Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,338)

Search Parameters:
Keywords = crop water relation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1074 KB  
Article
Crop Loss Due to Soil Salinity and Agricultural Adaptations to It in the Middle East and North Africa Region
by Jeetendra Prakash Aryal, Luis Augusto Becerra Lopez-Lavalle and Ahmed H. El-Naggar
Resources 2025, 14(9), 139; https://doi.org/10.3390/resources14090139 - 31 Aug 2025
Viewed by 414
Abstract
Using data collected from 294 farm households across Egypt, Morocco, and Tunisia, this study quantifies crop losses due to soil salinity and analyzes the key factors associated with it. Further, it analyzes the factors driving the farmers’ choice of adaptation measures against salinity. [...] Read more.
Using data collected from 294 farm households across Egypt, Morocco, and Tunisia, this study quantifies crop losses due to soil salinity and analyzes the key factors associated with it. Further, it analyzes the factors driving the farmers’ choice of adaptation measures against salinity. Almost 54% of households surveyed reported yield losses due to salinity, with a sizable portion experiencing losses above 20%. In response to salinization, farmers adopted five adaptation practices, including crop rotation, salt stress-tolerant varieties, drainage management, soil amendments, and improved irrigation practices. A generalized linear model is applied to examine the factors explaining crop loss due to salinity. Results show that a higher share of irrigated land correlates with greater salinity-related crop loss, particularly in areas with poor drainage and low water quality. Conversely, farms with good soil quality reported significantly lower losses. Crop losses due to salinity were much lower in quinoa compared to wheat. Farmers who received agricultural training or belonged to cooperatives reported lower losses. A multivariate probit model was employed to understand drivers of adaptive behaviors. The analysis shows credit access, cooperative membership, training, and resource endowments as significant predictors of adaptation choices. The results underscore the importance of expanding credit availability, strengthening farmer organizations, and investing in training for effective salinity management. Full article
Show Figures

Figure 1

18 pages, 1736 KB  
Article
Water Availability Associated with Coinoculation with Growth-Promoting Rhizobacteria in Cowpea
by Júlio José Nonato, Tonny José Araújo da Silva, Alessana Franciele Schlichting, Luana Aparecida Menegaz Meneghetti, Niclene Ponce Rodrigues de Oliveira, Thiago Franco Duarte, Salomão Lima Guimarães, Marcio Koetz, Ivis Andrei Campos e Silva, Patrícia Ferreira da Silva, Adriano Bicioni Pacheco and Edna Maria Bonfim-Silva
Nitrogen 2025, 6(3), 74; https://doi.org/10.3390/nitrogen6030074 - 29 Aug 2025
Viewed by 324
Abstract
Soil water availability can become one of the decisive factors for crop production. The technology of coinoculation with plant growth-promoting bacteria capable of performing biological nitrogen fixation and producing plant hormones may be an alternative that minimizes the effects of variations in soil [...] Read more.
Soil water availability can become one of the decisive factors for crop production. The technology of coinoculation with plant growth-promoting bacteria capable of performing biological nitrogen fixation and producing plant hormones may be an alternative that minimizes the effects of variations in soil water availability. In this context, the objective was to evaluate the phytometric and productive characteristics of cowpea coinoculated with Azospirillum brasilense and Bradyrhizobium japonicum subjected to soil water availability stress. The experiment was carried out in a greenhouse in a completely randomized block design with four replications in a 4 × 4 factorial arrangement: not inoculated; inoculated with B. japonicum; and coinoculated with B. japonicum + A. brasilense and N fertilizer, associated with soil water tensions of 15, 30, 45, and 60 kPa. Statistically, the lowest soil water tension, 15 kPa, and the coinoculated and nitrogen fertilizer treatments resulted in greater development of plant height, stem diameter, and number of leaflets. The shoot dry mass was significantly different for only the soil water stress treatments, which showed a decrease in mass accumulation from 15 kPa to 50.22 kPa. Regarding the SPAD index, soil water tension showed a decreasing linear adjustment 24 days after plant emergence (DAEs), with the lowest value of 51.38 at a tension of 60 kPa. At 39 DAEs, the adjustment was polynomial, with the lowest tension index of 59.62 kPa, corresponding to 44.14. The treatments with the use of inoculants had a significant effect on the SPAD index, in which coinoculation with Bradyrhizobium and Azospirillum brasilense resulted in values equal to those of nitrogen fertilizer and greater than those of uninoculated treatments or those inoculated with Bradyrhizobium. Water tension influenced the total water consumption, and at a tension of 18.13 kPa, the lowest accumulation occurred, equivalent to 2.20 g of dry matter for each liter of irrigated water. Statistically, the lowest soil water tension, 15 kPa, resulted in higher numbers, lengths, and widths of pods. In relation to the length of pods, the uninoculated, inoculated with Bradyrhizobium, and coinoculated with Bradyrhizobium and A. brasilense treatments were superior to nitrogen fertilization. Coinoculation and nitrogen fertilization influenced phytometric characteristics. The productive characteristics of cowpea decreased as the soil water tension increased. These results highlight the importance of leveraging biological solutions, such as coinoculation, to mitigate the adverse effects of water stress on crop yields. In addition, by optimizing these practices, farmers ensure greater resilience in bean production, thereby guaranteeing food security in the face of changing environmental conditions. Full article
Show Figures

