Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (129)

Search Parameters:
Keywords = cryogenic fuel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 6640 KB  
Review
Hydrogen Storage Systems Supplying Combustion Hydrogen Engines—Review
by Jakub Lach, Kamil Wróbel, Wojciech Tokarz, Justyna Wróbel, Piotr Podsadni and Andrzej Czerwiński
Energies 2025, 18(23), 6093; https://doi.org/10.3390/en18236093 - 21 Nov 2025
Abstract
The hydrogen drive is a promising zero-emission solution in transportation that can be realised through hydrogen internal combustion engines or hydrogen fuel cells. The hydrogen combustion engine’s advantage lies in the simplicity and greater maturity of the technology. At the same time, these [...] Read more.
The hydrogen drive is a promising zero-emission solution in transportation that can be realised through hydrogen internal combustion engines or hydrogen fuel cells. The hydrogen combustion engine’s advantage lies in the simplicity and greater maturity of the technology. At the same time, these solutions require appropriate fuel storage systems. The publication presents an overview of the currently used and developed hydrogen storage technologies. The main focus is placed on hydrogen tanks intended for vehicles powered by hydrogen internal combustion engines. The manuscript describes physical storage, including popular pressurised and cryogenic tanks. Additionally, technologies which can lead to improvements in the future, such as metallic and non-metallic hydrides and sorbents, are presented. The characteristics of the storage technologies in connection with the combustion engines are shown, as well as the outlook for the future of these solutions and their recent uses in vehicles. When focusing on vehicular and combustion applications, their specifics make physical storage methods the leading technology for now. Hydrogen storage today is still not competitive with fossil fuels; however, there are promising developments than can lead to achieving the requirements needed for its viable storage and use. Full article
(This article belongs to the Special Issue Internal Combustion Engines: Research and Applications—3rd Edition)
Show Figures

Figure 1

23 pages, 1687 KB  
Article
A Conceptual Pre-Standardization Framework for the Land-Based Test and Evaluation of Liquid Hydrogen Fuel Tank and Supply Systems
by Hyojeong Kim and Wook Kwon
J. Mar. Sci. Eng. 2025, 13(11), 2203; https://doi.org/10.3390/jmse13112203 - 19 Nov 2025
Viewed by 108
Abstract
In response to the International Maritime Organization (IMO)’s greenhouse gas reduction targets and the growing demand for decarbonization in the maritime sector, the development of hydrogen-fueled ship technologies has gained increasing attention. Liquid hydrogen (LH2) is regarded as a promising marine [...] Read more.
In response to the International Maritime Organization (IMO)’s greenhouse gas reduction targets and the growing demand for decarbonization in the maritime sector, the development of hydrogen-fueled ship technologies has gained increasing attention. Liquid hydrogen (LH2) is regarded as a promising marine fuel due to its high energy density per unit volume when liquefied at −253 °C, enabling large-scale storage and transportation. However, critical technical challenges remain in cryogenic storage, transfer, vaporization processes, and safety assurance. This study proposes a conceptual pre-standardization framework for land-based evaluation of LH2 fuel tank and supply systems, supported by preliminary validation using LN2 surrogate tests. The protocol is established through a reinterpretation of existing international and domestic standards (KGS AC111, ISO/TR 15916, CGA H-3) and adapted to Korean demonstration environments. Test items were categorized into (i) supply performance (flow and pressure), (ii) vaporization and heating performance (temperature), and (iii) safety functions, with acceptance criteria benchmarked against international guidelines. To overcome the significant safety and cost constraints of handling actual LH2, liquid nitrogen (LN2) was applied as a surrogate medium to enable preliminary validation under safe and practical conditions, and process simulations are proposed as a future pathway for comprehensive verification. The results highlight not only the application but also the localization and refinement of global standards into a practical protocol for small- to medium-sized ship applications. This protocol is expected to serve as a critical reference for subsequent sea trials and commercialization, thereby contributing to the advancement of eco-friendly marine fuel technologies and strengthening international competitiveness in the hydrogen powered shipping sector. Full article
(This article belongs to the Special Issue Challenges of Marine Energy Development and Facilities Engineering)
Show Figures

