Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = cross-complexation and catalytic cross-reactivity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3665 KB  
Article
Harnessing Nitrous Oxide for Sustainable Methane Activation: A Computational Exploration of CNC-Ligated Iron Catalysts
by Bruce M. Prince
Methane 2025, 4(1), 6; https://doi.org/10.3390/methane4010006 - 5 Mar 2025
Viewed by 1014
Abstract
This study employs DFT at the APFD/def2-TZVP level, with SMD solvation in THF, to investigate the catalytic activation of methane by [(κ3-CNC)Fe(N₂O)]2+ cation complexes. The catalytic mechanism encompasses three key steps: oxygen atom transfer (OAT), hydrogen atom abstraction (HAA), and [...] Read more.
This study employs DFT at the APFD/def2-TZVP level, with SMD solvation in THF, to investigate the catalytic activation of methane by [(κ3-CNC)Fe(N₂O)]2+ cation complexes. The catalytic mechanism encompasses three key steps: oxygen atom transfer (OAT), hydrogen atom abstraction (HAA), and oxygen radical rebound (ORR). The computational results identify OAT as the rate-determining step, with activation barriers of −10.2 kcal/mol and 5.0 kcal/mol for κ1-O- and κ1-N-bound intermediates in the gas and solvent phases, respectively. Methane activation proceeds via HAA, with energy barriers of 16.0–25.2 kcal/mol depending on the spin state and solvation, followed by ORR, which occurs efficiently with barriers as low as 6.4 kcal/mol. The triplet (S = 1) and quintet (S = 2) spin states exhibit critical roles in the catalytic pathway, with intersystem crossing facilitating optimal reactivity. Spin density analysis highlights the oxyl radical character of the FeIV=O intermediate as being essential for activating methane’s strong C–H bond. These findings underscore the catalytic potential of CNC-ligated iron complexes for methane functionalization and demonstrate their dual environmental benefits by utilizing methane and reducing nitrous oxide, a potent greenhouse gas. Full article
Show Figures

Figure 1

14 pages, 3672 KB  
Article
Synthesis and Characterization of Symmetrical N-Heterocyclic Carbene Copper(II) Complexes—An Investigation of the Influence of Pyridinyl Substituents
by Bhupendra Adhikari, Selvam Raju, Raymond Femi Awoyemi, Bruno Donnadieu, David O. Wipf, Sean L. Stokes and Joseph P. Emerson
Molecules 2024, 29(15), 3542; https://doi.org/10.3390/molecules29153542 - 27 Jul 2024
Cited by 2 | Viewed by 1961
Abstract
Three new tridentate copper(II) N-heterocyclic carbene (NHC) complexes have been obtained and characterized with symmetrical C-4 substitutions on their pendent pyridine rings. Substitutions including methyl (Me), methoxy (OMe), and chloro (Cl) groups, which extend the library pincer Cu-NHC complexes under investigation, modify [...] Read more.
Three new tridentate copper(II) N-heterocyclic carbene (NHC) complexes have been obtained and characterized with symmetrical C-4 substitutions on their pendent pyridine rings. Substitutions including methyl (Me), methoxy (OMe), and chloro (Cl) groups, which extend the library pincer Cu-NHC complexes under investigation, modify the impact of pyridinyl basicity on NCN pincer complexes. Both ligand precursors and copper(II) complexes are characterized using a range of techniques, including nuclear magnetic resonance (NMR) spectroscopy for 1H, 13C, 31P, and 19F nuclei, electrospray ionization mass spectrometry (ESI-MS), X-ray crystallography, cyclic voltammetry, and UV-Vis spectroscopy. The pyridine substitutions lead to minimal changes to bond lengths and angles in the X-ray crystal structures of these related complexes; there is a pronounced impact on the electrochemical behavior of both the ligand precursors and copper complexes in the solution. The substitution in the pyridinyl units of these complexes show an impact on the catalytic reactivity of these complexes as applied to a model C–N bond-forming reaction (CEL cross-coupling) under well-established conditions; however, this observation does not correlate to the expected change in basicity in these ligands. Full article
(This article belongs to the Special Issue Exclusive Feature Papers on Molecular Structure)
Show Figures