Figure 1

23 pages, 2092 KB  
Article
Industrial Wastewater Disposal and Its Socio-Environmental Consequences: Evidence from the Uttara Export Processing Zone, Bangladesh
by A B M Nurullah, Most Sanjida Khatun and Liesel Ritchie
Sustainability 2025, 17(17), 7716; https://doi.org/10.3390/su17177716 - 27 Aug 2025
Viewed by 1304
Abstract
This study examines the impacts of industrial wastewater from the Uttara Export Processing Zone (UEPZ) on natural resources, agriculture, and the health of nearby communities in Nilphamari, Bangladesh. Using a quantitative, self-report approach, data were collected from 162 households across four villages in [...] Read more.
This study examines the impacts of industrial wastewater from the Uttara Export Processing Zone (UEPZ) on natural resources, agriculture, and the health of nearby communities in Nilphamari, Bangladesh. Using a quantitative, self-report approach, data were collected from 162 households across four villages in Nilphamari Sadar Upazila, selected based on proximity to the UEPZ. Findings reveal significant environmental degradation: almost all (96%) respondents reported that water in nearby rivers and ponds has changed color and is odorous, unpleasant to taste, and contaminated, harming aquatic biodiversity. Agricultural productivity has declined, with 67 percent of respondents experiencing reduced crop yields, increased crop diseases, and rising cultivation costs due to greater dependence on fertilizers and pesticides. Also, 96 percent of respondents reported that the fish population diminished, reducing alternative income sources. Health impacts were pronounced; 69 percent of the respondents experienced water pollution-related complications, including skin, respiratory, gastrointestinal, and eye problems. Perceptions of wastewater health risks were strongly aligned with reported illnesses. Binary logistic regression further indicated a positive association between degraded crop health and human health problems. The study concludes that UEPZ’s wastewater disposal negatively affects natural resources, agriculture, and public health, underscoring the need for improved waste management and mitigation to protect affected communities. Full article
Show Figures

Graphical abstract

17 pages, 2412 KB  
Article
Evaluation of an Hourly Empirical Method Against ASCE PM (2005), for Hyper-Arid to Subhumid Climatic Conditions of the State of California
by Constantinos Demetrios Chatzithomas
Meteorology 2025, 4(3), 22; https://doi.org/10.3390/meteorology4030022 - 26 Aug 2025
Viewed by 316
Abstract
Accurate estimations of reference evapotranspiration (ETo) are critical for hydrologic studies, efficient crop irrigation, water resources management and sustainable development. The evaluation of an empirical method was carried out to estimate hourly ETo, utilizing short-wave radiation and relative humidity as a surrogate of [...] Read more.
Accurate estimations of reference evapotranspiration (ETo) are critical for hydrologic studies, efficient crop irrigation, water resources management and sustainable development. The evaluation of an empirical method was carried out to estimate hourly ETo, utilizing short-wave radiation and relative humidity as a surrogate of vapor pressure deficit (VPD), calibrated under semi-arid conditions and validated for different climatic regimes (hyper-arid, arid, subhumid) using American Society of Civil Engineers Penman–Monteith (ASCE PM) (2005) values as a standard, for the state of California. For hyper-arid climatic conditions, the empirical method resulted in underestimation and had coefficient of determination (R2) values of 0.88–0.95 and root mean square error (RMSE) values of 0.062–0.115 mm h−1. Hyper-arid climatic conditions correspond to lower R2 and different relations between the vapor pressure deficit (VPD) and the relative humidity function (1/lnRH) that the empirical method utilizes. For the other climatic regimes (arid, semi-arid, subhumid), the empirical method performed satisfactorily. The RMSE was calculated for groups of empirical estimates corresponding to various wind velocity values, and it was satisfactory for >99% of wind speed values (u2). The RMSE was also calculated for grouped values of the estimates of the empirical method corresponding to observed VPDs and was satisfactory for >97% of all observed values of VPD, except for hyper-arid stations (59% of u2 and 60% of all observed values of VPD). Full article
(This article belongs to the Special Issue Early Career Scientists' (ECS) Contributions to Meteorology (2025))
Show Figures

