Microbial Bioprocesses

A special issue of Microorganisms (ISSN 2076-2607). This special issue belongs to the section "Microbial Biotechnology".

Deadline for manuscript submissions: 20 December 2025 | Viewed by 3235

Special Issue Editor


E-Mail
Guest Editor
Department of Bioprocess Engineering and Biotechnology, Polytechnic Center, Federal University of Parana, Rua Cel. Francisco H. dos Santos—100, Curitiba 81530-000, PR, Brazil
Interests: industrial processes; bioprocesses; biotechnology; bioenergy; fermentative processes
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The Special Issue entitled "Microbial Bioprocesses" highlights advances and innovations in the use of microorganisms for biotechnological processes in different areas, such as health, environment, food and energy. With a focus on sustainable processes and the application of emerging technologies, this collection brings together studies on the production of biopharmaceuticals, biopolymers, biofuels, as well as strategies for bioremediation and bioconversion. In addition, it addresses the development of new bioprocesses, genetic engineering of microorganisms and the optimization of fermentation conditions, seeking greater efficiency, cost reduction and minimal environmental impact. The Issue is an important reference for researchers, academics and professionals interested in exploring the potential of microorganisms to solve global challenges and promote the bioeconomy.

Dr. Walter José Martínez-Burgos
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Microorganisms is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • microbial biotechnology
  • fermentation
  • biopharmaceuticals
  • biofuels
  • biopolymers
  • bioremediation
  • bioconversion
  • metabolic engineering
  • industrial microorganisms
  • sustainable production
  • bioeconomy
  • bioprocess optimization
  • emerging technologies
  • sustainability

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

20 pages, 1912 KB  
Article
Actinobacillus succinogenes in Bioelectrochemical Systems: Influence of Electric Potentials and Carbon Fabric Electrodes on Fermentation Performance
by Julian Tix, Jan-Niklas Hengsbach, Joshua Bode, Fernando Pedraza, Julia Willer, Sei Jin Park, Kenneth F. Reardon, Roland Ulber and Nils Tippkötter
Microorganisms 2025, 13(8), 1720; https://doi.org/10.3390/microorganisms13081720 - 23 Jul 2025
Viewed by 621
Abstract
The fermentation of Actinobacillus succinogenes in bioelectrochemical systems offers a promising approach to enhance biotechnological succinate production by shifting the redox balance towards succinate and simultaneously enabling CO2 utilization. Key process parameters include the applied electric potential, electrode material, and reactor design. [...] Read more.
The fermentation of Actinobacillus succinogenes in bioelectrochemical systems offers a promising approach to enhance biotechnological succinate production by shifting the redox balance towards succinate and simultaneously enabling CO2 utilization. Key process parameters include the applied electric potential, electrode material, and reactor design. This study investigates the influence of various carbon fabric electrodes and applied potentials on product distribution during fermentation of A. succinogenes. Building on prior findings that potentials between −600 mV and –800 mV increase succinate production, recent data reveal that more negative potentials, beyond the water electrolysis threshold, trigger electrochemical side reactions, altering product yields. Specifically, succinate decreased from 19.76 ± 0.41 g∙L−1 to 14.1 ± 1.6 g∙L−1, while lactate rose from 0.59 ± 0.12 g∙L−1 to 3.12 ± 0.21 g∙L−1. Contrary to common assumptions, the shift is not primarily driven by oxygen formation. Instead, the results indicate that the intracellular redox potential is affected by both the applied potential and hydrogen evolution, which alters metabolic pathways to maintain redox balance. These findings demonstrate that more negative applied potentials in electro-fermentation processes can impair succinate yields, emphasizing the importance of fine-tuning electrochemical conditions in the system for optimized biotechnological succinate production. Full article
(This article belongs to the Special Issue Microbial Bioprocesses)
Show Figures

