Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (169)

Search Parameters:
Keywords = cryogenic environment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2805 KiB  
Review
Recent Developments in Self-Lubricating Thin-Film Coatings Deposited by a Sputtering Technique: A Critical Review of Their Synthesis, Properties, and Applications
by Sunil Kumar Tiwari, Turali Narayana, Rashi Tyagi, Gaurav Pant and Piyush Chandra Verma
Lubricants 2025, 13(8), 372; https://doi.org/10.3390/lubricants13080372 - 21 Aug 2025
Viewed by 133
Abstract
In response to the demand for advanced materials in extreme environments, researchers have developed a variety of bulk and thin-film materials. One of the best-known processes for altering the mechanical and tribological properties of materials is surface engineering techniques. These involve various approaches [...] Read more.
In response to the demand for advanced materials in extreme environments, researchers have developed a variety of bulk and thin-film materials. One of the best-known processes for altering the mechanical and tribological properties of materials is surface engineering techniques. These involve various approaches to synthesize thin-film coatings, along with post-deposition treatments. The need for self-lubricating materials in extreme situations such as high-temperature applications, cryogenic temperatures, and vacuum systems has attracted the attention of researchers. They have fabricated several types of thin films using CVD and PVD techniques to meet this demand. Among the various techniques used for fabricating self-lubricating coatings, sputtering stands out as a special one. It contributes to developing smooth, homogeneous, and crack-free dense microstructures, which further enhance the coatings’ properties. This review explains the need for self-lubricating materials and the different techniques used to synthesize them. It discusses and summarizes the concept of synthesizing various types of self-lubricating films. It shows the different types of self-lubricating material systems, like transition metal-based nitrides and carbides, diamond-like carbon-based materials, and so on. This work also reflects the governing factors like the deposition temperature, doping elements, thickness of the film, deposition pressure, gas flow rate, etc., that influence the deposition results and, consequently, the properties of the film, as well as their advanced applications in different areas. This work reflects the self-lubricating properties of different kinds of films exposed to various environments in terms of their coefficient of friction and wear rate, emphasizing how the friction coefficient affects the wear rate. Full article
Show Figures

Figure 1

11 pages, 860 KiB  
Article
Optimization of Duck Semen Freezing Procedure and Regulation of Oxidative Stress
by Zhicheng Wang, Haotian Gu, Chunhong Zhu, Yifei Wang, Hongxiang Liu, Weitao Song, Zhiyun Tao, Wenjuan Xu, Shuangjie Zhang and Huifang Li
Animals 2025, 15(15), 2309; https://doi.org/10.3390/ani15152309 - 6 Aug 2025
Viewed by 255
Abstract
Waterfowl semen cryopreservation technology is a key link in genetic resource conservation and artificial breeding, but poultry spermatozoa, due to their unique morphology and biochemical properties, are prone to oxidative stress during freezing, resulting in a significant decrease in vitality. In this study, [...] Read more.
Waterfowl semen cryopreservation technology is a key link in genetic resource conservation and artificial breeding, but poultry spermatozoa, due to their unique morphology and biochemical properties, are prone to oxidative stress during freezing, resulting in a significant decrease in vitality. In this study, we first used four different freezing procedures (P1–P4) to freeze duck semen and compared their effects on duck sperm quality. Then, the changes in antioxidant indexes in semen were monitored. The results showed that program P4 (initial 7 °C/min slow descent to −35 °C, followed by 60 °C/min rapid descent to −140 °C) was significantly better than the other programs (p < 0.05), and its post-freezing sperm vitality reached 71.41%, and the sperm motility was 51.73%. In the P1 and P3 groups, the sperm vitality was 65.56% and 53.41%, and the sperm motility was 46.99% and 31.76%, respectively. In terms of antioxidant indexes, compared with the fresh semen group (CK), the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-px) in the P2 group were significantly decreased (p < 0.05), while the activities of SOD and CAT in the P4 group showed no significant changes (p > 0.05) except that the activity of GSH-px was significantly decreased (p < 0.05). And the CAT and GSH-px activities in the P4 group were significantly higher than those in the P2 group (p < 0.05). The content of malondialdehyde (MDA) in the P2 group was significantly higher than that in the fresh semen group (p < 0.05), and there was no significant difference between the P2 group and the P4 group (p > 0.05). The total antioxidant capacity (T-AOC) content of the P2 and P4 groups was significantly lower than that of the fresh semen group (p < 0.05). The staged cooling strategy of P4 was effective in reducing the exposure time to the hypertonic environment by balancing intracellular dehydration and ice crystal inhibition, shortening the reactive oxygen species accumulation and alleviating oxidative stress injury. On the contrary, the multi-stage slow-down strategy of P2 exacerbated mitochondrial dysfunction and the oxidative stress cascade response due to prolonged cryogenic exposure time. The present study confirmed that the freezing procedure directly affects duck sperm quality by modulating the oxidative stress pathway and provides a theoretical basis for the standardization of duck semen cryopreservation technology. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