Figure 1

13 pages, 1749 KB  
Article
Selective and Mild Transcriptional Modulation of Lectin Genes in Soy Leaves Under Drought Stress
by Vinicius J. S. Osterne, Rafaela A. F. Leite, Benildo S. Cavada and Kyria S. Nascimento
Stresses 2025, 5(3), 54; https://doi.org/10.3390/stresses5030054 - 25 Aug 2025
Viewed by 287
Abstract
Drought is the single largest abiotic threat to soybean yield, yet the lectin genes that mediate drought perception and signaling in this crop have never been systematically mapped. We reanalyzed the public RNA-seq dataset GSE237798 (Williams 82 leaves, 7-day water withdrawal) with an [...] Read more.
Drought is the single largest abiotic threat to soybean yield, yet the lectin genes that mediate drought perception and signaling in this crop have never been systematically mapped. We reanalyzed the public RNA-seq dataset GSE237798 (Williams 82 leaves, 7-day water withdrawal) with an updated fastp–HISAT2–featureCounts–DESeq2 pipeline and a curated catalog of 359 soybean lectin loci. Of the 127 lectin transcripts showing any drought-dependent shift, only 15 were stringently differentially expressed with substantial fold changes: 7 were upregulated and 8 downregulated. These genes span four families, GNA, legume, LysM and Nictaba-related lectins, and are heavily biased toward lectin receptor-like kinases (11 of 15), pinpointing the plasma membrane as the main control node. Gene Ontology enrichment highlights protein autophosphorylation and signal-transduction terms, and the inspection of AlphaFold models together with established lectin knowledge indicates that G- and L-type lectin domains have largely lost canonical carbohydrate-binding residues, whereas LysM and Nictaba proteins retain conserved folds compatible with ligand binding. The data expose a focused, modular lectin program rather than the broad activation often assumed: most soybean lectins stay silent under drought conditions, and only a defined subset toggles their expression, albeit mildly. Full article
(This article belongs to the Collection Feature Papers in Plant and Photoautotrophic Stresses)
Show Figures

Figure 1

22 pages, 2548 KB  
Article
Transcriptomic Responses of Wheat Anthers to Drought Stress and Antitranspirants
by Misbah Sehar, Philippa Borrill, Laura Vickers and Peter S. Kettlewell
Plants 2025, 14(17), 2633; https://doi.org/10.3390/plants14172633 - 24 Aug 2025
Viewed by 438
Abstract
Drought severely impacts crop yields, especially wheat. Antitranspirants, which reduce water loss, have been shown to improve crop yield under drought, possibly by increasing pollen viability. To understand the mechanisms, transcriptomic responses were studied in early meiotic wheat anthers extracted from polytunnel-grown plants: [...] Read more.
Drought severely impacts crop yields, especially wheat. Antitranspirants, which reduce water loss, have been shown to improve crop yield under drought, possibly by increasing pollen viability. To understand the mechanisms, transcriptomic responses were studied in early meiotic wheat anthers extracted from polytunnel-grown plants: well-watered, droughted unsprayed, and droughted plants treated with antitranspirants. Film (Vapor Gard (VG), di-1-p-menthene) and metabolic (Abscisic Acid (ABA), 20% S-ABA) antitranspirants were applied at the flag leaf stage (GS39). Well-watered (WW) plant anthers had more upregulated genes (626 genes) than downregulated ones (226 genes) when compared to droughted unsprayed ones. Most of the differentially expressed genes (DEGs) were transcriptionally downregulated (3959 genes) in droughted, treated-plant anthers (ABA and VG) compared with unsprayed (US), and the number of genes with upregulated expression was lower (830 genes). VG-treated plant anthers had more downregulated genes (3325 genes) than ABA-treated ones (634 genes). Carbohydrate or sugar metabolism and related processes were affected in antitranspirant-treated plant anthers with significant downregulation of genes compared to droughted unsprayed ones; in contrast, these processes were upregulated in well-watered anthers, suggesting broad differences in the transcriptional response. However, antitranspirants did not significantly affect pollen viability or yield in treated plants compared to unsprayed plants, suggesting that anthers are more sensitive at the transcriptomic level than subsequent physiological processes determining yield. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

