approaches for such a system, the Lagrangian energy conservation principle is adopted. By treating the quadrotor and robotic arm as a unified system, an integrated dynamic model is developed, which accurately captures the coupled dynamics between the aerial platform and the manipulator. The innovative approach fills the gap in existing research where model expressions are incomplete and parameters are ambiguous. Next, to reduce the adverse effects of the robotic arm’s motion on the entire system stability, a finite-time disturbance observer and a fast non-singular terminal sliding mode controller (FNTSMC) are designed. Lyapunov theory is used to prove the finite-time stability of the closed-loop system. It breaks through the limitations of the traditional Lipschitz framework and, for the first time at both the theoretical and methodological levels, achieves finite-time convergence control for the aerial work quadrotor with a robotic arm system. Finally, comparative simulations with the integral sliding mode controller (ISMC), sliding mode controller (SMC), and PID controller demonstrate that the proposed algorithm reduces the regulation time by more than 45% compared to ISMC and SMC, and decreases the overshoot by at least 68% compared to the PID controller, which improves the convergence performance and disturbance rejection capability of the closed-loop system. Full article
(This article belongs to the Special Issue Advanced Learning and Intelligent Control Algorithms for Robots)
Show Figures

Figure 1

20 pages, 6787 KB  
Article
Fast Calculation of Thermal-Fluid Coupled Transient Multi-Physics Field in Transformer Based on Extended Dynamic Mode Decomposition
by Yanming Cao, Kanghang He, Wenyuan Shangguan, Yuqi Wang and Chunjia Gao
Processes 2025, 13(7), 2282; https://doi.org/10.3390/pr13072282 - 17 Jul 2025
Viewed by 320
Abstract
With the development of digital power systems, the establishment of digital twin models for transformers is of great significance in enhancing power system stability. Consequently, greater demands are placed on the real-time performance and accuracy of thermal-fluid-coupled transient multi-physics field calculations for transformers. [...] Read more.
With the development of digital power systems, the establishment of digital twin models for transformers is of great significance in enhancing power system stability. Consequently, greater demands are placed on the real-time performance and accuracy of thermal-fluid-coupled transient multi-physics field calculations for transformers. However, traditional numerical methods, such as finite element or computational fluid dynamics techniques, often require days or even weeks to simulate full-scale high-fidelity transformer models containing millions of grid nodes. The high computational cost and long runtime make them impractical for real-time simulations in digital twin applications. To address this, this paper employs the dynamic mode decomposition (DMD) method in conjunction with Koopman operator theory to perform data-driven reduced-order modeling of the transformer’s thermal–fluid-coupled multi-physics field. A fast computational approach based on extended dynamic mode decomposition (EDMD) is proposed to enhance the modal decomposition capability of nonlinear systems and improve prediction accuracy. The results show that this method greatly improves computational efficiency while preserving accuracy in high-fidelity models with millions of grids. The errors in the thermal and flow field calculations remain below 3.06% and 3.01%, respectively. Furthermore, the computation time is reduced from hours to minutes, with the thermal field achieving a 97-fold speed-up and the flow field an 83-fold speed-up, yielding an average speed-up factor of 90. This enables fast computation of the transformer’s thermal–fluid-coupled field and provides effective support for the application of digital twin technology in multi-physics field simulations of power equipment. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

18 pages, 3893 KB  
Article
Creation of Low-Loss Dual-Ring Optical Filter via Temporal Coupled Mode Theory and Direct Binary Search Inverse Design
by Yuchen Hu, Tong Wang, Wen Zhou and Bo Hu
Photonics 2025, 12(7), 681; https://doi.org/10.3390/photonics12070681 - 6 Jul 2025
Viewed by 378
Abstract
We propose a dual-ring optical filter based on direct binary search inverse design. The proposed device comprises two cascaded rings in an add–drop configuration. A physical model was established using temporal coupled mode theory to derive theoretical spectra and analyze key parameters governing [...] Read more.
We propose a dual-ring optical filter based on direct binary search inverse design. The proposed device comprises two cascaded rings in an add–drop configuration. A physical model was established using temporal coupled mode theory to derive theoretical spectra and analyze key parameters governing transmission performance. Based on theoretical results, a direct binary search algorithm was implemented. The parameters of the proposed device were calculated using a three-dimensional finite-difference time-domain method for verification. The numerical results demonstrate a free spectral range of 86 nm, with insertion loss and extinction ratios of 0.3 dB and 22 dB, respectively. The proposed device has a narrow spectral linewidth of 0.3 nm within a compact footprint of 24 μm×25.5 μm. The device shows significant application potential in laser external cavities and dense wavelength division multiplexing systems. Moreover, this work provides a novel methodology for precision design of photonic devices. Full article
Show Figures