Figure 1

23 pages, 2647 KB  
Review
Biogas Upgrading into Renewable Natural Gas: Part II—An Assessment of Emerging Technologies
by Blake Foret, José Ramón Laines Canepa, Gabriel Núñez-Nogueira, Stephen Dufreche, Rafael Hernandez, Daniel Gang, Wayne Sharp, Emmanuel Revellame, Dhan Lord B. Fortela, Sarah Simoneaux, Hayden Hulin, William E. Holmes and Mark E. Zappi
Energies 2025, 18(21), 5760; https://doi.org/10.3390/en18215760 - 31 Oct 2025
Viewed by 414
Abstract
Renewable natural gas is an innovative alternative fuel source that has the potential to integrate seamlessly into the current energy and fuel sector. In addition, growing concerns related to energy security and environmental impact are incentivizing the development of RNG technologies. In conjunction [...] Read more.
Renewable natural gas is an innovative alternative fuel source that has the potential to integrate seamlessly into the current energy and fuel sector. In addition, growing concerns related to energy security and environmental impact are incentivizing the development of RNG technologies. In conjunction with this document, current technologies related to biogas conditioning and biogas upgrading were covered in a separate analysis deemed Part I. With the current technologies, however, issues such as compositional quality, combustion efficiency, and high operational costs still need to be addressed before RNG can reach its true capability in use. Recent innovations have focused on optimizing techniques and introducing new methods to maximize methane yield and purity while minimizing costs and energy consumption. This document, Part II, provides an overview of emerging technologies related to further biogas upgrading, such as cryogenics, methane enrichment, and hybrid treatments, aimed at increasing cleaned biogas purity. Processes in development are also discussed, including industrial lung, supersonic separation, chemical hydrogenation, hydrate formation, and various biological treatments. The benefits of these advancements are increased purity for the ability to pipeline renewable natural gas in existing infrastructure, help industries reach sustainability goals, and contribute to a more resilient energy system. Together, Parts I and II offer a comprehensive understanding of both current and future technological developments. Full article
Show Figures

Figure 1

23 pages, 1650 KB  
Review
Development of Cryogenic Structural Steels for Magnetic Confinement Fusion
by Jingjing Dai and Chuanjun Huang
Cryo 2025, 1(4), 13; https://doi.org/10.3390/cryo1040013 - 30 Oct 2025
Viewed by 272
Abstract
With the growth in global energy demand and increasing concern over the environmental issues associated with fossil fuels, magnetic confinement fusion (MCF) has gained widespread attention as a clean and sustainable energy solution. The superconducting magnet systems in MCF devices operate under liquid [...] Read more.
With the growth in global energy demand and increasing concern over the environmental issues associated with fossil fuels, magnetic confinement fusion (MCF) has gained widespread attention as a clean and sustainable energy solution. The superconducting magnet systems in MCF devices operate under liquid helium temperature of 4.2 K and strong magnetic fields, requiring structural materials to possess exceptional high strength, high toughness, and non-magnetic properties. This paper reviews recent research advances in cryogenic high-strength and high-toughness austenitic stainless steels (ASSs) for MCF devices, focusing on modified grades like 316LN and JK2LB used in the International Thermonuclear Experimental Reactor (ITER) project, as well as China’s CHN01 steel developed for the China Fusion Engineering Test Reactor (CFETR) project. The mechanical properties at 4.2 K (including yield strength (Rp0.2), fracture toughness (K(J)Ic), and Elongation (e)), microstructural evolutions, weldability, and manufacturing challenges of these materials are systematically analyzed. Finally, the different technical approaches and achievements in material development among Japan, the United States, and China are compared, the current limitations of these materials in terms of weld integrity and manufacturability are discussed, and future research directions are outlined. Full article
Show Figures