18 pages, 7387 KB  
Article
A Comparative Assessment of Food Security in South and North Korea Using Food Demand and Supply
by Whijin Kim, Rastislav Skalsky, Christian Folberth, Sujong Lee, Dmitry Schepaschenko, Florian Kraxner, Joon Kim, Chang-Gil Kim, Seong-Woo Jeon, Yowhan Son and Woo-Kyun Lee
Land 2025, 14(9), 1703; https://doi.org/10.3390/land14091703 - 23 Aug 2025
Viewed by 726
Abstract
South Korea and North Korea share the same environment on the Korean peninsula, but they differ in socio-economic conditions, which leads to differences in crop productivity and status of food security. This study aimed at assessing food security in South Korea and North [...] Read more.
South Korea and North Korea share the same environment on the Korean peninsula, but they differ in socio-economic conditions, which leads to differences in crop productivity and status of food security. This study aimed at assessing food security in South Korea and North Korea by analyzing food demand and supply from 1991 to 2020. Food security was assessed by determining whether the food supply met the demand in two countries. South Korea achieved food security due to decreasing consumption, diverse nutrition, and stable rice productivity despite a reduction in cultivated paddy areas. In contrast, North Korea has faced food insecurity for 30 years, caused by a growing population, a lack of dietary diversity, and low crop productivity. To overcome food shortage, the North Korean government needs to focus on improving agricultural productivity through comprehensive reforms of agricultural infrastructures, rather than simply expanding low-productive cultivated areas. Although this study was conducted with limited data for North Korea, it sought to collect and utilize open and publicly accessible data. In the long term, both South Korea and North Korea should prepare for the impacts of climate change, considering agriculture-related sectors such as water and energy. Full article
Show Figures

Figure 1

16 pages, 2255 KB  
Article
Exploring the Functional Potential of the Xyrophytic Greek Carob (Ceratonia siliqua, L.) Cold Aqueous and Hydroethanolic Extracts
by Katerina Pyrovolou, Panagiota-Kyriaki Revelou, Maria Trapali, Irini F. Strati, Spyros J. Konteles, Petros A. Tarantilis and Anthimia Batrinou
Appl. Sci. 2025, 15(16), 8909; https://doi.org/10.3390/app15168909 - 13 Aug 2025
Viewed by 497
Abstract
The present study investigates the antimicrobial, antioxidant, and in vitro antidiabetic potential of cold infusions prepared from different parts of the Greek carob tree (Ceratonia siliqua L.), which is a xerophytic species. Carob samples, including green and ripe pods and leaves, were [...] Read more.
The present study investigates the antimicrobial, antioxidant, and in vitro antidiabetic potential of cold infusions prepared from different parts of the Greek carob tree (Ceratonia siliqua L.), which is a xerophytic species. Carob samples, including green and ripe pods and leaves, were collected from an urban area of Attica, Greece, and extracted using food-grade solvents (water and a water–ethanol mixture, 90:10, v/v). The extracts were evaluated for antibacterial activity against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 6538 using automated turbidometry. In addition, total phenolic content and antioxidant and antiradical activities were determined via spectrophotometry; the phenolic profile was analyzed using liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (LC-QToF-MS), and α-amylase inhibitory activity was assessed through an in vitro assay. All extracts exhibited statistically significant (p < 0.05) bacteriostatic effects, with green pods and leaves showing the highest activity. Ripe pods demonstrated the most potent α-amylase inhibition (up to 96.43%), especially when extracted with water–ethanol mixture (90:10, v/v). Liquid chromatography coupled with tandem quadrupole/time-of-flight mass spectrometry (LC-QToF-MS) analysis revealed a rich phenolic profile across all samples. While carob leaves showed no α-amylase inhibition, their phenolic profile suggests other potential health-related bioactivities. These findings support the development of carob-based functional food products and highlight the nutritional and pharmaceutical potential of this resilient Mediterranean crop. Full article
Show Figures

