Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (393)

Search Parameters:
Keywords = crack permeability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 19394 KB  
Article
Physio-Mechanical Properties and Meso-Scale Damage Mechanism of Granite Under Thermal Shock
by Kai Gao, Jiamin Wang, Chi Liu, Pengyu Mu and Yun Wu
Energies 2025, 18(20), 5366; https://doi.org/10.3390/en18205366 - 11 Oct 2025
Viewed by 123
Abstract
Clarifying the differential effects of temperature gradient and temperature change rate on the evolution of rock fractures and damage mechanism under thermal shock is of great significance for the development and utilization of deep geothermal resources. In this study, granite samples at different [...] Read more.
Clarifying the differential effects of temperature gradient and temperature change rate on the evolution of rock fractures and damage mechanism under thermal shock is of great significance for the development and utilization of deep geothermal resources. In this study, granite samples at different temperatures (20 °C, 150 °C, 300 °C, 450 °C, 600 °C, and 750 °C) were subjected to rapid cooling treatment with liquid nitrogen. After the thermal treatment, a series of tests were conducted on the granite, including wave velocity test, uniaxial compression experiment, computed tomography scanning, and scanning electron microscopy test, to explore the influence of thermal shock on the physical and mechanical parameters as well as the meso-structural damage of granite. The results show that with the increase in heat treatment temperature, the P-wave velocity, compressive strength, and elastic modulus of granite gradually decrease, while the peak strain gradually increases. Additionally, the failure mode of granite gradually transitions from brittle failure to ductile failure. Through CT scanning experiments, the spatial distribution characteristics of the pore–fracture structure of granite under the influence of different temperature gradients and temperature change rates were obtained, which can directly reflect the damage degree of the rock structure. When the heat treatment temperature is 450 °C or lower, the number of thermally induced cracks in the scanned sections of granite is relatively small, and the connectivity of the cracks is poor. When the temperature exceeds 450 °C, the micro-cracks inside the granite develop and expand rapidly, and there is a gradual tendency to form a fracture network, resulting in a more significant effect of fracture initiation and permeability enhancement of the rock. The research results are of great significance for the development and utilization of hot dry rock and the evaluation of thermal reservoir connectivity and can provide useful references for rock engineering involving high-temperature thermal fracturing. Full article
(This article belongs to the Section H2: Geothermal)
Show Figures

Figure 1

21 pages, 7458 KB  
Article
Comparative Study Between Citric Acid and Glutaraldehyde in the Crosslinking of Gelatine Hydrogels Reinforced with Cellulose Nanocrystals (CNC)
by Diana Carmona-Cantillo, Rafael González-Cuello and Rodrigo Ortega-Toro
Gels 2025, 11(10), 790; https://doi.org/10.3390/gels11100790 - 1 Oct 2025
Viewed by 344
Abstract
Hydrogels comprise three-dimensional networks of hydrophilic polymers and have attracted considerable interest in various sectors, including the biomedical, pharmaceutical, agricultural, and food industries. These materials offer significant benefits for food packaging applications, such as high mechanical strength and excellent water absorption capacity, thereby [...] Read more.
Hydrogels comprise three-dimensional networks of hydrophilic polymers and have attracted considerable interest in various sectors, including the biomedical, pharmaceutical, agricultural, and food industries. These materials offer significant benefits for food packaging applications, such as high mechanical strength and excellent water absorption capacity, thereby contributing to the extension of product shelf life. Therefore, the aim of this study is to compare the performance of citric acid and glutaraldehyde as crosslinking agents in gelatine-based hydrogels reinforced with cellulose nanocrystals (CNC), contributing to the development of safe and environmentally responsible materials. The hydrogels were prepared using the casting method and characterised in terms of their physical, mechanical, and structural properties. The results indicated that hydrogels crosslinked with glutaraldehyde exhibited higher opacity, lower transparency, and greater mechanical strength, whereas those crosslinked with citric acid demonstrated improved clarity, reduced water permeability, and enhanced swelling capacity. The incorporation of CNC further improved mechanical strength, reduced weight loss, and altered both surface homogeneity and optical properties. Microstructural results obtained by SEM were consistent with the mechanical properties evaluated (TS, %E, and EM). The Gel-ca hydrogel displayed the highest elongation value (98%), reflecting better cohesion within the polymeric matrix. In contrast, films incorporating CNC exhibited greater roughness and cracking, which correlated with increased rigidity and mechanical strength, as evidenced by the high Young’s modulus (420 MPa in Gel-ga-CNC2). These findings suggest that the heterogeneity and porosity induced by CNC limit the mobility of polymer chains, resulting in less flexible and more rigid structures. Additionally, the DSC analysis revealed that gelatine hydrogels did not exhibit a well-defined Tg, due to the predominance of crystalline domains. Systems crosslinked with citric acid showed greater thermal stability (higher Tm and ΔHm values), while those crosslinked with glutaraldehyde, although mechanically stronger, exhibited lower thermal stability. These results confirm the decisive effect of the crosslinking agent and CNC incorporation on the structural and thermal behaviour of hydrogels. In this context, the application of hydrogels in packaged products represents an eco-friendly alternative that enhances product presentation. This research supports the reduction in plastic consumption whilst promoting the principles of a circular economy and facilitating the development of materials with lower environmental impact. Full article
(This article belongs to the Special Issue Recent Advances in Biopolymer Gels (2nd Edition))
Show Figures