Graphical abstract

11 pages, 1445 KB  
Article
Hydrogenation of Styrene-Butadiene Rubber Catalyzed by Tris(triisopropylphosphine)hydridorhodium(I)
by Minghui Liu, Wenxin Li, Chengzhuo Zheng, Fei Yuan, Hui Wang, Chengdong Wang, Qinmin Pan and Garry L. Rempel
Catalysts 2024, 14(2), 143; https://doi.org/10.3390/catal14020143 - 13 Feb 2024
Viewed by 3008
Abstract
The hydrogenation of C=C bonds in styrene−butadiene rubber (SBR), catalyzed by RhH(P(i-Pr)3)3, was experimentally investigated. Tris(triisopropylphosphine)hydridorhodium(I), RhH(P(i-Pr)3)3 (i-Pr=CH(CH3)2) was prepared by using rhodium chloride (RhCl3), tetrahydrofuran (THF), triisopropylphosphine (P(i-Pr)3 [...] Read more.
The hydrogenation of C=C bonds in styrene−butadiene rubber (SBR), catalyzed by RhH(P(i-Pr)3)3, was experimentally investigated. Tris(triisopropylphosphine)hydridorhodium(I), RhH(P(i-Pr)3)3 (i-Pr=CH(CH3)2) was prepared by using rhodium chloride (RhCl3), tetrahydrofuran (THF), triisopropylphosphine (P(i-Pr)3) and a sodium mercury amalgam. The effect of catalyst/polymer ratio, reaction temperature, and hydrogen pressure on the reactivity of the catalytic system has been studied. The optimal experimental condition was obtained. The hydrogenated styrene-butadiene rubber (HSBR) was analyzed by FT-IR and 1H-NMR. In the absence of any additives, the conversion of C=C bonds in SBR could easily reach 95% in a short period of time, and no obvious cross-linking was observed. The dynamic properties of SBR did not change after the hydrogenation of the unsaturated C=C bonds. A preliminary reaction mechanism was also proposed. This study provides a new route, not only for the chemical modification of SBR by using a rhodium complex but also for the hydrogenation of other unsaturated polymers, such as diene-based rubbers. Full article
(This article belongs to the Section Catalysis in Organic and Polymer Chemistry)
Show Figures

Graphical abstract

28 pages, 16516 KB  
Review
Transition Metal Complexes with Amino Acids, Peptides and Carbohydrates in Catalytic Asymmetric Synthesis: A Short Review
by Yuliya Titova
Processes 2024, 12(1), 214; https://doi.org/10.3390/pr12010214 - 18 Jan 2024
Cited by 11 | Viewed by 5573
Abstract
The present review is devoted to the application of transition metal complexes with such ligands as amino acids, peptides and carbohydrates in catalysis. The literature published over the past 20 years is surveyed. Among the distinctive features of these ligands are their versatility, [...] Read more.
The present review is devoted to the application of transition metal complexes with such ligands as amino acids, peptides and carbohydrates in catalysis. The literature published over the past 20 years is surveyed. Among the distinctive features of these ligands are their versatility, optical activity, stability and availability. Furthermore, depending on the specific synthetic task to be solved, these ligands open up almost infinite opportunity for modification. Largely thanks to their multifaceted reactivity, transition metal complexes with amino acids, peptides and carbohydrates can catalyze most of the known chemical reactions affording optically pure compounds. In this review, the emphasis is placed upon C(sp3)–H activation, cross-coupling and hydrogenation (including traditional hydrogenation in the presence of hydrogen gas and hydrogenation with hydrogen transfer) reactions. The choice is not accidental, since these reactions on the one hand display the catalytic versatility of the above complexes, and on the other hand, they are widely employed in industry. Full article
Show Figures