Figure 1

17 pages, 4515 KB  
Article
Recent Technological Upgrades to the SHYPROM IoT-Based System for Monitoring Soil Water Status
by Alessandro Comegna, Shawkat Basel Mostafa Hassan and Antonio Coppola
Sensors 2025, 25(16), 4934; https://doi.org/10.3390/s25164934 - 9 Aug 2025
Viewed by 355
Abstract
Effective water resource management plays a crucial role in achieving sustainability in agriculture, hydrology, and environmental protection, particularly under growing water scarcity and climate-related challenges. Soil moisture (θ), matric potential (h), and hydraulic conductivity (K) are critical parameters influencing [...] Read more.
Effective water resource management plays a crucial role in achieving sustainability in agriculture, hydrology, and environmental protection, particularly under growing water scarcity and climate-related challenges. Soil moisture (θ), matric potential (h), and hydraulic conductivity (K) are critical parameters influencing water availability for crops and regulating hydrological, environmental, and ecological processes. To address the need for accurate, real-time soil monitoring in both laboratory and open-field conditions, we proposed an innovative IoT-based monitoring system called SHYPROM (Soil HYdraulic PROperties Meter), designed for the simultaneous estimation of parameters θ, h, and K at different soil depths. The system integrates capacitive soil moisture and matric potential sensors with wireless communication modules and a cloud-based data processing platform, providing continuous, high-resolution measurements. SHYPROM is intended for use in both environmental and agricultural contexts, where it can support precision irrigation management, optimize water resource allocation, and contribute to hydrological and environmental monitoring. This study presents recent technological upgrades to the proposed monitoring system. To improve the accuracy and robustness of θ estimates, the capacitive module was enhanced with an integrated oscillator circuit operating at 60 MHz, an upgrade from the previous version, which operated at 600 kHz. The new system was tested (i.e., calibrated and validated) through a series of laboratory experiments on soils with varying textures, demonstrating its improved ability to capture dynamic soil moisture changes with greater accuracy compared to the earlier SHYPROM version. During calibration and validation tests, soil water content data were collected across a θ range from 0 to 0.40 cm3/cm3. These measurements were compared to reference θ values obtained using the thermo-gravimetric method. The results show that the proposed monitoring system can be used to obtain predictions of θ values with acceptable accuracy (R2 values range between 0.91 and 0.96). To further validate the performance of the upgraded SHYPROM system, evaporation experiments were also conducted, and the θ(h) and K(θ) relationships were determined among soils. Retention and conductivity data were fitted using the van Genuchten and van Genuchten–Mualem models, respectively, confirming that the device accurately captures the temporal evolution of soil water status (R2 values range from 0.97 to 0.99). Full article
Show Figures