Figure 1

30 pages, 3738 KB  
Review
Hydrogen Propulsion Technologies for Aviation: A Review of Fuel Cell and Direct Combustion Systems Towards Decarbonising Medium-Haul Aircraft
by Daisan Gopalasingam, Bassam Rakhshani and Cristina Rodriguez
Hydrogen 2025, 6(4), 92; https://doi.org/10.3390/hydrogen6040092 - 20 Oct 2025
Viewed by 2365
Abstract
Hydrogen propulsion technologies are emerging as a key enabler for decarbonizing the aviation sector, especially for regional commercial aircraft. The evolution of aircraft propulsion technologies in recent years raises the question of the feasibility of a hydrogen propulsion system for beyond regional aircraft. [...] Read more.
Hydrogen propulsion technologies are emerging as a key enabler for decarbonizing the aviation sector, especially for regional commercial aircraft. The evolution of aircraft propulsion technologies in recent years raises the question of the feasibility of a hydrogen propulsion system for beyond regional aircraft. This paper presents a comprehensive review of hydrogen propulsion technologies, highlighting key advancements in component-level performance metrics. It further explores the technological transitions necessary to enable hydrogen-powered aircraft beyond the regional category. The feasibility assessment is based on key performance parameters, including power density, efficiency, emissions, and integration challenges, aligned with the targets set for 2035 and 2050. The adoption of hydrogen-electric powertrains for the efficient transition from KW to MW powertrains depends on transitions in fuel cell type, thermal management systems (TMS), lightweight electric machines and power electronics, and integrated cryogenic cooling architectures. While hydrogen combustion can leverage existing gas turbine architectures with relatively fewer integration challenges, it presents its technical hurdles, especially related to combustion dynamics, NOx emissions, and contrail formation. Advanced combustor designs, such as micromix, staged, and lean premixed systems, are being explored to mitigate these challenges. Finally, the integration of waste heat recovery technologies in the hydrogen propulsion system is discussed, demonstrating the potential to improve specific fuel consumption by up to 13%. Full article
Show Figures

Figure 1

32 pages, 6625 KB  
Article
A Comparative Analysis of Hydrogen Fuel Cells and Internal Combustion Engines Used for Service Operation Vessels Propulsion
by Monika Bortnowska and Arkadiusz Zmuda
Energies 2025, 18(19), 5104; https://doi.org/10.3390/en18195104 - 25 Sep 2025
Viewed by 1201
Abstract
In response to the IMO’s decarbonisation strategy, hydrogen—especially green hydrogen—becomes a promising alternative fuel in shipping. This article provides a comparative analysis of two hydrogen propulsion technologies suitable for a service vessel (SOV) operating in offshore wind farms: hydrogen fuel cells and hydrogen-powered [...] Read more.
In response to the IMO’s decarbonisation strategy, hydrogen—especially green hydrogen—becomes a promising alternative fuel in shipping. This article provides a comparative analysis of two hydrogen propulsion technologies suitable for a service vessel (SOV) operating in offshore wind farms: hydrogen fuel cells and hydrogen-powered internal combustion engines. This study focuses on the use of liquid hydrogen (LH2) stored in cryogenic tanks and fuel cells as an alternative to the previously considered solution based on compressed hydrogen (CH2) stored in high-pressure cylinders (700 bar) and internal combustion engines. The research aims to examine the feasibility of a fully hydrogen-powered SOV energy system. The analyses showed that the use of liquefied hydrogen in SOVs leads to the threefold reduction in tank volume (1001 m3 LH2 vs. 3198 m3 CH2) and the weight of the storage system (243 t vs. 647 t). Despite this, neither of the technologies provides the expected 2-week autonomy of SOVs. LH2 storage allows for a maximum of 10 days of operation, which is still an improvement over the CH2 gas variant (3 days). The main reason for this is that hydrogen tanks can only be located on the open deck. Although hydrogen fuel cells take up on average 13.7% more space than internal combustion engines, they are lower (by an average of 24.3%) and weigh less (by an average of 50.6%), and their modular design facilitates optimal arrangement in the engine room. In addition, the elimination of the exhaust system and lubrication simplifies the engine room layout, reducing its weight and space requirements. Most importantly, however, the use of fuel cells eliminates exhaust gas emissions into the atmosphere. Full article
Show Figures