13 pages, 1436 KiB  
Article
Basalt Fiber Mechanical Properties After Low-Temperature Treatment
by Sergey I. Gutnikov, Evgeniya S. Zhukovskaya, Sergey S. Popov and Bogdan I. Lazoryak
Textiles 2025, 5(3), 32; https://doi.org/10.3390/textiles5030032 - 5 Aug 2025
Viewed by 307
Abstract
This study investigates the production and characterization of basalt continuous fibers (BCFs) with varying oxide contents (including Na2O, SiO2, CaO, TiO2, and Al2O3), derived from modified basalt bulk glasses. The fibers were created [...] Read more.
This study investigates the production and characterization of basalt continuous fibers (BCFs) with varying oxide contents (including Na2O, SiO2, CaO, TiO2, and Al2O3), derived from modified basalt bulk glasses. The fibers were created through a two-stage process that included the preparation of basalt glasses followed by fiber drawing. A key focus of the research was on evaluating the mechanical properties of BCF after low-temperature treatments. Tensile testing revealed that the maximum tensile strength of the fibers was 1915 MPa at room temperature, which decreased to 1714 MPa at −196 °C, representing a shift of −10.5%. The addition of sodium oxide not only broadened the fiber-forming temperature range but also increased the strength to 2351 MPa. However, significant reductions in strength were observed at cryogenic temperatures, particularly for the Na-rich sample, which experienced a decrease of 32.8%. These findings highlight the importance of optimizing oxide content and minimizing hydroxyl (OH) groups to enhance the performance of basalt fibers in low-temperature applications, positioning them as viable materials for use in extreme environments. Full article
(This article belongs to the Special Issue Advances in Technical Textiles)
Show Figures

Figure 1

27 pages, 2361 KiB  
Review
Review of Thrust Regulation and System Control Methods of Variable-Thrust Liquid Rocket Engines in Space Drones
by Meng Sun, Xiangzhou Long, Bowen Xu, Haixia Ding, Xianyu Wu, Weiqi Yang, Wei Zhao and Shuangxi Liu
Actuators 2025, 14(8), 385; https://doi.org/10.3390/act14080385 - 4 Aug 2025
Viewed by 499
Abstract
Variable-thrust liquid rocket engines are essential for precision landing in deep-space exploration, reusable launch vehicle recovery, high-accuracy orbital maneuvers, and emergency obstacle evasions of space drones. However, with the increasingly complex space missions, challenges remain with the development of different technical schemes. In [...] Read more.
Variable-thrust liquid rocket engines are essential for precision landing in deep-space exploration, reusable launch vehicle recovery, high-accuracy orbital maneuvers, and emergency obstacle evasions of space drones. However, with the increasingly complex space missions, challenges remain with the development of different technical schemes. In view of these issues, this paper systematically reviews the technology’s evolution through mechanical throttling, electromechanical precision regulation, and commercial space-driven deep throttling. Then, the development of key variable thrust technologies for liquid rocket engines is summarized from the perspective of thrust regulation and control strategy. For instance, thrust regulation requires synergistic flow control devices and adjustable pintle injectors to dynamically match flow rates with injection pressure drops, ensuring combustion stability across wide thrust ranges—particularly under extreme conditions during space drones’ high-maneuver orbital adjustments—though pintle injector optimization for such scenarios remains challenging. System control must address strong multivariable coupling, response delays, and high-disturbance environments, as well as bottlenecks in sensor reliability and nonlinear modeling. Furthermore, prospects are made in response to the research progress, and breakthroughs are required in cryogenic wide-range flow regulation for liquid oxygen-methane propellants, combustion stability during deep throttling, and AI-based intelligent control to support space drones’ autonomous orbital transfer, rapid reusability, and on-demand trajectory correction in complex deep-space missions. Full article
(This article belongs to the Section Aerospace Actuators)
Show Figures