Graphical abstract

23 pages, 2767 KB  
Article
Sustainable Cotton Production in Sicily: Yield Optimization Through Varietal Selection, Mycorrhizae, and Efficient Water Management
by Giuseppe Salvatore Vitale, Nicolò Iacuzzi, Noemi Tortorici, Giuseppe Indovino, Loris Franco, Carmelo Mosca, Antonio Giovino, Aurelio Scavo, Sara Lombardo, Teresa Tuttolomondo and Paolo Guarnaccia
Agronomy 2025, 15(8), 1892; https://doi.org/10.3390/agronomy15081892 - 6 Aug 2025
Viewed by 531
Abstract
This study explores the revival of cotton (Gossypium spp. L.) farming in Italy through sustainable practices, addressing economic and water-related challenges by integrating cultivar selection, arbuscular mycorrhizal fungi (AMF) inoculation, and deficit irrigation under organic farming. Field trials evaluated two widely grown [...] Read more.
This study explores the revival of cotton (Gossypium spp. L.) farming in Italy through sustainable practices, addressing economic and water-related challenges by integrating cultivar selection, arbuscular mycorrhizal fungi (AMF) inoculation, and deficit irrigation under organic farming. Field trials evaluated two widely grown Mediterranean cultivars (Armonia and ST-318) under three irrigation levels (I-100: 100% crop water requirement; I-70: 70%; I-30: 30%) across two Sicilian soil types (sandy loam vs. clay-rich). Under I-100, lint yields reached 0.99 t ha−1, while severe deficit (I-30) yielded only 0.40 t ha−1. However, moderate deficit (I-70) maintained 75–79% of full yields, proving a viable strategy. AMF inoculation significantly enhanced plant height (68.52 cm vs. 65.85 cm), boll number (+22.1%), and seed yield (+12.5%) (p < 0.001). Cultivar responses differed: Armonia performed better under water stress, while ST-318 thrived with full irrigation. Site 1, with higher organic matter, required 31–38% less water and achieved superior irrigation water productivity (1.43 kg m−3). Water stress also shortened phenological stages, allowing earlier harvests—important for avoiding autumn rains. These results highlight the potential of combining adaptive irrigation, resilient cultivars, and AMF to restore sustainable cotton production in the Mediterranean, emphasizing the importance of soil-specific management. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Graphical abstract

17 pages, 2376 KB  
Article
Selection and Characterisation of Elite Mesorhizobium spp. Strains That Mitigate the Impact of Drought Stress on Chickpea
by María Camacho, Francesca Vaccaro, Pilar Brun, Francisco Javier Ollero, Francisco Pérez-Montaño, Miriam Negussu, Federico Martinelli, Alessio Mengoni, Dulce Nombre Rodriguez-Navarro and Camilla Fagorzi
Agriculture 2025, 15(15), 1694; https://doi.org/10.3390/agriculture15151694 - 5 Aug 2025
Viewed by 375
Abstract
The chickpea (Cicer arietinum L.) is a key legume crop in Mediterranean agriculture, valued for its nutritional profile and adaptability. However, its productivity is severely impacted by drought stress. To identify microbial solutions that enhance drought resilience, we isolated seven Mesorhizobium strains [...] Read more.
The chickpea (Cicer arietinum L.) is a key legume crop in Mediterranean agriculture, valued for its nutritional profile and adaptability. However, its productivity is severely impacted by drought stress. To identify microbial solutions that enhance drought resilience, we isolated seven Mesorhizobium strains from chickpea nodules collected in southern Spain and evaluated their cultivar-specific symbiotic performance. Two commercial cultivars (Pedrosillano and Blanco Lechoso) and twenty chickpea germplasms were tested under growth chamber and greenhouse conditions, both with and without drought stress. Initial screening in a sterile substrate using nodulation assays, shoot/root dry weight measurements, and acetylene reduction assays identified three elite strains (ISC11, ISC15, and ISC25) with superior symbiotic performance and nitrogenase activity. Greenhouse trials under reduced irrigation demonstrated that several strain–cultivar combinations significantly mitigated drought effects on plant biomass, with specific interactions (e.g., ISC25 with RR-98 or BT6-19) preserving over 70% of shoot biomass relative to controls. Whole-genome sequencing of the elite strains revealed diverse taxonomic affiliations—ISC11 as Mesorhizobium ciceri, ISC15 as Mesorhizobium mediterraneum, and ISC25 likely representing a novel species. Genome mining identified plant growth-promoting traits including ACC deaminase genes (in ISC11 and ISC25) and genes coding for auxin biosynthesis-related enzymes. Our findings highlight the potential of targeted rhizobial inoculants tailored to chickpea cultivars to improve crop performance under water-limiting conditions. Full article
(This article belongs to the Special Issue Beneficial Microbes for Sustainable Crop Production)
Show Figures