Figure 1

25 pages, 5006 KB  
Article
Optimisation of Glass and Carbon Fibre-Reinforced Concrete with External Enzymatic Self-Healing: An Experimental and Environmental Impact Study
by Mohamed Rabie, Ali Bahadori-Jahromi and Ibrahim G. Shaaban
Buildings 2025, 15(19), 3455; https://doi.org/10.3390/buildings15193455 - 24 Sep 2025
Viewed by 498
Abstract
This study evaluates glass and carbon fibre-reinforced concrete in terms of performance, durability, environmental impact, and a novel enzymatic self-healing method. An experimental program was conducted on seven concrete mixes, including a plain control and mixes with varying dosages of glass and carbon [...] Read more.
This study evaluates glass and carbon fibre-reinforced concrete in terms of performance, durability, environmental impact, and a novel enzymatic self-healing method. An experimental program was conducted on seven concrete mixes, including a plain control and mixes with varying dosages of glass and carbon fibres. Glass and carbon fibres were incorporated at identical dosages of 0.12%, 0.22%, and 0.43% fibre volume fraction (Vf) to enable direct comparison of their performance. The experimental investigation involved a comprehensive characterization of the concrete mixes. Fresh properties were evaluated via slump tests, while hardened properties were determined through compressive and split tensile strength testing. Durability was subsequently assessed by measuring the rate of water absorption, bulk density, and moisture content. Following this material characterization, a cradle-to-gate Life Cycle Assessment (LCA) was conducted to quantify the embodied carbon and energy. Finally, an evaluation of a novel Carbonic Anhydrase (CA)-based self-healing treatment on pre-cracked, optimised fibre-reinforced specimens was conducted. The findings highlight key performance trade-offs associated with fibre reinforcement. Although both fibre types reduced compressive strength, they markedly improved split tensile strength for glass fibres by up to 70% and carbon fibres by up to 35%. Durability responses diverged: glass fibres increased water absorption, while carbon fibres reduced water absorption at low doses, indicating reduced permeability. LCA showed a significant rise in environmental impact, particularly for carbon fibres, which increased embodied energy by up to 141%. The CA enzymatic solution enhanced crack closure in fibre-reinforced specimens, achieving up to 30% healing in carbon fibre composites. These findings suggest that fibre-reinforced enzymatic self-healing concrete offers potential for targeted high-durability applications but requires careful life-cycle optimisation. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