Figure 1

18 pages, 7997 KiB  
Article
Cryogenic Tensile Strength of 1.6 GPa in a Precipitation-Hardened (NiCoCr)99.25C0.75 Medium-Entropy Alloy Fabricated via Laser Powder Bed Fusion
by So-Yeon Park, Young-Kyun Kim, Hyoung Seop Kim and Kee-Ahn Lee
Materials 2025, 18(15), 3656; https://doi.org/10.3390/ma18153656 - 4 Aug 2025
Viewed by 420
Abstract
A (NiCoCr)99.25C0.75 medium entropy alloy (MEA) was developed via laser powder bed fusion (LPBF) using pre-alloyed powder feedstock containing 0.75 at%C, followed by a precipitation heat treatment. The as-built alloy exhibited high density (>99.9%), columnar grains, fine substructures, and strong [...] Read more.
A (NiCoCr)99.25C0.75 medium entropy alloy (MEA) was developed via laser powder bed fusion (LPBF) using pre-alloyed powder feedstock containing 0.75 at%C, followed by a precipitation heat treatment. The as-built alloy exhibited high density (>99.9%), columnar grains, fine substructures, and strong <111> texture. Heat treatment at 700 °C for 1 h promoted the precipitation of Cr-rich carbides (Cr23C6) along grain and substructure boundaries, which stabilized the microstructure through Zener pinning and the consumption of carbon from the matrix. The heat-treated alloy achieved excellent cryogenic tensile properties at 77 K, with a yield strength of 1230 MPa and an ultimate tensile strength of 1.6 GPa. Compared to previously reported LPBF-built NiCoCr-based MEAs, this alloy exhibited superior strength at both room and cryogenic temperatures, indicating its potential for structural applications in extreme environments. Deformation mechanisms at cryogenic temperature revealed abundant deformation twinning, stacking faults, and strong dislocation–precipitate interactions. These features contributed to dislocation locking, resulting in a work hardening rate higher than that observed at room temperature. This study demonstrates that carbon addition and heat treatment can effectively tune the stacking fault energy and stabilize substructures, leading to enhanced cryogenic mechanical performance of LPBF-built NiCoCr MEAs. Full article
(This article belongs to the Special Issue High-Entropy Alloys: Synthesis, Characterization, and Applications)
Show Figures

Graphical abstract

13 pages, 13107 KiB  
Article
Ceramic Isolated High-Torque Permanent Magnet Coupling for Deep-Sea Applications
by Liying Sun, Xiaohui Gao and Yongguang Liu
J. Mar. Sci. Eng. 2025, 13(8), 1474; https://doi.org/10.3390/jmse13081474 - 31 Jul 2025
Viewed by 277
Abstract
Permanent magnetic couplings provide critical advantages for deep-sea systems through static-sealed, contactless power transmission. However, conventional metallic isolation sleeves incur significant eddy current losses, limiting efficiency and high-speed operation. Limited torque capacities fail to meet the operational demands of harsh marine environments. This [...] Read more.
Permanent magnetic couplings provide critical advantages for deep-sea systems through static-sealed, contactless power transmission. However, conventional metallic isolation sleeves incur significant eddy current losses, limiting efficiency and high-speed operation. Limited torque capacities fail to meet the operational demands of harsh marine environments. This study presents a novel permanent magnet coupling featuring a ceramic isolation sleeve engineered for deep-sea cryogenic ammonia submersible pumps. The ceramic sleeve eliminates eddy current losses and provides exceptional corrosion resistance in acidic/alkaline environments. To withstand 3.5 MPa hydrostatic pressure, a 6-mm-thick sleeve necessitates a 10 mm operational air gap, challenging magnetic circuit efficiency. To address this limitation, an improved 3D magnetic equivalent circuit (MEC) model was developed that explicitly accounts for flux leakage and axial end-effects, enabling the accurate characterization of large air gap fields. Leveraging this model, a Taguchi method-based optimization framework was implemented by balancing key parameters to maximize the torque density. This co-design strategy achieved a 21% increase in torque density, enabling higher torque transfer per unit volume. Experimental validation demonstrated a maximum torque of 920 Nm, with stable performance under simulated deep-sea conditions. This design establishes a new paradigm for high-power leak-free transmission in corrosive, high-pressure marine environments, advancing applications from deep-sea propulsion to offshore energy systems. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