Scheme 1

31 pages, 7526 KB  
Article
EAE of Mice: Enzymatic Cross Site-Specific Hydrolysis of H2A Histone by IgGs against H2A, H1, H2B, H3, and H4 Histones and Myelin Basic Protein
by Andrey E. Urusov, Kseniya S. Aulova, Pavel S. Dmitrenok, Valentina N. Buneva and Georgy A. Nevinsky
Int. J. Mol. Sci. 2023, 24(10), 8636; https://doi.org/10.3390/ijms24108636 - 12 May 2023
Cited by 1 | Viewed by 2085
Abstract
Histones play vital roles in chromatin function and gene transcription; however, they are very harmful in the intercellular space because they stimulate systemic inflammatory and toxic responses. Myelin basic protein (MBP) is the major protein of the axon myelin–proteolipid sheath. Antibodies–abzymes with various [...] Read more.
Histones play vital roles in chromatin function and gene transcription; however, they are very harmful in the intercellular space because they stimulate systemic inflammatory and toxic responses. Myelin basic protein (MBP) is the major protein of the axon myelin–proteolipid sheath. Antibodies–abzymes with various catalytic activities are specific features of some autoimmune diseases. IgGs against individual histones (H2A, H1, H2B, H3, and H4) and MBP were isolated from the blood of experimental-autoimmune-encephalomyelitis-prone C57BL/6 mice by several affinity chromatographies. These Abs–abzymes corresponded to various stages of EAE development: spontaneous EAE, MOG, and DNA–histones accelerated the onset, acute, and remission stages. IgGs-abzymes against MBP and five individual histones showed unusual polyreactivity in the complex formation and enzymatic cross-reactivity in the specific hydrolysis of the H2A histone. All the IgGs of 3-month-old mice (zero time) against MBP and individual histones demonstrated from 4 to 35 different H2A hydrolysis sites. The spontaneous development of EAE over 60 days led to a significant change in the type and number of H2A histone hydrolysis sites by IgGs against five histones and MBP. Mice treatment with MOG and the DNA–histone complex changed the type and number of H2A hydrolysis sites compared to zero time. The minimum number (4) of different H2A hydrolysis sites was found for IgGs against H2A (zero time), while the maximum (35) for anti-H2B IgGs (60 days after mice treatment with DNA–histone complex). Overall, it was first demonstrated that at different stages of EAE evolution, IgGs–abzymes against individual histones and MBP could significantly differ in the number and type of specific sites of H2A hydrolysis. The possible reasons for the catalytic cross-reactivity and great differences in the number and type of histone H2A cleavage sites were analyzed. Full article
(This article belongs to the Collection Feature Paper Collection in Biochemistry)
Show Figures

Figure 1

11 pages, 2212 KB  
Article
Catalysis of a Bis-Caffeine Palladium(II) NHC-Pincer Complex
by Oliver Bysewski, Andreas Winter and Ulrich S. Schubert
Inorganics 2023, 11(4), 164; https://doi.org/10.3390/inorganics11040164 - 13 Apr 2023
Cited by 7 | Viewed by 2940
Abstract
A tridentate bis-NHC Pd complex, based on caffeine, was studied for its catalytic activity. This complex displayed a high catalytic activity in the Suzuki–Miyaura and Mizoroki–Heck cross-coupling reactions of aryl halides. The Sonogashira cross-coupling was also investigated but reveals a fast plateauing [...] Read more.
A tridentate bis-NHC Pd complex, based on caffeine, was studied for its catalytic activity. This complex displayed a high catalytic activity in the Suzuki–Miyaura and Mizoroki–Heck cross-coupling reactions of aryl halides. The Sonogashira cross-coupling was also investigated but reveals a fast plateauing of the reaction. Aryl iodides as well as aryl bromides react when equipped with either electron-donating or electron-withdrawing substituents. Aryl chlorides, which contained electron-withdrawing groups, were also reactive under the applied conditions. Full article
Show Figures