30 pages, 6891 KB  
Article
Transient Response of an Infinite Isotropic Magneto-Electro-Elastic Material with Multiple Axisymmetric Planar Cracks
by Alireza Vahdati, Mehdi Salehi, Meisam Vahabi, Aazam Ghassemi, Javad Jafari Fesharaki and Soheil Oveissi
Solids 2025, 6(3), 54; https://doi.org/10.3390/solids6030054 - 22 Sep 2025
Viewed by 245
Abstract
Dynamic behavior of coaxial axisymmetric planar cracks in the transversely isotropic magneto-electro-elastic (MEE) material in transient in-plane magneto-electro-mechanical loading is studied. Magneto-electrically impermeable as well as permeable cracks are assumed for crack surfaces. In the first step, considering prismatic and radial dynamic dislocations, [...] Read more.
Dynamic behavior of coaxial axisymmetric planar cracks in the transversely isotropic magneto-electro-elastic (MEE) material in transient in-plane magneto-electro-mechanical loading is studied. Magneto-electrically impermeable as well as permeable cracks are assumed for crack surfaces. In the first step, considering prismatic and radial dynamic dislocations, electric and magnetic jumps are obtained through Laplace and Hankel transforms. These solutions are utilized to derive singular integral equations in the Laplace domain for the axisymmetric penny-shaped and annular cracks. Derived Cauchy singular type integral equations are solved to obtain the density of dislocation on the crack surfaces. Dislocation densities are utilized in computation of the dynamic stress intensity factors, electric displacement, and magnetic induction in the vicinity tips of crack tips. Finally, some numerical case studies of single and multiple cracks are presented. The effect of system parameters on the results is then discussed. Full article
Show Figures

Figure 1

20 pages, 4581 KB  
Article
The Fracture Propagation Behavior of Coal Masses Under Various Waveforms, Amplitudes, and Frequencies of Water Hammer Pulsating Pressure: Numerical Simulation and Experimental Validation
by Jun Nian, Jingchi Zhu, Xiaobo Lv and Jinqi Fu
Water 2025, 17(18), 2743; https://doi.org/10.3390/w17182743 - 17 Sep 2025
Viewed by 392
Abstract
Deep coal seams have low permeability and poor wettability, making gas extraction difficult. This study presents a zero-energy consumption pulsating water hammer fracturing technique that uses the gravitational potential energy of high-elevation water and the pulsating pressure waves from the water hammer effect [...] Read more.
Deep coal seams have low permeability and poor wettability, making gas extraction difficult. This study presents a zero-energy consumption pulsating water hammer fracturing technique that uses the gravitational potential energy of high-elevation water and the pulsating pressure waves from the water hammer effect to induce fatigue damage in coal, creating an interconnected network of cracks. The research included experiments on water hammer pressure waves, multi-physics field coupling simulations at different flow rates, and discrete element simulations to analyze the fracture behavior of underwater hammer pressure. Results showed that initial flow velocity impacts the water hammer pressure’s intensity, range, and duration. Pressure shock waves propagate as expansion and compression waves, with peaks rising from 4.99 to 19.91 MPa within a 2–12 m/s flow rate range. Water hammer pressure reduced fracture initiation pressure by 23% compared to static pressure loading and increased fracture numbers by 13.4%. With pressure amplitudes between 2–18 MPa, fractures tripled, and the damaged area grew from 2.2 to 11%. A variable frequency combination loading strategy, starting with low frequency and then high frequency, was more effective for fracture propagation. This study offers a theoretical foundation for applying this technology to enhance coal seam permeability and gas pumping efficiency. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