Figure 1

14 pages, 3106 KB  
Article
A Comparative Study on the Calculation Methods of Nonlinear Springing of Large Containerships
by Ye Lu, Liye Li and Qiu Jin
J. Mar. Sci. Eng. 2025, 13(7), 1226; https://doi.org/10.3390/jmse13071226 - 25 Jun 2025
Viewed by 319
Abstract
The vibration of large containerships induced by waves and its resulting fatigue damage have long been the focus of research in the field of ocean engineering. For low-frequency nonlinear wave-induced springing, potential flow and viscous flow remain the two significant calculation methods. Based [...] Read more.
The vibration of large containerships induced by waves and its resulting fatigue damage have long been the focus of research in the field of ocean engineering. For low-frequency nonlinear wave-induced springing, potential flow and viscous flow remain the two significant calculation methods. Based on potential flow theory, this study investigates the nonlinear wave-induced vibration response of large containerships, including the superposition of sum and difference frequencies, by considering the influence of second-order hydrodynamic forces. Meanwhile, a three-dimensional numerical wave basin model is established to simulate fluid–structure interaction, integrating structural mode superposition for two-way CFD (Computational Fluid Dynamics)-FEM (Finite Element Method) coupling. By comparing with the experimental results, it is found that the frequency-domain nonlinear method considering second-order hydrodynamic forces and the CFD-FEM method can both effectively capture the nonlinear wave-induced vibration phenomenon under regular wave conditions. The numerical simulation results of the two methods are close to the experimental results. Moreover, the frequency-domain nonlinear method has a fast calculation speed, making it more suitable for the preliminary design of large ships. Full article
Show Figures

Figure 1

23 pages, 2735 KB  
Article
State-Space Method-Based Frame Dynamics Analysis of the Six-Rotor Unmanned Aerial Vehicles
by Ruijing Liu, Yu Liu and Yi Zhang
World Electr. Veh. J. 2025, 16(6), 331; https://doi.org/10.3390/wevj16060331 - 15 Jun 2025
Cited by 1 | Viewed by 543
Abstract
As a key component of unmanned aerial vehicles (UAVs), the vibrational characteristics of the airframe critically impact flight safety and imaging quality. These vibrations, often generated by motor-propeller systems or aerodynamic forces, can lead to structural fatigue during flight or cause image blur [...] Read more.
As a key component of unmanned aerial vehicles (UAVs), the vibrational characteristics of the airframe critically impact flight safety and imaging quality. These vibrations, often generated by motor-propeller systems or aerodynamic forces, can lead to structural fatigue during flight or cause image blur in payloads like cameras. To analyze the dynamic performance of the six-rotor UAV frame, this paper develops a state-space model based on linear state-space theory, structural dynamics principles, and modal information. The Direct Current (DC) gain method is employed to reduce the number of modes, followed by frequency response analysis on the reduced modes to derive the frequency–domain transfer function between the excitation input and response output points. The contribution of each mode to the overall frequency response is evaluated, and the frequency response curve is subsequently plotted. The results indicate that the model achieves a 73-fold speed improvement with an error rate of less than 13%, thereby validating the accuracy of the six-rotor UAV frame state-space model. Furthermore, the computational efficiency has been significantly enhanced, meeting the requirements for vibration simulation analysis. The dynamic analysis approach grounded in state-space theory offers a novel methodology for investigating the dynamic performance of complex structures, enabling efficient and precise analysis of frequency response characteristics in complex linear systems such as electric vehicle (EV) battery modules and motor systems. By treating EV components as dynamic systems with coupled mechanical–electrical interactions, this method contributes to the reliability and safety of sustainable transportation systems, addressing vibration challenges in both UAVs and EVs through unified modeling principles. Full article
Show Figures