Graphical abstract

30 pages, 4510 KB  
Article
EAE of Mice: Enzymatic Cross Site-Specific Hydrolysis of H2B Histone by IgGs against H1, H2A, H2B, H3, and H4 Histones and Myelin Basic Protein
by Andrey E. Urusov, Kseniya S. Aulova, Pavel S. Dmitrenok, Valentina N. Buneva and Georgy A. Nevinsky
Molecules 2023, 28(7), 2973; https://doi.org/10.3390/molecules28072973 - 27 Mar 2023
Cited by 4 | Viewed by 2160
Abstract
Histones have vital roles in chromatin functioning and gene transcription. At the same time, they are pernicious in intercellular space because they stimulate systemic inflammatory and toxic responses. Myelin basic protein (MBP) is the major protein of the axon myelin–proteolipid sheath. Antibody-abzymes with [...] Read more.
Histones have vital roles in chromatin functioning and gene transcription. At the same time, they are pernicious in intercellular space because they stimulate systemic inflammatory and toxic responses. Myelin basic protein (MBP) is the major protein of the axon myelin–proteolipid sheath. Antibody-abzymes with various catalytic activities are specific features of some autoimmune diseases. IgGs against five individual histones (H2B, H1, H2A, H3, and H4) and MBP were isolated from the blood of experimental autoimmune encephalomyelitis-prone C57BL/6 mice by affinity chromatography. Abzymes corresponding to various stages of EAE development, including spontaneous EAE, myelin oligodendrocyte glycoprotein (MOG)- and DNA-histone complex-accelerated onset, as well as acute and remission stages, were analyzed. IgG-abzymes against MBP and five individual histones showed unusual polyreactivity in complex formation and enzymatic cross-reactivity in the specific hydrolysis of H2B histone. All IgGs against MBP and individual histones in 3-month-old mice (zero time) demonstrated from 4 to 11 different H2B hydrolysis sites. Spontaneous development of EAE during 60 days led to a significant change in the type and number of H2B hydrolysis sites by IgGs against the five histones and MBP. Mouse treatment with MOG and DNA-histone complex changed the type and number of H2B hydrolysis sites compared to zero time. The minimum number (3) of different H2B hydrolysis sites was found for IgGs against H3 20 days after mouse immunization with DNA-histone complex, whereas the maximum number (33) for anti-H2B IgGs was found 60 days after mouse treatment with DNA-histone complex. Overall, this is the first study to demonstrate that at different stages of EAE evolution, IgG-abzymes against five individual histones and MBP could significantly differ in the specific sites and number of H2B hydrolysis sites. Possible reasons for the catalytic cross-reactivity and significant differences in the number and type of histone H2B cleavage sites were analyzed. Full article
Show Figures

Figure 1

22 pages, 2332 KB  
Article
Experimental Autoimmune Encephalomyelitis of Mice: Enzymatic Cross Site-Specific Hydrolysis of H4 Histone by IgGs against Histones and Myelin Basic Protein
by Andrey E. Urusov, Kseniya S. Aulova, Pavel S. Dmitrenok, Valentina N. Buneva and Georgy A. Nevinsky
Int. J. Mol. Sci. 2022, 23(16), 9182; https://doi.org/10.3390/ijms23169182 - 16 Aug 2022
Cited by 6 | Viewed by 2274
Abstract
Histones play vital roles in chromatin functioning and gene transcription, but in intercellular space, they are harmful due to stimulating systemic inflammatory and toxic responses. Myelin basic protein (MBP) is the most important protein of the axon myelin–proteolipid sheath. Antibodies-abzymes with different catalytic [...] Read more.
Histones play vital roles in chromatin functioning and gene transcription, but in intercellular space, they are harmful due to stimulating systemic inflammatory and toxic responses. Myelin basic protein (MBP) is the most important protein of the axon myelin–proteolipid sheath. Antibodies-abzymes with different catalytic activities are critical and specific features of some autoimmune diseases. Five IgG preparations against histones (H4, H1, H2A, H2B, and H3) and against MBP corresponding to different spontaneous, MOG (myelin oligodendrocyte glycoprotein of mice), and DNA–histones that accelerated onset, acute, and remission stages of experimental autoimmune encephalomyelitis (EAE; model of human multiple sclerosis) development were obtained from EAE-prone C57BL/6 mice by several affinity chromatographies. IgG-abzymes against five histones and MBP possess unusual polyreactivity in complexation and catalytic cross-reactivity in the hydrolysis of histone H4. IgGs against five histones and MBP corresponding to 3 month-old mice (zero time) in comparison with Abs corresponding to spontaneous development of EAE during 60 days differ in type and number of H4 sites for hydrolysis. Immunization of mice with MOG and DNA–histones complex results in an acceleration of EAE development associated with an increase in the activity of antibodies in H4 hydrolysis. Twenty days after mouse immunization with MOG or DNA–histones complex, the IgGs hydrolyze H4 at other additional sites compared to zero time. The maximum number of different sites of H4 hydrolysis was revealed for IgGs against five histones and MBP at 60 days after immunization of mice with MOG and DNA–histones. Overall, it first showed that at different stages of EAE development, abzymes could significantly differ in specific sites of H4 hydrolysis. Full article
Show Figures