22 pages, 5891 KB  
Article
Investigation of the Effect of GFRP Reinforcement Bars on the Flexural Strength of Reinforced Concrete Beams Using the Finite Element Method
by Yusuf Sümer and Muhammed Öztemel
Fibers 2025, 13(9), 125; https://doi.org/10.3390/fib13090125 - 12 Sep 2025
Viewed by 553
Abstract
The use of environmentally friendly materials is becoming increasingly important in order to increase sustainability and reduce carbon emissions in reinforced concrete structures. In this context, glass fiber-reinforced polymer (GFRP) bars, which are proposed as an alternative to traditional steel reinforcements, are attracting [...] Read more.
The use of environmentally friendly materials is becoming increasingly important in order to increase sustainability and reduce carbon emissions in reinforced concrete structures. In this context, glass fiber-reinforced polymer (GFRP) bars, which are proposed as an alternative to traditional steel reinforcements, are attracting attention in engineering applications thanks to their advantages, such as high corrosion resistance, low weight, and electromagnetic permeability. However, the lower elasticity modulus of GFRP reinforcement compared to steel causes greater displacement and crack width under bending and shear effects, leading to certain limitations in structural performance. Due to the limited number of comprehensive analyses in the literature that simultaneously consider parameters such as reinforcement diameter, concrete strength, and stirrup spacing, this study aims to reveal the interactive effects of these parameters through numerical analyses and contribute to existing research. In this context, beam models using GFRP reinforcements with diameters of 10 mm and 12 mm, concrete strengths of 25 MPa and 40 MPa, and different stirrup spacings were analyzed using the ABAQUS (2022) software with a three-dimensional nonlinear finite element method. Full article
Show Figures

Figure 1

29 pages, 8264 KB  
Review
Construction Biotechnology: Integrating Bacterial Systems into Civil Engineering Practices
by Olja Šovljanski, Ana Tomić, Tiana Milović, Vesna Bulatović, Aleksandra Ranitović, Dragoljub Cvetković and Siniša Markov
Microorganisms 2025, 13(9), 2051; https://doi.org/10.3390/microorganisms13092051 - 3 Sep 2025
Viewed by 1210
Abstract
The integration of bacterial biotechnology into construction and geotechnical practices is redefining approaches to material sustainability, infrastructure longevity, and environmental resilience. Over the past two decades, research activity in construction biotechnology has expanded rapidly, with more than 350 publications between 2000 and 2024 [...] Read more.
The integration of bacterial biotechnology into construction and geotechnical practices is redefining approaches to material sustainability, infrastructure longevity, and environmental resilience. Over the past two decades, research activity in construction biotechnology has expanded rapidly, with more than 350 publications between 2000 and 2024 and a five-fold increase in annual output since 2020. Beyond bibliometric growth, technical studies have demonstrated the remarkable performance of bacterial systems: for example, microbial-induced calcium carbonate precipitation (MICP) can increase the compressive strength of treated soils by 60–70% and reduce permeability by more than 90% in field-scale trials. In concrete applications, bacterial self-healing has been shown to seal cracks up to 0.8 mm wide and improve water tightness by 70–90%. Similarly, biofilm-mediated corrosion barriers can extend the durability of reinforced steel by significantly reducing chloride ingress, while bacterial biopolymers such as xanthan gum and curdlan enhance soil cohesion and water retention in eco-grouting and erosion control. The novelty of this review lies in its interdisciplinary scope, integrating microbiological mechanisms, materials science, and engineering practice to highlight how bacterial processes can transition from laboratory models to real-world applications. By combining quantitative evidence with critical assessment of scalability, biosafety, and regulatory challenges, this paper provides a comprehensive framework that positions construction biotechnology as a transformative pathway towards low-carbon, adaptive, and resilient infrastructure systems. Full article
(This article belongs to the Special Issue Microbial Bioprocesses)
Show Figures

Figure 1

20 pages, 4631 KB  
Article
Research on Optimizing the Steel Fiber/CSH Interface Performance Based on Ca/Si Ratio
by Yalin Luan, Yongmei Wu, Runan Wang, Dongbo Cai, Lianzhen Zhang and Pengxiang Luan
Materials 2025, 18(17), 4049; https://doi.org/10.3390/ma18174049 - 29 Aug 2025
Viewed by 474
Abstract
Steel fiber reinforced concrete in marine environments often suffers from stress corrosion coupling. Under mechanical loading, the formation of penetrating cracks in the matrix increases susceptibility to seawater penetration and interfacial degradation. Using molecular dynamics simulations, this study investigated the effects of calcium-to-silicon [...] Read more.
Steel fiber reinforced concrete in marine environments often suffers from stress corrosion coupling. Under mechanical loading, the formation of penetrating cracks in the matrix increases susceptibility to seawater penetration and interfacial degradation. Using molecular dynamics simulations, this study investigated the effects of calcium-to-silicon (Ca/Si) ratios on the interfacial bonding and transport properties of a γ-FeOOH/CSH system. The results show that higher Ca/Si ratios strengthen ionic bonding between CSH and γ-FeOOH, thereby improving interfacial adhesion. Additionally, increased Ca/Si ratios significantly slow the transport of water molecules and ions (Na+, Cl, SO42−) within γ-FeOOH/CSH nanopores. It was observed that Cl and SO42− exhibited pronounced filtration effects at Ca/Si = 2.0. These findings suggest that optimizing the Ca/Si ratio in concrete can simultaneously enhance interfacial strength and reduce permeability. This provides an effective strategy for improving the marine erosion resistance of steel fiber reinforced concrete structures. Full article
Show Figures