Figure 1

23 pages, 5312 KB  
Article
Coupling Coordination Between Livelihood Resilience and Ecological Livability for Farming Households Relocated from Mining-Under Villages in Eastern China
by Peijun Wang, Jing Wang, Yan Li, Yuan Ren and Jiu Shi
Land 2025, 14(6), 1233; https://doi.org/10.3390/land14061233 - 7 Jun 2025
Viewed by 598
Abstract
The application of livelihood resilience theory in mining-under village relocation areas, coupled with the assessment of the coupling coordination degree between farming household livelihood resilience and ecological livability, is crucial for advancing sustainable development in mining regions and revitalizing rural communities. To examine [...] Read more.
The application of livelihood resilience theory in mining-under village relocation areas, coupled with the assessment of the coupling coordination degree between farming household livelihood resilience and ecological livability, is crucial for advancing sustainable development in mining regions and revitalizing rural communities. To examine whether a synergistic enhancement effect exists between the livelihood resilience and ecological livability of relocated farming households, this study utilizes a dataset of 1027 survey responses from farming households in typical mining-under-relocated villages within the eastern plain mining region of China. A measurement index system for farming household livelihood resilience was developed, encompassing three dimensions: buffering capacity, self-organization capacity, and learning capacity. Simultaneously, an evaluation index system for farming household ecological livability was constructed, focusing on three key dimensions: green production, green living, and green ecology. Using these frameworks, the coupling coordination degree between farming household livelihood resilience and ecological livability, along with its influencing factors, was analyzed. The findings reveal the following: (1) The overall livelihood resilience of relocated farming households in mining-under villages is relatively low, with the ranking being buffering capacity > learning capability > self-organization ability. The central village aggregation model demonstrates significantly greater resilience compared to the mine-village integration model. (2) The ecological livability across different relocation models is generally high, and farming households in the town-dependent village construction model, the central village aggregation model, and the suburban community model exhibit significantly higher ecological livability levels compared to those in the mine-village integration model. (3) The coupling coordination degree between livelihood resilience and ecological livability varies across relocation modes, with most modes demonstrating moderate to high-quality coordination. (4) Leadership potential and the presence of water-flush toilets are the most significant factors influencing the coupling coordination degree between livelihood resilience and ecological livability. This study provides valuable insights into the interplay between livelihood resilience and ecological livability in relocated farming households, offering practical implications for sustainable development and rural revitalization in mining regions. Full article
(This article belongs to the Section Urban Contexts and Urban-Rural Interactions)
Show Figures

Figure 1

22 pages, 8277 KB  
Article
Two-Stage Robust Optimization Model for Flexible Response of Micro-Energy Grid Clusters to Host Utility Grid
by Hongkai Zhang, Outing Zhang, Peng Li, Xianyu Yue and Zhongfu Tan
Energies 2025, 18(12), 3030; https://doi.org/10.3390/en18123030 - 7 Jun 2025
Cited by 1 | Viewed by 453
Abstract
As a decentralized energy management paradigm, micro-energy grid (MEG) clusters enable synergistic operation of heterogeneous distributed energy assets, particularly through multi-energy vector coupling mechanisms that enhance distributed energy resource (DER) utilization efficiency in next-generation power networks. While individual MEGs demonstrate limited capability in [...] Read more.
As a decentralized energy management paradigm, micro-energy grid (MEG) clusters enable synergistic operation of heterogeneous distributed energy assets, particularly through multi-energy vector coupling mechanisms that enhance distributed energy resource (DER) utilization efficiency in next-generation power networks. While individual MEGs demonstrate limited capability in responding to upper-grid demands using surplus energy after fulfilling local supply/demand balance, coordinated cluster operation significantly enhances system-wide flexibility. This paper proposes a two-stage robust optimization model that systematically addresses both the synergistic complementarity of multi-MEG systems and renewable energy uncertainty. First, the basic operation structure of MEG, including distributed generation, cogeneration units, and other devices, is established, and the operation mode of the MEG cluster responding to host utility grid flexibly is proposed. Then, aiming to reduce operation expenses, an optimal self-scheduling plan is generated by establishing a MEG scheduling optimization model; on this basis, the flexibility response capability of the MEG is measured. Finally, to tackle the uncertainty issue of wind and photovoltaic power generation, the two-stage robust theory is employed, and the scheduling optimization model of MEG cluster flexibility response to the host utility grid is constructed. A southern MEG cluster is chosen for simulation to test the model and method’s effectiveness. Results indicate that the MEG cluster’s flexible response mechanism can utilize individual MEGs’ excess power generation to meet the host utility grid’s dispatching needs, thereby significantly lowering the host utility grid’s dispatching costs. Full article
Show Figures