31 pages, 5261 KiB  
Review
Wear- and Corrosion-Resistant Coatings for Extreme Environments: Advances, Challenges, and Future Perspectives
by Subin Antony Jose, Zachary Lapierre, Tyler Williams, Colton Hope, Tryon Jardin, Roberto Rodriguez and Pradeep L. Menezes
Coatings 2025, 15(8), 878; https://doi.org/10.3390/coatings15080878 - 26 Jul 2025
Viewed by 1124
Abstract
Tribological processes in extreme environments pose serious material challenges, requiring coatings that resist both wear and corrosion. This review summarizes recent advances in protective coatings engineered for extreme environments such as high temperatures, chemically aggressive media, and high-pressure and abrasive domains, as well [...] Read more.
Tribological processes in extreme environments pose serious material challenges, requiring coatings that resist both wear and corrosion. This review summarizes recent advances in protective coatings engineered for extreme environments such as high temperatures, chemically aggressive media, and high-pressure and abrasive domains, as well as cryogenic and space applications. A comprehensive overview of promising coating materials is provided, including ceramic-based coatings, metallic and alloy coatings, and polymer and composite systems, as well as nanostructured and multilayered architectures. These materials are deployed using advanced coating technologies such as thermal spraying (plasma spray, high-velocity oxygen fuel (HVOF), and cold spray), chemical and physical vapor deposition (CVD and PVD), electrochemical methods (electrodeposition), additive manufacturing, and in situ coating approaches. Key degradation mechanisms such as adhesive and abrasive wear, oxidation, hot corrosion, stress corrosion cracking, and tribocorrosion are examined with coating performance. The review also explores application-specific needs in aerospace, marine, energy, biomedical, and mining sectors operating in aggressive physiological environments. Emerging trends in the field are highlighted, including self-healing and smart coatings, environmentally friendly coating technologies, functionally graded and nanostructured coatings, and the integration of machine learning in coating design and optimization. Finally, the review addresses broader considerations such as scalability, cost-effectiveness, long-term durability, maintenance requirements, and environmental regulations. This comprehensive analysis aims to synthesize current knowledge while identifying future directions for innovation in protective coatings for extreme environments. Full article
(This article belongs to the Special Issue Advanced Tribological Coatings: Fabrication and Application)
Show Figures

Figure 1

14 pages, 1682 KiB  
Article
Recording of Cardiac Excitation Using a Novel Magnetocardiography System with Magnetoresistive Sensors Outside a Magnetic Shielded Room
by Leo Yaga, Miki Amemiya, Yu Natsume, Tomohiko Shibuya and Tetsuo Sasano
Sensors 2025, 25(15), 4642; https://doi.org/10.3390/s25154642 - 26 Jul 2025
Viewed by 672
Abstract
Magnetocardiography (MCG) provides a non-invasive, contactless technique for evaluating the magnetic fields generated by cardiac electrical activity, offering unique spatial insights into cardiac electrophysiology. However, conventional MCG systems depend on superconducting quantum interference devices that require cryogenic cooling and magnetic shielded environments, posing [...] Read more.
Magnetocardiography (MCG) provides a non-invasive, contactless technique for evaluating the magnetic fields generated by cardiac electrical activity, offering unique spatial insights into cardiac electrophysiology. However, conventional MCG systems depend on superconducting quantum interference devices that require cryogenic cooling and magnetic shielded environments, posing considerable impediments to widespread clinical adoption. In this study, we present a novel MCG system utilizing a high-sensitivity, wide-dynamic-range magnetoresistive sensor array operating at room temperature. To mitigate environmental interference, identical sensors were deployed as reference channels, enabling adaptive noise cancellation (ANC) without the need for traditional magnetic shielding. MCG recordings were obtained from 40 healthy participants, with signals processed using ANC, R-peak-synchronized averaging, and Bayesian spatial signal separation. This approach enabled the reliable detection of key cardiac components, including P, QRS, and T waves, from the unshielded MCG recordings. Our findings underscore the feasibility of a cost-effective, portable MCG system suitable for clinical settings, presenting new opportunities for noninvasive cardiac diagnostics and monitoring. Full article
(This article belongs to the Special Issue Novel Optical Sensors for Biomedical Applications—2nd Edition)
Show Figures