Figure 1

19 pages, 1940 KB  
Article
Linkages Between Sorghum bicolor Root System Architectural Traits and Grain Yield Performance Under Combined Drought and Heat Stress Conditions
by Alec Magaisa, Elizabeth Ngadze, Tshifhiwa P. Mamphogoro, Martin P. Moyo and Casper N. Kamutando
Agronomy 2025, 15(8), 1815; https://doi.org/10.3390/agronomy15081815 - 26 Jul 2025
Viewed by 486
Abstract
Breeding programs often overlook the use of root traits. Therefore, we investigated the relevance of sorghum root traits in explaining its adaptation to combined drought and heat stress (CDHS). Six (i.e., three pre-release lines + three checks) sorghum genotypes were established at two [...] Read more.
Breeding programs often overlook the use of root traits. Therefore, we investigated the relevance of sorghum root traits in explaining its adaptation to combined drought and heat stress (CDHS). Six (i.e., three pre-release lines + three checks) sorghum genotypes were established at two low-altitude (i.e., <600 masl) locations with a long-term history of averagely very high temperatures in the beginning of the summer season, under two management (i.e., CDHS and well-watered (WW)) regimes. At each location, the genotypes were laid out in the field using a randomized complete block design (RCBD) replicated two times. Root trait data, namely root diameter (RD), number of roots (NR), number of root tips (NRT), total root length (TRL), root depth (RDP), root width (RW), width–depth ratio (WDR), root network area (RNA), root solidity (RS), lower root area (LRA), root perimeter (RP), root volume (RV), surface area (SA), root holes (RH) and root angle (RA) were gathered using the RhizoVision Explorer software during the pre- and post-flowering stage of growth. RSA traits differentially showed significant (p < 0.05) correlations with grain yield (GY) at pre- and post-flowering growth stages and under CDHS and WW conditions also revealing genotypic variation estimates exceeding 50% for all the traits. Regression models varied between pre-flowering (p = 0.013, R2 = 47.15%, R2 Predicted = 29.32%) and post-flowering (p = 0.000, R2 = 85.64%, R2 Predicted = 73.30%) growth stages, indicating post-flowering as the optimal stage to relate root traits to yield performance. RD contributed most to the regression model at post-flowering, explaining 51.79% of the 85.64% total variation. The Smith–Hazel index identified ICSV111IN and ASAREACA12-3-1 as superior pre-release lines, suitable for commercialization as new varieties. The study demonstrated that root traits (in particular, RD, RW, and RP) are linked to crop performance under CDHS conditions and should be incorporated in breeding programs. This approach may accelerate genetic gains not only in sorghum breeding programs, but for other crops, while offering a nature-based breeding strategy for stress adaptation in crops. Full article
Show Figures

Figure 1

23 pages, 2406 KB  
Review
Current Research on Quantifying Cotton Yield Responses to Waterlogging Stress: Indicators and Yield Vulnerability
by Long Qian, Yunying Luo and Kai Duan
Plants 2025, 14(15), 2293; https://doi.org/10.3390/plants14152293 - 25 Jul 2025
Viewed by 402
Abstract
Cotton (Gossypium spp.) is an important industrial crop, but it is vulnerable to waterlogging stress. The relationship between cotton yields and waterlogging indicators (CY-WI) is fundamental for waterlogging disaster reduction. This review systematically summarized and analyzed literature containing CY-WI relations across 1970s–2020s. [...] Read more.
Cotton (Gossypium spp.) is an important industrial crop, but it is vulnerable to waterlogging stress. The relationship between cotton yields and waterlogging indicators (CY-WI) is fundamental for waterlogging disaster reduction. This review systematically summarized and analyzed literature containing CY-WI relations across 1970s–2020s. China conducted the most CY-WI experiments (67%), followed by Australia (17%). Recent decades (2010s, 2000s) contributed the highest proportion of CY-WI works (49%, 15%). Surface waterlogging form is mostly employed (74%) much more than sub-surface waterlogging. The flowering and boll-forming stage, followed by the budding stage, performed the most CY-WI experiments (55%), and they showed stronger negative relations of CY-WI than other stages. Some compound stresses enhance negative relations of CY-WI, such as accompanying high temperatures, low temperatures, and shade conditions, whereas some others weaken the negative CY-WI relations, such as prior/post drought and waterlogging. Anti-waterlogging applications significantly weaken negative CY-WI relations. Regional-scale CY-WI research is increasing now, and they verified the influence of compound stresses. In future CI-WI works, we should emphasize the influence of compound stresses, establish regional CY-WI relations regarding cotton growth features, examine more updated cotton cultivars, focus on initial and late cotton stages, and explore the consequence of high-deep submergence. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