Figure 1

22 pages, 1722 KB  
Review
From LNG to LH2 in Maritime Transport: A Review of Technology, Materials, and Safety Challenges
by Matteo Passalacqua and Alberto Traverso
J. Mar. Sci. Eng. 2025, 13(9), 1748; https://doi.org/10.3390/jmse13091748 - 10 Sep 2025
Cited by 1 | Viewed by 1523
Abstract
The adoption of low-carbon fuels in maritime propulsion requires operational autonomy, material suitability, and compliance with safety standards, making liquid fuels like LNG and LH2 the most viable options. LNG is widely used for reducing GHG, NOx, and SOx emissions, while LH [...] Read more.
The adoption of low-carbon fuels in maritime propulsion requires operational autonomy, material suitability, and compliance with safety standards, making liquid fuels like LNG and LH2 the most viable options. LNG is widely used for reducing GHG, NOx, and SOx emissions, while LH2, though new to the maritime sector, leverages aerospace experience. This paper explores the operational requirements and challenges of LH2 cryogenic handling systems using LNG practices as a reference. Key comparisons are made between LNG and LH2 supply systems, focusing on cryogenic materials, hydrogen embrittlement, and structural integrity under maritime conditions. Most maritime-approved materials are suitable for cryogenic use, and hydrogen embrittlement is less critical at cryogenic temperatures due to reduced atomic mobility. Risk assessments suggest LH2’s safety record stems from limited operational data rather than superior inherent safety. The paper also addresses crucial safety and regulatory considerations for both fuels, underscoring the need for strict adherence to standards to ensure the safe and compliant integration of LH2 in the maritime industry. Full article
(This article belongs to the Topic Sustainable Energy Technology, 2nd Edition)
Show Figures

Figure 1

15 pages, 2419 KB  
Review
Conceptual Analysis of Intercooled Recuperated Aero-Engines (IRA)
by Adam Kozakiewicz, Tomasz Karpiński and Bartosz Ciupek
Energies 2025, 18(17), 4706; https://doi.org/10.3390/en18174706 - 4 Sep 2025
Viewed by 1405
Abstract
This study examines scientific and technical solutions designed to enhance thermodynamic processes in modern aircraft turbine engines by utilizing heat exchangers. A comprehensive literature review informed the development of a conceptual design for a turbofan engine incorporating both an intercooler and a recuperator. [...] Read more.
This study examines scientific and technical solutions designed to enhance thermodynamic processes in modern aircraft turbine engines by utilizing heat exchangers. A comprehensive literature review informed the development of a conceptual design for a turbofan engine incorporating both an intercooler and a recuperator. The research included an original parametric and constrained optimization analysis conducted for two engine configurations as follows: one intended for narrow-body and the other for wide-body aircraft. The study focused on achieving the required thrust while enhancing efficiency. Results indicate that integrating heat exchangers can significantly reduce specific fuel consumption (SFC) and/or increase engine power or thrust. Moreover, the recovery of residual heat from exhaust gases through recuperation contributes to improved overall energy efficiency. The study also explores a novel cryogenic design that utilizes liquid hydrogen for cooling the intercooler, recuperator, and turbine. Although not modeled directly, this concept demonstrates the potential to increase the bypass ratio, further reduce SFC, and lower NOx emissions. These findings highlight the promise of combined intercooling and recuperation strategies for improving both economic and environmental performance, with optimal system parameters dependent on aircraft class. The research aligns with ongoing efforts in mechanical engineering and aviation to enhance turbine engine efficiency through innovative thermal management solutions. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

24 pages, 1153 KB  
Review
Cryogenic Technologies for Biogas Upgrading: A Critical Review of Processes, Performance, and Prospects
by Dolores Hidalgo and Jesús M. Martín-Marroquín
Technologies 2025, 13(8), 364; https://doi.org/10.3390/technologies13080364 - 16 Aug 2025
Viewed by 3033
Abstract
Cryogenic upgrading represents a promising route for the production of high-purity biomethane, aligning with current decarbonization goals and the increasing demand for renewable gases. This review provides a critical assessment of cryogenic technologies applied to biogas purification, focusing on process fundamentals, technological configurations, [...] Read more.
Cryogenic upgrading represents a promising route for the production of high-purity biomethane, aligning with current decarbonization goals and the increasing demand for renewable gases. This review provides a critical assessment of cryogenic technologies applied to biogas purification, focusing on process fundamentals, technological configurations, energy and separation performance, and their industrial integration potential. The analysis covers standalone cryogenic systems as well as hybrid configurations combining cryogenic separation with membrane or chemical pretreatment to enhance efficiency and reduce operating costs. A comparative evaluation of key performance indicators—including methane recovery, specific energy demand, product purity, and technology readiness level—is presented, along with a discussion of representative industrial applications. In addition, recent techno-economic studies are examined to contextualize cryogenic upgrading within the broader landscape of CO2 separation technologies. Environmental trade-offs, investment thresholds, and sensitivity to gas prices and CO2 taxation are also discussed. The review identifies existing technical and economic barriers, outlines research and innovation priorities, and highlights the relevance of process integration with natural gas networks. Overall, cryogenic upgrading is confirmed as a technically viable and environmentally competitive solution for biomethane production, particularly in contexts requiring liquefied biomethane or CO2 recovery. Strategic deployment and regulatory support will be key to accelerating its industrial adoption. The objectives of this review have been met by consolidating the current state of knowledge and identifying specific gaps that warrant further investigation. Future work is expected to address these gaps through targeted experimental studies and technology demonstrations. Full article
(This article belongs to the Section Environmental Technology)
Show Figures