Figure 1

12 pages, 2858 KB  
Article
Effective Diagnosis of Foot-And-Mouth Disease Virus (FMDV) Serotypes O and A Based on Optical and Electrochemical Dual-Modal Detection
by Yun-Jung Hwang, Kyung-Kwan Lee, Jong-Won Kim, Kwang-Hyo Chung, Sang-Jick Kim, Wan-Soo Yun and Chang-Soo Lee
Biomolecules 2021, 11(6), 841; https://doi.org/10.3390/biom11060841 - 5 Jun 2021
Cited by 13 | Viewed by 5086
Abstract
Foot-and-mouth disease virus (FMDV) is a highly contagious disease that affects cloven-hoofed animals. The traditional diagnostic methods for FMDV have several drawbacks such as cross-reactivity, low sensitivity, and low selectivity. To overcome these drawbacks, we present an optical and electrochemical dual-modal approach for [...] Read more.
Foot-and-mouth disease virus (FMDV) is a highly contagious disease that affects cloven-hoofed animals. The traditional diagnostic methods for FMDV have several drawbacks such as cross-reactivity, low sensitivity, and low selectivity. To overcome these drawbacks, we present an optical and electrochemical dual-modal approach for the specific detection of FMDV serotypes O and A by utilizing a magnetic nanoparticle labeling technique with resorufin β-d-glucopyranoside (res-β-glc) and β-glucosidase (β-glc), without the use of typical lateral flow assay or polymerase chain reaction. FMDV serotypes O and A were reacted with pan-FMDV antibodies that recognize all seven FMDV serotypes (O, A, C, Asia 1, SAT 1, SAT 2, and SAT 3). The antigen–antibody complex was then immobilized on magnetic nanoparticles and reacted with β-glc-conjugated FMDV type O or type A antibodies. Subsequently, the addition of res-β-glc resulted in the release of fluorescent resorufin and glucose owing to catalytic hydrolysis by β-glc. The detection limit of fluorescent signals using a fluorescence spectrophotometer was estimated to be log(6.7) and log(5.9) copies/mL for FMDV type O and A, respectively, while that of electrochemical signals using a glucometer was estimated to be log(6.9) and log(6.1) copies/mL for FMDV type O and A, respectively. Compared with a commercially available lateral flow assay diagnostic kit for immunochromatographic detection of FMDV type O and A, this dual-modal detection platform offers approximately four-fold greater sensitivity. This highly sensitive and accurate dual-modal detection method can be used for effective disease diagnosis and treatment, and will find application in the early-stage diagnosis of viral diseases and next-generation diagnostic platforms. Full article
Show Figures