Figure 1

11 pages, 1200 KiB  
Article
Identifying Clean and Contaminated Atomic-Sized Gold Contacts Under Ambient Conditions Using a Clustering Algorithm
by Guillem Pellicer and Carlos Sabater
Processes 2025, 13(7), 2061; https://doi.org/10.3390/pr13072061 - 29 Jun 2025
Viewed by 357
Abstract
Molecular electronics studies have advanced from early, simple single-molecule experiments at cryogenic temperatures to complex and multifunctional molecules under ambient conditions. However, room-temperature environments increase the risk of contamination, making it essential to identify and quantify clean and contaminated rupture traces (i.e., conductance [...] Read more.
Molecular electronics studies have advanced from early, simple single-molecule experiments at cryogenic temperatures to complex and multifunctional molecules under ambient conditions. However, room-temperature environments increase the risk of contamination, making it essential to identify and quantify clean and contaminated rupture traces (i.e., conductance versus relative electrode displacement) within large datasets. Given the high throughput of measurements, manual analysis becomes unfeasible. Clustering algorithms offer an effective solution by enabling the automatic classification and quantification of contamination levels. Despite the rapid development of machine learning, its application in molecular electronics remains limited. In this work, we present a methodology based on the DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm to extract representative traces from both clean and contaminated regimes, providing a scalable and objective tool to evaluate environmental contamination in molecular junction experiments. Full article
(This article belongs to the Special Issue Molecular Electronics and Nanoelectronics for Quantum Materials)
Show Figures

Figure 1

14 pages, 1812 KiB  
Article
Influence of Rigid Polyurethane Foam Production Technology on Cryogenic Water Uptake
by Vladimir Yakushin, Vanesa Dhalivala, Laima Vevere and Ugis Cabulis
Polymers 2025, 17(12), 1669; https://doi.org/10.3390/polym17121669 - 16 Jun 2025
Viewed by 623
Abstract
This study explores how production technology influences spray-applied rigid polyurethane (PUR) foam insulation’s cryogenic performance. In cryogenic applications such as liquid gas storage, insulation must minimise heat transfer and resist moisture ingress under severe thermal gradients. Experimental aluminium vessels were insulated with PUR [...] Read more.
This study explores how production technology influences spray-applied rigid polyurethane (PUR) foam insulation’s cryogenic performance. In cryogenic applications such as liquid gas storage, insulation must minimise heat transfer and resist moisture ingress under severe thermal gradients. Experimental aluminium vessels were insulated with PUR foam of varying thicknesses and surface conditions—rough, machined smooth, and with a urea-based protective coating—and then tested using dynamic boil-off of liquid nitrogen (LN2). Foam properties, including adhesion, mechanical strength, thermal expansion, thermal conductivity, and closed-cell content, were evaluated. The results revealed that thicker insulation reduced both effective thermal conductivity and moisture uptake. Although the urea-coated vessel showed minimal water absorption, the coating increased overall thermal conductivity due to its heat conduction and condensation behaviour. Moisture was primarily absorbed near the foam surface, and no cumulative effects were observed during repeated tests. The effective thermal conductivity was determined by interpolating boil-off data, confirming that insulation performance strongly depends on thickness, surface condition, and environmental humidity. These findings provide valuable guidance for the design and application of PUR foam insulation in cryogenic environments. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

9 pages, 9442 KiB  
Communication
Temperature-Insensitive Cryogenic Packaging for Thin-Film Lithium Niobate Photonic Chips
by Yongteng Wang, Yuxin Ma, Xiaojie Wang, Ziwei Zhao, Yongmin Li and Tianshu Yang
Photonics 2025, 12(6), 545; https://doi.org/10.3390/photonics12060545 - 28 May 2025
Viewed by 982
Abstract
As photonic integrated circuits (PICs) gain prominence in quantum communication and quantum computation, the development of efficient and stable cryogenic packaging technologies becomes paramount. This paper presents a robust and scalable cryogenic packaging method for thin-film lithium niobate (TFLN) photonic chips. The packaged [...] Read more.
As photonic integrated circuits (PICs) gain prominence in quantum communication and quantum computation, the development of efficient and stable cryogenic packaging technologies becomes paramount. This paper presents a robust and scalable cryogenic packaging method for thin-film lithium niobate (TFLN) photonic chips. The packaged fiber-to-chip interface shows a coupling efficiency of 15.7% ± 0.3%, with minimal variation of ±0.5% as the temperature cools down from 295 K to 1.5 K. Furthermore, the packaged chip exhibits outstanding stability over multiple thermal cycling, highlighting its potential for practical applications in cryogenic environments. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