Figure 1

13 pages, 7481 KB  
Article
Influence of Hydration on Shale Reservoirs: A Case Study of Gulong Shale Oil
by Feifei Fang, Ke Xu, Yu Zhang, Yu Wang, Zhimin Xu, Sijie He, Hui Huang, Hailong Wang, Weixiang Jin and Yue Gong
Minerals 2025, 15(8), 878; https://doi.org/10.3390/min15080878 - 21 Aug 2025
Viewed by 602
Abstract
In the process of the exploration and development of shale oil, the influence of hydration on shale reservoirs is complex, as it can not only improve porosity and permeability, but also lead to reservoir instability. At present, there is a lack of systematic [...] Read more.
In the process of the exploration and development of shale oil, the influence of hydration on shale reservoirs is complex, as it can not only improve porosity and permeability, but also lead to reservoir instability. At present, there is a lack of systematic understanding of the influence of hydration on the physical and chemical properties of shale oil reservoirs. Therefore, in this study, taking the Gulong shale oil reservoir in Songliao Basin as the research object, X-ray diffraction mineral composition analysis, electron microscope scanning, and micro-CT scanning were used to study the micro–macro-changes in shale caused by hydration, and the effects of different fracturing fluids on hydration were evaluated. The results show the following: (1) Hydration increases the porosity and permeability of Gulong shale through clay dispersion and dissolution pore formation, though these transient effects may compromise long-term reservoir stability due to pore-throat clogging. (2) Prolonged hydration significantly enhanced pore structure complexity, with tortuosity increasing by 64.7% (from 2.19 to 3.60) and the fractal dimension rising by 7.5% (from 1.99 to 2.14) with hydration time, and the proportion of larger pores (50–100 μm) increased significantly. (3) Hydration leads to crack propagation and new cracks, and the intersection of cracks reduces the core strength, which may eventually lead to macroscopic damage. (4) The influence of different fracturing fluids on the hydration reaction is obviously different. The higher the concentration, the stronger the hydration effect. Distilled water helps to increase porosity and permeability, but long-term effects may affect reservoir stability. The results of this paper reveal the changes in micro- and macro-characteristics of shale oil reservoirs under hydration, which is of great significance for analyzing the mechanism of hydration and provides theoretical support for improving shale oil recovery. Full article
Show Figures