Figure 1

18 pages, 12311 KB  
Article
Development of Phosphodiesterase–Protein-Kinase Complexes as Novel Targets for Discovery of Inhibitors with Enhanced Specificity
by Nikhil K. Tulsian, Valerie Jia-En Sin, Hwee-Ling Koh and Ganesh S. Anand
Int. J. Mol. Sci. 2021, 22(10), 5242; https://doi.org/10.3390/ijms22105242 - 15 May 2021
Cited by 2 | Viewed by 3119
Abstract
Phosphodiesterases (PDEs) hydrolyze cyclic nucleotides to modulate multiple signaling events in cells. PDEs are recognized to actively associate with cyclic nucleotide receptors (protein kinases, PKs) in larger macromolecular assemblies referred to as signalosomes. Complexation of PDEs with PKs generates an expanded active site [...] Read more.
Phosphodiesterases (PDEs) hydrolyze cyclic nucleotides to modulate multiple signaling events in cells. PDEs are recognized to actively associate with cyclic nucleotide receptors (protein kinases, PKs) in larger macromolecular assemblies referred to as signalosomes. Complexation of PDEs with PKs generates an expanded active site that enhances PDE activity. This facilitates signalosome-associated PDEs to preferentially catalyze active hydrolysis of cyclic nucleotides bound to PKs and aid in signal termination. PDEs are important drug targets, and current strategies for inhibitor discovery are based entirely on targeting conserved PDE catalytic domains. This often results in inhibitors with cross-reactivity amongst closely related PDEs and attendant unwanted side effects. Here, our approach targeted PDE–PK complexes as they would occur in signalosomes, thereby offering greater specificity. Our developed fluorescence polarization assay was adapted to identify inhibitors that block cyclic nucleotide pockets in PDE–PK complexes in one mode and disrupt protein-protein interactions between PDEs and PKs in a second mode. We tested this approach with three different systems—cAMP-specific PDE8–PKAR, cGMP-specific PDE5–PKG, and dual-specificity RegA–RD complexes—and ranked inhibitors according to their inhibition potency. Targeting PDE–PK complexes offers biochemical tools for describing the exquisite specificity of cyclic nucleotide signaling networks in cells. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

17 pages, 5518 KB  
Article
Saccharomyces cerevisiae as a Toolkit for COP9 Signalosome Research
by Dana Harshuk-Shabso, Noam Castel, Ran Israeli, Sheri Harari and Elah Pick
Biomolecules 2021, 11(4), 497; https://doi.org/10.3390/biom11040497 - 25 Mar 2021
Cited by 1 | Viewed by 2704
Abstract
The COP9 signalosome (CSN) is a highly conserved eukaryotic multi-subunit enzyme, regulating cullin RING ligase activities and accordingly, substrate ubiquitination and degradation. We showed that the CSN complex of Saccharomyces cerevisiae that is deviated in subunit composition and in sequence homology harbors a [...] Read more.
The COP9 signalosome (CSN) is a highly conserved eukaryotic multi-subunit enzyme, regulating cullin RING ligase activities and accordingly, substrate ubiquitination and degradation. We showed that the CSN complex of Saccharomyces cerevisiae that is deviated in subunit composition and in sequence homology harbors a highly conserved cullin deneddylase enzymatic core complex. We took advantage of the non-essentiality of the S. cerevisiae CSN-NEDD8/Rub1 axis, together with the enzyme-substrate cross-species activity, to develop a sensitive fluorescence readout assay, suitable for biochemical assessment of cullin deneddylation by CSNs from various origins. We also demonstrated that the yeast catalytic subunit, CSN5/Jab1, is targeted by an inhibitor that was selected for the human orthologue. Treatment of yeast by the inhibitor led to the accumulation of neddylated cullins and the formation of reactive oxygen species. Overall, our data revealed S. cerevisiae as a general platform that can be used for studies of CSN deneddylation and for testing the efficacy of selected CSN inhibitors. Full article
(This article belongs to the Special Issue Ubiquitin-Like Modifiers and Their Diverse Impact on Cell Signaling)
Show Figures