14 pages, 2354 KiB  
Article
Design of a Superhydrophobic Photothermal Shape-Memory Material Based on Carbon-Nanotubes-Doped Resin for Anti-Icing/De-Icing Applications
by Yingcheng Zhao, Pei Tian, Xinlin Li, Di Gai and Wei Tong
Materials 2025, 18(11), 2540; https://doi.org/10.3390/ma18112540 - 28 May 2025
Cited by 1 | Viewed by 500
Abstract
Icing on power lines and wings can cause serious economic damage and safety hazards. While superhydrophobic materials show promise for anti-icing applications, their passive anti-icing mechanisms require external energy activation, highlighting the need for the development of active de-icing materials with energy-to-heat conversion [...] Read more.
Icing on power lines and wings can cause serious economic damage and safety hazards. While superhydrophobic materials show promise for anti-icing applications, their passive anti-icing mechanisms require external energy activation, highlighting the need for the development of active de-icing materials with energy-to-heat conversion capabilities. Here, we developed three photothermal superhydrophobic shape-memory polymers with anti-icing performance (PSSPs), with 3%, 5%, and 7% CNT doping ratios, through a two-step process: resin preparation and laser-processing modification. The results showed that all samples presented good superhydrophobic properties. In addition, the tested materials demonstrated good shape-memory performance (recovery rates were close to 100%). They also showed excellent de-icing performance. Owing to the simplicity of the fabrication process, the material is suitable for mass production. The synergistic interplay between superhydrophobicity and photothermal activation endows the material with dual-functional icephobic performance, demonstrating practical applicability in industrial cryogenic environments. Full article
Show Figures

Figure 1

13 pages, 8698 KiB  
Article
Octopus-Inspired Biomimetic Annular Sealing Grooves: Design and Performance Optimization Under Extreme Conditions
by Zhipeng Pan, Shijun Xu, Xiang Guan, Zhihong Wang, Zhenghai Qi, Xiangrui Ye, Jianyang Dong, Yongming Yao and Zhengzhi Mu
Biomimetics 2025, 10(5), 322; https://doi.org/10.3390/biomimetics10050322 - 16 May 2025
Viewed by 628
Abstract
This study introduces an innovative annular sealing groove design inspired by the hierarchical structure of octopus suckers, addressing the limitations of conventional seals under extreme conditions in aerospace engineering. Using finite element analysis, eight bionic configurations with varying groove parameters (width, depth, number) [...] Read more.
This study introduces an innovative annular sealing groove design inspired by the hierarchical structure of octopus suckers, addressing the limitations of conventional seals under extreme conditions in aerospace engineering. Using finite element analysis, eight bionic configurations with varying groove parameters (width, depth, number) were systematically evaluated under cryogenic (−196.25 °C) and high-pressure (2 MPa) scenarios. Results show that the optimized bionic6 configuration (seven grooves, 0.4 mm width, 0.4 mm depth) achieved a 21.71% improvement in average von Mises stress compared to the original design, demonstrating enhanced leakage resistance. Parameter interaction analysis revealed groove number as the most significant factor affecting performance, followed by width, while depth showed minimal influence. The hierarchical groove architecture effectively mimicked the multi-level sealing mechanism of octopus suckers, reducing leakage paths and improving adaptability to irregular surfaces. This work bridges biological inspiration and engineering application, providing a scalable solution for extreme environments. The identified optimal parameters lay a theoretical foundation for designing high-performance seals in aerospace, cryogenic storage, and advanced manufacturing. Full article
(This article belongs to the Section Biomimetics of Materials and Structures)
Show Figures