Figure 1

14 pages, 2659 KB  
Article
Evaluation of Marine Shale Gas Reservoir in Wufeng–Longmaxi Formation, Jiaoshiba Area, Eastern Sichuan Basin
by Qiang Yan, Aiwei Zheng, Li Liu, Jin Wang, Xiaohong Zhan and Zhiheng Shu
Energies 2025, 18(16), 4350; https://doi.org/10.3390/en18164350 - 15 Aug 2025
Viewed by 416
Abstract
The Jiaoshiba area, as an important production capacity contribution block for the Fuling shale gas field, is of great significance for its long-term stable production. This study is based on continuous coring, and uses methods such as whole-rock mineral analysis, porosity and permeability [...] Read more.
The Jiaoshiba area, as an important production capacity contribution block for the Fuling shale gas field, is of great significance for its long-term stable production. This study is based on continuous coring, and uses methods such as whole-rock mineral analysis, porosity and permeability analysis, gas content analysis, and organic geochemistry to systematically analyze the influencing factors of reservoir properties and gas content in the studied interval. Combined with the variation law of TOC and other parameters with depth, the target reservoir is comprehensively evaluated, and the evaluation results are verified based on actual production data. The results show that the influence of minerals on permeability is very weak, and cracks can greatly improve permeability, but their contribution to porosity is not significant. Porosity has a certain impact on gas content, but it is not the main controlling factor. The pores related to quartz (organic silicon) are mostly organic pores, which host a large amount of shale gas, while clay minerals are not conducive to the occurrence of shale gas. Organic matter (OM) maturity contributes more to porosity than OM abundance, but OM abundance has a stronger impact on gas content than its maturity. The research intervals can be divided into four categories: Class I (①–③) is the best, followed by Class II (⑦–⑨); Class III (④–⑥) is poor, and Class IV (top, non-gas-bearing layer) is the worst. Full article
Show Figures

Figure 1

12 pages, 2284 KB  
Article
Degradation Mechanisms in Metallized Barrier Films for Vacuum Insulation Panels Subjected to Flanging-Induced Stress
by Juan Wang, Ziling Wang, Delei Chen, Zhibin Pei, Jian Shen and Ningning Zhou
Nanomaterials 2025, 15(16), 1231; https://doi.org/10.3390/nano15161231 - 12 Aug 2025
Viewed by 578
Abstract
The long-term reliability of vacuum insulation panels (VIPs) is constrained by the barrier film degradation caused by micro-cracks during the flanging process. However, the correlation mechanism between process parameters and microleakage remains unclear. This study systematically investigates the impact of the number of [...] Read more.
The long-term reliability of vacuum insulation panels (VIPs) is constrained by the barrier film degradation caused by micro-cracks during the flanging process. However, the correlation mechanism between process parameters and microleakage remains unclear. This study systematically investigates the impact of the number of flanging cycles on the barrier properties and insulation failure of aluminum foil composite film (AF) and metallized polyester film (MF). Accelerated aging tests revealed that the water vapor transmission rate (WVTR) of MF surged by 340% after five flanging cycles, while its oxygen transmission rate (OTR) increased by 22%. In contrast, AF exhibited significantly increased gas permeability due to brittle fracture of its aluminum layer. Thermal conductivity measurements demonstrated that VIPs subjected to ≥5 flanging cycles experienced a thermal conductivity increase of 5.22 mW/(m·K) after 30 days of aging, representing a 7.1-fold rise compared to unbent samples. MF primarily failed through interfacial delamination, whereas AF failed predominantly via aluminum layer fracture. This divergence stems from the substantial difference in mechanical properties between the metal and the polymer substrate. The study proposes optimizing the flanging process (≤3 bending cycles) and establishes a micro-crack propagation prediction model using X-ray computed tomography (CT). These findings provide crucial theoretical and technical foundations for enhancing VIP manufacturing precision and extending service life, holding significant practical value for energy-saving applications in construction and cryogenic fields. Full article
Show Figures