Figure 1

10 pages, 1763 KB  
Communication
Multi-Mode Coupling Enabled Broadband Coverage for Terahertz Biosensing Applications
by Dongyu Hu, Mengya Pan, Yanpeng Shi and Yifei Zhang
Biosensors 2025, 15(6), 368; https://doi.org/10.3390/bios15060368 - 7 Jun 2025
Viewed by 642
Abstract
Terahertz (THz) biosensing faces critical challenges in balancing high sensitivity and broadband spectral coverage, particularly under miniaturized device constraints. Conventional quasi-bound states in the continuum (QBIC) metasurfaces achieve high quality factor (Q) but suffer from narrow bandwidth, while angle-scanning strategies for broadband detection [...] Read more.
Terahertz (THz) biosensing faces critical challenges in balancing high sensitivity and broadband spectral coverage, particularly under miniaturized device constraints. Conventional quasi-bound states in the continuum (QBIC) metasurfaces achieve high quality factor (Q) but suffer from narrow bandwidth, while angle-scanning strategies for broadband detection require complex large-angle illumination. Here, we propose a symmetry-engineered, all-dielectric metasurface that leverages multipolar interference coupling to overcome this limitation. By introducing angular perturbation, the metasurface transforms the original magnetic dipole (MD)-dominated QBIC resonance into hybridized, multipolar modes. It arises from the interference coupling between MD, toroidal dipole (TD), and magnetic quadrupole (MQ). This mechanism induces dual counter-directional, frequency-shifted, resonance branches within angular variations below 16°, achieving simultaneous 0.42 THz broadband coverage and high Q of 499. Furthermore, a derived analytical model based on Maxwell equations and mode coupling theory rigorously validates the linear relationship between frequency splitting interval and incident angle with the Relative Root Mean Square Error (RRMSE) of 1.4% and the coefficient of determination (R2) of 0.99. This work establishes a paradigm for miniaturized THz biosensors, advancing applications in practical molecular diagnostics and multi-analyte screening. Full article
(This article belongs to the Special Issue Photonics for Bioapplications: Sensors and Technology—2nd Edition)
Show Figures

Figure 1

21 pages, 3436 KB  
Article
Numerical Analysis of Pipe–Soil Interaction Using Smoothed Particle Hydrodynamics (SPH)
by Xiyu Tong, Jun Tan, Hang Liu, Tao Xu and Man Hu
Processes 2025, 13(6), 1797; https://doi.org/10.3390/pr13061797 - 5 Jun 2025
Viewed by 709
Abstract
Pipe–soil interaction encompasses the study of stress distributions and deformation mechanisms occurring between buried pipelines and their surrounding soil. Understanding the mechanical behavior of this coupled system is essential for the analysis of deformation patterns and failure modes in buried pipelines, thereby providing [...] Read more.
Pipe–soil interaction encompasses the study of stress distributions and deformation mechanisms occurring between buried pipelines and their surrounding soil. Understanding the mechanical behavior of this coupled system is essential for the analysis of deformation patterns and failure modes in buried pipelines, thereby providing critical guidance for construction design and risk assessment protocols. Traditional analytical approaches have relied on classical mechanics theories and experimental methodologies; however, these approaches often incorporate excessive simplifications and assumptions that inadequately represent the complex properties of both soil and pipeline structures. Numerical simulation methodologies have emerged as viable alternatives for investigating pipe–soil interaction. Among these numerical approaches, Smoothed Particle Hydrodynamics (SPH)—an advanced Lagrangian meshless particle method—offers distinct advantages in modeling complex behaviors, including free surfaces, deformable boundaries, and large deformation scenarios that characterize pipe–soil interaction. This research establishes a pipe–soil interaction model for buried pipelines utilizing the SPH method, incorporating elastic–plastic constitutive relationships to represent soil behavior. The investigation examines lateral interaction mechanisms, vertical interaction responses in sandy soils, and the parametric influence of various soil properties on pipe–soil interaction characteristics. This study contributes insights into the application of meshfree numerical simulation techniques for pipe–soil interaction analysis, offering both engineering utility and theoretical advancement for pipeline infrastructure design and safety assessment. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

Back to TopTop