Graphical abstract

22 pages, 3533 KB  
Article
HIV-Infected Patients: Cross Site-Specific Hydrolysis of H3 and H4 Histones and Myelin Basic Protein with Antibodies against These Three Proteins
by Svetlana V. Baranova, Pavel S. Dmitrenok, Valentina N. Buneva, Sergey E. Sedykh and Georgy A. Nevinsky
Molecules 2021, 26(2), 316; https://doi.org/10.3390/molecules26020316 - 9 Jan 2021
Cited by 9 | Viewed by 2248
Abstract
Histones play important roles in chromatin functioning and gene transcription, but in the intercellular space, they are harmful since they stimulate systemic inflammatory and toxic responses. Electrophoretically homogeneous IgGs against myelin basic protein (MBP), as well as H3 and H4 histones, were isolated [...] Read more.
Histones play important roles in chromatin functioning and gene transcription, but in the intercellular space, they are harmful since they stimulate systemic inflammatory and toxic responses. Electrophoretically homogeneous IgGs against myelin basic protein (MBP), as well as H3 and H4 histones, were isolated from sera of HIV-infected patients. In contrast to known classical proteases, these IgGs split exclusively only histones and MBP but no other control proteins. Among 13 sites of hydrolysis of H3 by IgGs against H3 and 14 sites for anti-MBP IgGs, only two sites of the hydrolysis were the same. Between seven cleavage sites of H4 with IgGs against H4 and 9 sites of this histone hydrolysis by antibodies against MBP, only three sites were the same. The sites of hydrolysis of H3 (and H4) with abzymes against these histones and against MBP were different, but several expended protein clusters containing hydrolysis sites are partially overlapped. The existence of enzymatic cross-reactivity of abzymes against H3 and H4 and MBP represents a great menace to humans since due to cell apoptosis, histones constantly occur in human blood. They can hydrolyze MBP of the myelin sheath of axons and play a negative role in the pathogenesis of HIV-infected patients. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Graphical abstract

19 pages, 10540 KB  
Article
HIV-Infected Patients: Cross Site-Specific Hydrolysis of H2a and H2b Histones and Myelin Basic Protein with Antibodies against These Three Proteins
by Svetlana V. Baranova, Pavel S. Dmitrienok, Valentina N. Buneva and Georgy A. Nevinsky
Biomolecules 2020, 10(11), 1501; https://doi.org/10.3390/biom10111501 - 30 Oct 2020
Cited by 10 | Viewed by 2265
Abstract
Anti-DNA antibodies are usually produced against histone-DNA complexes appearing during cell apoptosis, while histones are known as damage-associated molecules. A myelin sheath of axons contains myelin basic protein (MBP) playing an important role in the pathogenesis of autoimmune diseases. Antibodies with enzymatic activities [...] Read more.
Anti-DNA antibodies are usually produced against histone-DNA complexes appearing during cell apoptosis, while histones are known as damage-associated molecules. A myelin sheath of axons contains myelin basic protein (MBP) playing an important role in the pathogenesis of autoimmune diseases. Antibodies with enzymatic activities (abzymes) are distinctive features of some autoimmune and viral diseases. Abzymes against different proteins can usually only hydrolyze these specific proteins. Using sequential chromatographies of homogeneous IgG preparations from sera of HIV-infected patients on columns with immobilized MBP, H2a, and H2b histones, the anti-MBP, anti-H2a, and anti-H2b antibodies were obtained. It was first shown that IgGs against H2a and H2b effectively hydrolyze these histones and MBP, while anti-MBP split MBP, H2a, and H2b, but no other control proteins. Using the MALDI mass spectrometry, the cleavage sites of H2a, H2b, and MBP by abzymes against these three proteins were found. Among 14 sites of hydrolysis of H2a by IgGs against H2a and 10 sites by anti-MBP IgGs, only one site of hydrolysis was the same for these abzymes. Eleven cleavage sites of H2b with IgGs against H2b and 10 sites of its hydrolysis with antibodies against MBP were different. Anti-H2a, anti-H2b, and anti-MBP abzymes are unpredictable examples of IgGs possessing not only cross-complexation but also catalytic cross-reactivity, which may be a common phenomenon for such abzymes in patients with different autoimmune diseases. The existence of cross-reactivity of abzymes against H2a and H2b histones and MBP represent a great danger to humans since, in contrast with MBP, histones due to cell apoptosis constantly occur in human blood. Anti-H2a, anti-H2b, and anti-MBP can attack and hydrolyze myelin basic protein of the myelin sheath of axons and plays a negative role in the pathogenesis of several pathologies. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Graphical abstract

Back to TopTop