Figure 1

31 pages, 5261 KB  
Review
Wear- and Corrosion-Resistant Coatings for Extreme Environments: Advances, Challenges, and Future Perspectives
by Subin Antony Jose, Zachary Lapierre, Tyler Williams, Colton Hope, Tryon Jardin, Roberto Rodriguez and Pradeep L. Menezes
Coatings 2025, 15(8), 878; https://doi.org/10.3390/coatings15080878 - 26 Jul 2025
Cited by 6 | Viewed by 6795
Abstract
Tribological processes in extreme environments pose serious material challenges, requiring coatings that resist both wear and corrosion. This review summarizes recent advances in protective coatings engineered for extreme environments such as high temperatures, chemically aggressive media, and high-pressure and abrasive domains, as well [...] Read more.
Tribological processes in extreme environments pose serious material challenges, requiring coatings that resist both wear and corrosion. This review summarizes recent advances in protective coatings engineered for extreme environments such as high temperatures, chemically aggressive media, and high-pressure and abrasive domains, as well as cryogenic and space applications. A comprehensive overview of promising coating materials is provided, including ceramic-based coatings, metallic and alloy coatings, and polymer and composite systems, as well as nanostructured and multilayered architectures. These materials are deployed using advanced coating technologies such as thermal spraying (plasma spray, high-velocity oxygen fuel (HVOF), and cold spray), chemical and physical vapor deposition (CVD and PVD), electrochemical methods (electrodeposition), additive manufacturing, and in situ coating approaches. Key degradation mechanisms such as adhesive and abrasive wear, oxidation, hot corrosion, stress corrosion cracking, and tribocorrosion are examined with coating performance. The review also explores application-specific needs in aerospace, marine, energy, biomedical, and mining sectors operating in aggressive physiological environments. Emerging trends in the field are highlighted, including self-healing and smart coatings, environmentally friendly coating technologies, functionally graded and nanostructured coatings, and the integration of machine learning in coating design and optimization. Finally, the review addresses broader considerations such as scalability, cost-effectiveness, long-term durability, maintenance requirements, and environmental regulations. This comprehensive analysis aims to synthesize current knowledge while identifying future directions for innovation in protective coatings for extreme environments. Full article
(This article belongs to the Special Issue Advanced Tribological Coatings: Fabrication and Application)
Show Figures

Figure 1

15 pages, 1642 KB  
Article
Cryogenic System for FTIR Analysis of Hydrocarbon Fuels at Low Temperature and Atmospheric Pressure
by Gulzhan Turlybekova, Alisher Kenbay, Abdurakhman Aldiyarov, Yevgeniy Korshikov, Aidos Lesbayev, Assel Nurmukan and Darkhan Yerezhep
Appl. Sci. 2025, 15(14), 7944; https://doi.org/10.3390/app15147944 - 17 Jul 2025
Viewed by 748
Abstract
This study presents a novel approach to FTIR spectroscopy at low temperatures under atmospheric pressure. The work aimed to confirm the efficiency of a fundamentally new cryogenic setup that enables material research under the specified conditions. The new technique combines a nitrogen-based cryogenic [...] Read more.
This study presents a novel approach to FTIR spectroscopy at low temperatures under atmospheric pressure. The work aimed to confirm the efficiency of a fundamentally new cryogenic setup that enables material research under the specified conditions. The new technique combines a nitrogen-based cryogenic capillary cooling system with precise temperature monitoring via a PID controller, along with DRIFT spectroscopy for hydrocarbon materials. New fundamental data were obtained on the properties and behavior of hydrocarbon compounds such as methanol, kerosene, and ethanol. The IR spectra of these samples contain key characteristic vibrations of hydrocarbon functional groups, which demonstrate the effective operability of the cryogenic device. A detailed description of the setup and measurement technique is provided, along with a thorough comparison of the results with data from other authors. The application scope of the cryogenic device, the relevance of the research, and potential future developments are also discussed. Full article
(This article belongs to the Special Issue Advanced Spectroscopy Technologies)
Show Figures