Graphical abstract

22 pages, 9502 KB  
Article
Phase-Field Modeling of Thermal Fracturing Mechanisms in Reservoir Rock Under High-Temperature Conditions
by Guo Tang, Dianbin Guo, Wei Zhong, Li Du, Xiang Mao and Man Li
Appl. Sci. 2025, 15(15), 8693; https://doi.org/10.3390/app15158693 - 6 Aug 2025
Viewed by 670
Abstract
Thermal stimulation represents an effective method for enhancing reservoir permeability, thereby improving geothermal energy recovery in Enhanced Geothermal Systems (EGS). The phase-field method (PFM) has been widely adopted for its proven capability in modeling the fracture behavior of brittle solids. Consequently, a coupled [...] Read more.
Thermal stimulation represents an effective method for enhancing reservoir permeability, thereby improving geothermal energy recovery in Enhanced Geothermal Systems (EGS). The phase-field method (PFM) has been widely adopted for its proven capability in modeling the fracture behavior of brittle solids. Consequently, a coupled thermo-mechanical phase-field model (TM-PFM) was developed in COMSOL 6.2 Multiphysics to probe thermal fracturing mechanisms in reservoir rocks. The TM-PFM was validated against the analytical solutions for the temperature and stress fields under steady-state heat conduction in a thin-walled cylinder, three-point bending tests, and thermal shock tests. Subsequently, two distinct thermal fracturing modes in reservoir rock under high-temperature conditions were investigated: (i) fracture initiation driven by sharp temperature gradients during instantaneous thermal shocks, and (ii) crack propagation resulting from heterogeneous thermal expansion of constituent minerals. The proposed TM-PFM has been validated through systematic comparison between the simulation results and the corresponding experimental data, thereby demonstrating its capability to accurately simulate thermal fracturing. These findings provide mechanistic insights for optimizing geothermal energy extraction in EGS. Full article
(This article belongs to the Special Issue Advances in Failure Mechanism and Numerical Methods for Geomaterials)
Show Figures

Figure 1

19 pages, 14190 KB  
Article
A Comprehensive Evaluation Method for Cement Slurry Systems to Enhance Zonal Isolation: A Case Study in Shale Oil Well Cementing
by Xiaoqing Zheng, Weitao Song, Xiutian Yang, Jian Liu, Tao Jiang, Xuning Wu and Xin Liu
Energies 2025, 18(15), 4138; https://doi.org/10.3390/en18154138 - 4 Aug 2025
Viewed by 472
Abstract
Due to post-cementing hydraulic fracturing and other operational stresses, inadequate mechanical properties or suboptimal design of the cement sheath can lead to tensile failure and microcrack development, compromising both hydrocarbon recovery and well integrity. In this study, three field-deployed cement slurry systems were [...] Read more.
Due to post-cementing hydraulic fracturing and other operational stresses, inadequate mechanical properties or suboptimal design of the cement sheath can lead to tensile failure and microcrack development, compromising both hydrocarbon recovery and well integrity. In this study, three field-deployed cement slurry systems were compared on the basis of their basic mechanical properties such as compressive and tensile strength. Laboratory-scale physical simulations of hydraulic fracturing during shale oil production were conducted, using dynamic permeability as a quantitative indicator of integrity loss. The experimental results show that evaluating only basic mechanical properties is insufficient for cement slurry system design. A more comprehensive mechanical assessment is re-quired. Incorporation of an expansive agent into the cement slurry system can alleviate the damage caused by the microannulus to the interfacial sealing performance of the cement sheath, while adding a toughening agent can alleviate the damage caused by tensile cracks to the sealing performance of the cement sheath matrix. Through this research, a microexpansive and toughened cement slurry system, modified with both expansive and toughening agents, was optimized. The expansive agent and toughening agent can significantly enhance the shear strength, the flexural strength, and the interfacial hydraulic isolation strength of cement stone. Moreover, the expansion agents mitigate the detrimental effects of microannulus generation on the interfacial sealing, while the toughening agents alleviate the damage caused by tensile cracking to the bulk sealing performance of the cement sheath matrix. This system has been successfully implemented in over 100 wells in the GL block of Daqing Oilfield. Field application results show that the proportion of high-quality well sections in the horizontal section reached 88.63%, indicating the system’s high performance in enhancing zonal isolation and cementing quality. Full article
Show Figures