Figure 1

12 pages, 3932 KiB  
Article
Experimental Study on Shear Mechanical Properties of Pile–Soil Interface Under Freezing Conditions
by Tuo Chen, Qianqian Song, Jianzhou Wang and Zhijian Wu
Appl. Sci. 2025, 15(10), 5457; https://doi.org/10.3390/app15105457 - 13 May 2025
Viewed by 357
Abstract
In order to explore the rules for the variation in the adfreeze shear strength at the interface between frozen soil and a pile foundation, and their influencing factors, a measuring system was developed to estimate the freezing strength at the interface by utilizing [...] Read more.
In order to explore the rules for the variation in the adfreeze shear strength at the interface between frozen soil and a pile foundation, and their influencing factors, a measuring system was developed to estimate the freezing strength at the interface by utilizing a pile-pressing method under a cryogenic environment. Experimental results demonstrate that the maximum vertical pressure on the pile top increased significantly with the decrease in temperature under the same moisture content. The shear stress–shear displacement curves, at the bottom part of the interface, presented strain-softening characteristics, while the strain-hardening phenomenon was observed at the upper part of the interface. The strength parameters of the interface decreased with the increase in the pile depth. Moreover, the influence of temperature on the shear strength of the interface was more significant compared with that of the moisture content. The research results can provide references for the construction of pile foundations, structural design optimization, and for frozen damage prevention and treatment in permafrost regions. Full article
Show Figures

Figure 1

43 pages, 29509 KiB  
Article
Finite Element Modeling of Different Types of Hydrogen Pressure Vessels Under Extreme Conditions for Space Applications
by Reham Reda, Sabbah Ataya and Amir Ashraf
Processes 2025, 13(5), 1429; https://doi.org/10.3390/pr13051429 - 7 May 2025
Cited by 1 | Viewed by 942
Abstract
Fuel cells, propulsion systems, and reaction control systems (RCSs) are just a few of the space applications that depend on pressure vessels (PVs) to safely hold high-pressure fluids while enduring extreme environmental conditions both during launch and in orbit. Under these challenging circumstances, [...] Read more.
Fuel cells, propulsion systems, and reaction control systems (RCSs) are just a few of the space applications that depend on pressure vessels (PVs) to safely hold high-pressure fluids while enduring extreme environmental conditions both during launch and in orbit. Under these challenging circumstances, PVs must be lightweight while retaining structural integrity in order to increase the efficiency and lower the launch costs. PVs have significant challenges in space conditions, such as extreme vibrations during launch, the complete vacuum of space, and sudden temperature changes based on their location within the satellite and orbit types. Determining the operational temperature limits and endurance of PVs in space applications requires assessing the combined effects of these factors. As the main propellant for satellites and rockets, hydrogen has great promise for use in future space missions. This study aimed to assess the structural integrity and determine the thermal operating limits of different types of hydrogen pressure vessels using finite element analysis (FEA) with Ansys 2019 R3 Workbench. The impact of extreme space conditions on the performances of various kinds of hydrogen pressure vessels was analyzed numerically in this work. This study determined the safe operating temperature ranges for Type 4, Type 3, and Type 1 PVs at an operating hydrogen storage pressure of 35 MPa in an absolute vacuum. Additionally, the dynamic performance was assessed through modal and random vibration analyses. Various aspects of Ansys Workbench were explored, including the influence of the mesh element size, composite modeling methods, and their combined impact on the result accuracy. In terms of the survival temperature limits, the Type 4 PVs, which consisted of a Nylon 6 liner and a carbon fiber-reinforced epoxy (CFRE) prepreg composite shell, offered the optimal balance between the weight (56.2 kg) and a relatively narrow operating temperature range of 10–100 °C. The Type 3 PVs, which featured an Aluminum 6061-T6 liner, provided a broader operational temperature range of 0–145 °C but at a higher weight of 63.7 kg. Meanwhile, the Type 1 PVs demonstrated a superior cryogenic performance, with an operating range of −55–54 °C, though they were nearly twice as heavy as the Type 4 PVs, with a weight of 106 kg. The absolute vacuum environment had a negligible effect on the mechanical performance of all the PVs. Additionally, all the analyzed PV types maintained structural integrity and safety under launch-induced vibration loads. This study provided critical insights for selecting the most suitable pressure vessel type for space applications by considering operational temperature constraints and weight limitations, thereby ensuring an optimal mechanical–thermal performance and structural efficiency. Full article
Show Figures

Figure 1

Back to TopTop