Figure 1

21 pages, 724 KB  
Article
A Study on Thermal Management Systems for Fuel-Cell Powered Regional Aircraft
by Manuel Filipe, Frederico Afonso and Afzal Suleman
Energies 2025, 18(12), 3074; https://doi.org/10.3390/en18123074 - 11 Jun 2025
Cited by 3 | Viewed by 1862
Abstract
This work studies the feasibility of integrating a hydrogen-powered propulsion system in a regional aircraft at the conceptual design level. The developed system consists of fuel cells, which will be studied at three technological levels, and batteries, also studied for four hybridization factors [...] Read more.
This work studies the feasibility of integrating a hydrogen-powered propulsion system in a regional aircraft at the conceptual design level. The developed system consists of fuel cells, which will be studied at three technological levels, and batteries, also studied for four hybridization factors (X = 0, 0.05, 0.10, 0.20). Hydrogen can absorb great thermal loads since it is stored in the tank at cryogenic temperatures and is used as fuel in the fuel cells at around 80 °C. Taking advantage of this characteristic, two thermal management system (TMS) architectures were developed to ensure the proper functioning of the aircraft during the designated mission: A1, which includes a vapor compression system (VCS), and A2, which omits it for a simpler design. The models were developed in MATLAB® and consist of different components and technologies commonly used in such systems. The analysis reveals that A2, due to the exclusion of the VCS, outperformed A1 in weight (10–23% reduction), energy consumption, and drag. A1’s TMS required significantly more energy due to the VCS compressor. Hybridization with batteries increased system weight substantially (up to 37% in A2) and had a greater impact on energy consumption in A2 due to additional fan work. Hydrogen’s heat sink capacity remained underutilized, and the hydrogen tank was deemed suitable for a non-integral fuselage design. A2 had the lowest emissions (10–20% lower than A1 for X = 0), but hybridization negated these benefits, significantly increasing emissions in pessimistic scenarios. Full article
(This article belongs to the Special Issue Energy-Efficient Advances in More Electric Aircraft)
Show Figures

Figure 1

31 pages, 9985 KB  
Article
Additively Manufactured 316L Stainless Steel: Hydrogen Embrittlement Susceptibility and Electrochemical Gas Production
by Reham Reda, Sabbah Ataya, Mohamed Ayman, Khaled Saad, Shimaa Mostafa, Gehad Elnady, Rashid Khan and Yousef G. Y. Elshaghoul
Appl. Sci. 2025, 15(11), 5824; https://doi.org/10.3390/app15115824 - 22 May 2025
Cited by 1 | Viewed by 2595
Abstract
Interest in hydrogen is rapidly growing due to rising greenhouse gas emissions and the depletion of fossil fuel reserves. Additive manufacturing (AM) is extensively employed to produce high-quality components, with a strong focus on enhancing mechanical properties. The efficiency and cost-effectiveness of AM [...] Read more.
Interest in hydrogen is rapidly growing due to rising greenhouse gas emissions and the depletion of fossil fuel reserves. Additive manufacturing (AM) is extensively employed to produce high-quality components, with a strong focus on enhancing mechanical properties. The efficiency and cost-effectiveness of AM have further increased interest in its application to manufacturing components capable of withstanding demanding conditions, such as those encountered in hydrogen technology. In this study, 316L stainless steel specimens were fabricated using AM via the selective laser melting (SLM) technique. The specimens then underwent various post-processing heat treatments (PPHT). A subset of these specimens, measuring 50 × 50 × 3 mm3, was tested as electrodes in a water electrolysis cell for oxyhydrogen (HHO) gas production. The HHO gas flow rate and electrolyzer efficiency were evaluated at 60 °C under varying currents. The remaining AM specimens were evaluated for their susceptibility to hydrogen embrittlement under various hydrogen storage conditions, including testing at both room and cryogenic temperatures. Tensile and Charpy impact specimens were fabricated and tested before and after hydrogen charging. The fracture surfaces were analyzed using scanning electron microscopy (SEM) to assess the influence of hydrogen on fracture characteristics. Additionally, as-rolled stainless-steel specimens were examined for comparison with AM and PPHT 316L stainless steel. The primary objective of this study is to determine the most efficient alloy processing condition for optimal performance in each application. Results indicate that PPHT 316L stainless steel exhibits superior performance both as electrodes for HHO gas production and as a material for hydrogen storage vessels, demonstrating high resistance to hydrogen embrittlement. Full article
(This article belongs to the Section Additive Manufacturing Technologies)
Show Figures