Figure 1

18 pages, 2919 KB  
Article
De Novo Assembly of the Polyhydroxybutyrate (PHB) Producer Azohydromonas lata Strain H1 Genome and Genomic Analysis of PHB Production Machinery
by Daniele Traversa, Carlo Pazzani, Pietro D’Addabbo, Lucia Trisolini, Matteo Chiara, Marta Oliva, Angelo Marzella, Camilla Mandorino, Carla Calia, Guglielmina Chimienti, Caterina Manzari, Graziano Pesole and Maria Scrascia
Microorganisms 2025, 13(1), 137; https://doi.org/10.3390/microorganisms13010137 - 10 Jan 2025
Cited by 1 | Viewed by 1463
Abstract
Polyhydroxybutyrate (PHB) is a biodegradable natural polymer produced by different prokaryotes as a valuable carbon and energy storage compound. Its biosynthesis pathway requires the sole expression of the phaCAB operon, although auxiliary genes play a role in controlling polymer accumulation, degradation, granule formation [...] Read more.
Polyhydroxybutyrate (PHB) is a biodegradable natural polymer produced by different prokaryotes as a valuable carbon and energy storage compound. Its biosynthesis pathway requires the sole expression of the phaCAB operon, although auxiliary genes play a role in controlling polymer accumulation, degradation, granule formation and stabilization. Due to its biodegradability, PHB is currently regarded as a promising alternative to synthetic plastics for industrial/biotechnological applications. Azohydromonas lata strain H1 has been reported to accumulate PHB by using simple, inexpensive carbon sources. Here, we present the first de novo genome assembly of the A. lata strain H1. The genome assembly is over 7.7 Mb in size, including a circular megaplasmid of approximately 456 Kbp. In addition to the phaCAB operon, single genes ascribable to PhaC and PhaA functions and auxiliary genes were also detected. A comparative genomic analysis of the available genomes of the genus Azohydromonas revealed the presence of phaCAB and auxiliary genes in all Azohydromonas species investigated, suggesting that the PHB production is a common feature of the genus. Based on sequence identity, we also suggest A. australica as the closest species to which the phaCAB operon of the strain H1, reported in 1998, is similar. Full article
(This article belongs to the Special Issue Microbial Bioprocesses)
Show Figures

Figure 1

Review

Jump to: Research

29 pages, 8264 KB  
Review
Construction Biotechnology: Integrating Bacterial Systems into Civil Engineering Practices
by Olja Šovljanski, Ana Tomić, Tiana Milović, Vesna Bulatović, Aleksandra Ranitović, Dragoljub Cvetković and Siniša Markov
Microorganisms 2025, 13(9), 2051; https://doi.org/10.3390/microorganisms13092051 - 3 Sep 2025
Viewed by 482
Abstract
The integration of bacterial biotechnology into construction and geotechnical practices is redefining approaches to material sustainability, infrastructure longevity, and environmental resilience. Over the past two decades, research activity in construction biotechnology has expanded rapidly, with more than 350 publications between 2000 and 2024 [...] Read more.
The integration of bacterial biotechnology into construction and geotechnical practices is redefining approaches to material sustainability, infrastructure longevity, and environmental resilience. Over the past two decades, research activity in construction biotechnology has expanded rapidly, with more than 350 publications between 2000 and 2024 and a five-fold increase in annual output since 2020. Beyond bibliometric growth, technical studies have demonstrated the remarkable performance of bacterial systems: for example, microbial-induced calcium carbonate precipitation (MICP) can increase the compressive strength of treated soils by 60–70% and reduce permeability by more than 90% in field-scale trials. In concrete applications, bacterial self-healing has been shown to seal cracks up to 0.8 mm wide and improve water tightness by 70–90%. Similarly, biofilm-mediated corrosion barriers can extend the durability of reinforced steel by significantly reducing chloride ingress, while bacterial biopolymers such as xanthan gum and curdlan enhance soil cohesion and water retention in eco-grouting and erosion control. The novelty of this review lies in its interdisciplinary scope, integrating microbiological mechanisms, materials science, and engineering practice to highlight how bacterial processes can transition from laboratory models to real-world applications. By combining quantitative evidence with critical assessment of scalability, biosafety, and regulatory challenges, this paper provides a comprehensive framework that positions construction biotechnology as a transformative pathway towards low-carbon, adaptive, and resilient infrastructure systems. Full article
(This article belongs to the Special Issue Microbial Bioprocesses)
Show Figures

Figure 1

Back to TopTop