Figure 1

23 pages, 4322 KB  
Article
Fly-Ash-Based Microbial Self-Healing Cement: A Sustainable Solution for Oil Well Integrity
by Lixia Li, Yanjiang Yu, Qianyong Liang, Tianle Liu, Guosheng Jiang, Guokun Yang and Chengxiang Tang
Sustainability 2025, 17(15), 6989; https://doi.org/10.3390/su17156989 - 1 Aug 2025
Viewed by 817
Abstract
The cement sheath is critical for ensuring the long-term safety and operational efficiency of oil and gas wells. However, complex geological conditions and operational stresses during production can induce cement sheath deterioration and cracking, leading to reduced zonal isolation, diminished hydrocarbon recovery, and [...] Read more.
The cement sheath is critical for ensuring the long-term safety and operational efficiency of oil and gas wells. However, complex geological conditions and operational stresses during production can induce cement sheath deterioration and cracking, leading to reduced zonal isolation, diminished hydrocarbon recovery, and elevated operational expenditures. This study investigates the development of a novel microbial self-healing well cement slurry system, employing fly ash as microbial carriers and sustained-release microcapsules encapsulating calcium sources and nutrients. Systematic evaluations were conducted, encompassing microbial viability, cement slurry rheology, fluid loss control, anti-channeling capability, and the mechanical strength, permeability, and microstructural characteristics of set cement stones. Results demonstrated that fly ash outperformed blast furnace slag and nano-silica as a carrier, exhibiting superior microbial loading capacity and viability. Optimal performance was observed with additions of 3% microorganisms and 3% microcapsules to the cement slurry. Microscopic analysis further revealed effective calcium carbonate precipitation within and around micro-pores, indicating a self-healing mechanism. These findings highlight the significant potential of the proposed system to enhance cement sheath integrity through localized self-healing, offering valuable insights for the development of advanced, durable well-cementing materials tailored for challenging downhole environments. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

26 pages, 11239 KB  
Review
Microbial Mineral Gel Network for Enhancing the Performance of Recycled Concrete: A Review
by Yuanxun Zheng, Liwei Wang, Hongyin Xu, Tianhang Zhang, Peng Zhang and Menglong Qi
Gels 2025, 11(8), 581; https://doi.org/10.3390/gels11080581 - 27 Jul 2025
Viewed by 483
Abstract
The dramatic increase in urban construction waste poses severe environmental challenges. Utilizing waste concrete to produce recycled aggregates (RA) for manufacturing recycled concrete (RC) represents an effective strategy for resource utilization. However, inherent defects in RA, such as high porosity, microcracks, and adherent [...] Read more.
The dramatic increase in urban construction waste poses severe environmental challenges. Utilizing waste concrete to produce recycled aggregates (RA) for manufacturing recycled concrete (RC) represents an effective strategy for resource utilization. However, inherent defects in RA, such as high porosity, microcracks, and adherent old mortar layers, lead to significant performance degradation of the resulting RC, limiting its widespread application. Traditional methods for enhancing RA often suffer from limitations, including high energy consumption, increased costs, or the introduction of new pollutants. MICP offers an innovative approach for enhancing RC performance. This technique employs the metabolic activity of specific microorganisms to induce the formation of a three-dimensionally interwoven calcium carbonate gel network within the pores and on the surface of RA. This gel network can improve the inherent defects of RA, thereby enhancing the performance of RC. Compared to conventional techniques, this approach demonstrates significant environmental benefits and enhances concrete compressive strength by 5–30%. Furthermore, embedding mineralizing microbial spores within the pores of RA enables the production of self-healing RC. This review systematically explores recent research advances in microbial mineral gel network for improving RC performance. It begins by delineating the fundamental mechanisms underlying microbial mineralization, detailing the key biochemical reactions driving the formation of calcium carbonate (CaCO3) gel, and introducing the common types of microorganisms involved. Subsequently, it critically discusses the key environmental factors influencing the effectiveness of MICP treatment on RA and strategies for their optimization. The analysis focuses on the enhancement of critical mechanical properties of RC achieved through MICP treatment, elucidating the underlying strengthening mechanisms at the microscale. Furthermore, the review synthesizes findings on the self-healing efficiency of MICP-based RC, including such metrics as crack width healing ratio, permeability recovery, and restoration of mechanical properties. Key factors influencing self-healing effectiveness are also discussed. Finally, building upon the current research landscape, the review provides perspectives on future research directions for advancing microbial mineralization gel techniques to enhance RC performance, offering a theoretical reference for translating this technology into practical engineering applications. Full article
(This article belongs to the Special Issue Novel Polymer Gels: Synthesis, Properties, and Applications)
Show Figures

Graphical abstract

Back to TopTop