19 pages, 4928 KB  
Article
Microbial and Metabolomic Insights into Lactic Acid Bacteria Co-Inoculation for Dough-Stage Triticale Fermentation
by Yujie Niu, Xiaoling Ma, Chuying Wang, Peng Zhang, Qicheng Lu, Rui Long, Yanyan Wu and Wenju Zhang
Microorganisms 2025, 13(8), 1723; https://doi.org/10.3390/microorganisms13081723 - 23 Jul 2025
Viewed by 380
Abstract
Triticale (Triticosecale Wittmack) is a versatile forage crop valued for its high yield, balanced nutrition, and environmental adaptability. However, the dough-stage triricale has higher dry matter and starch content but lower water-soluble carbohydrate levels than earlier stages, posing fermentation challenges that [...] Read more.
Triticale (Triticosecale Wittmack) is a versatile forage crop valued for its high yield, balanced nutrition, and environmental adaptability. However, the dough-stage triricale has higher dry matter and starch content but lower water-soluble carbohydrate levels than earlier stages, posing fermentation challenges that may impair silage quality. This study aimed to investigate the effects of lactic acid bacteria inoculation on the fermentation quality, bacterial community, and metabolome of whole-plant triticale silage at the dough stage. Fresh triticale was ensiled for 30 days without or with an inoculant containing Lactiplantibacillus plantarum and Streptococcus bovis. Fermentation quality, bacterial succession, and metabolic profiles were analyzed at multiple time points. Inoculation significantly improved fermentation quality, characterized by a rapid pH drop, increased lactic acid production, and better preservation of fiber components. Microbial analysis revealed that inoculation successfully established Lactobacillus as the dominant genus while suppressing spoilage bacteria like Enterobacter and Clostridium. Metabolomic analysis on day 30 identified numerous differential metabolites, indicating that inoculation primarily altered pathways related to amino acid and purine metabolism. In conclusion, inoculating dough-stage triticale with this LAB combination effectively directs the fermentation trajectory. It enhances silage quality not only by optimizing organic acid profiles and microbial succession but also by modulating key metabolic pathways, ultimately leading to improved nutrient preservation. Full article
(This article belongs to the Special Issue Beneficial Microorganisms and Antimicrobials: 2nd Edition)
Show Figures

Figure 1

18 pages, 1169 KB  
Article
Multi-Dimensional Analysis of Quality-Related Traits Affecting the Taste of Main Cultivated Japonica Rice Varieties in Northern China
by Hongwei Yang, Liying Zhang, Xiangquan Gao, Shi Han, Zuobin Ma and Lili Wang
Agronomy 2025, 15(8), 1757; https://doi.org/10.3390/agronomy15081757 - 22 Jul 2025
Viewed by 500
Abstract
The quality of rice, one of the most important food crops in the world, is directly related to people’s dietary experience and nutritional health. With the improvement in living standards, consumer requirements for the taste quality of rice are becoming increasingly strict. Japonica [...] Read more.
The quality of rice, one of the most important food crops in the world, is directly related to people’s dietary experience and nutritional health. With the improvement in living standards, consumer requirements for the taste quality of rice are becoming increasingly strict. Japonica rice occupies an important position in rice production due to its rich genetic diversity and excellent agronomic characteristics. In this study, LJ433, JY653, LJ218, LJ177, LY66, and LX21, which are mainly popularized in northern China and have different taste values, were selected as the experimental subjects, and YJ219, which won the gold award in the third China high-quality rice variety taste quality evaluation, was taken as the control (CK). Low-field nuclear magnetic resonance and spectral analysis were adopted as the main detection techniques. The effects of free water (peak area increased by 13.24–86.68% when p < 0.05), bound water, appearance characteristics (such as chalkiness, which decreased by 18.48–86.48%), and chemical composition (amylose content decreased by 3.76–26.47%) on the taste value of rice were systematically analyzed, and a multi-dimensional “appearance–palatability–nutrition” evaluation system was constructed. The experimental results indicated that increasing the free water content, reducing the chalkiness and chemical component content could significantly improve the taste value of rice (p < 0.05). The results of this research provide a theoretical basis for breeding new high-yield and high-quality rice varieties and have guiding significance for the practice of rice planting and processing. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

Back to TopTop