Figure 1

25 pages, 8133 KB  
Review
Hydrogen-Powered Aviation: Insights from a Cross-Sectional Scientometric and Thematic Analysis of Patent Claims
by Raj Bridgelall
Appl. Sci. 2025, 15(10), 5555; https://doi.org/10.3390/app15105555 - 15 May 2025
Cited by 2 | Viewed by 3771
Abstract
Hydrogen-powered aviation is gaining momentum as a sustainable alternative to fossil-fueled flight, yet the field faces complex technological and operational challenges. To better understand commercial innovation pathways, this study analyzes the claims sections of 166 hydrogen aviation patents issued between 2018 and 2024. [...] Read more.
Hydrogen-powered aviation is gaining momentum as a sustainable alternative to fossil-fueled flight, yet the field faces complex technological and operational challenges. To better understand commercial innovation pathways, this study analyzes the claims sections of 166 hydrogen aviation patents issued between 2018 and 2024. Unlike prior studies that focused on patent titles or abstracts, this approach reveals the protected technical content driving commercialization. The study classifies innovations into seven domains: fuel storage, fuel delivery, fuel management, turbine enhancement, fuel cell integration, hybrid propulsion, and safety enhancement. Thematic word clouds and term co-occurrence networks based on natural language processing techniques validate these classifications and highlight core technical themes. Scientometric analyses uncover rapid patent growth, rising international participation, and strong engagement from both established aerospace firms and young companies. The findings provide stakeholders with a structured view of the innovation landscape, helping to identify technological gaps, emerging trends, and areas for strategic investment and policymaking. This claims-based method offers a scalable framework to track progress in hydrogen aviation and is adaptable to other emerging technologies. Full article
Show Figures

Figure 1

43 pages, 29509 KB  
Article
Finite Element Modeling of Different Types of Hydrogen Pressure Vessels Under Extreme Conditions for Space Applications
by Reham Reda, Sabbah Ataya and Amir Ashraf
Processes 2025, 13(5), 1429; https://doi.org/10.3390/pr13051429 - 7 May 2025
Cited by 1 | Viewed by 1634
Abstract
Fuel cells, propulsion systems, and reaction control systems (RCSs) are just a few of the space applications that depend on pressure vessels (PVs) to safely hold high-pressure fluids while enduring extreme environmental conditions both during launch and in orbit. Under these challenging circumstances, [...] Read more.
Fuel cells, propulsion systems, and reaction control systems (RCSs) are just a few of the space applications that depend on pressure vessels (PVs) to safely hold high-pressure fluids while enduring extreme environmental conditions both during launch and in orbit. Under these challenging circumstances, PVs must be lightweight while retaining structural integrity in order to increase the efficiency and lower the launch costs. PVs have significant challenges in space conditions, such as extreme vibrations during launch, the complete vacuum of space, and sudden temperature changes based on their location within the satellite and orbit types. Determining the operational temperature limits and endurance of PVs in space applications requires assessing the combined effects of these factors. As the main propellant for satellites and rockets, hydrogen has great promise for use in future space missions. This study aimed to assess the structural integrity and determine the thermal operating limits of different types of hydrogen pressure vessels using finite element analysis (FEA) with Ansys 2019 R3 Workbench. The impact of extreme space conditions on the performances of various kinds of hydrogen pressure vessels was analyzed numerically in this work. This study determined the safe operating temperature ranges for Type 4, Type 3, and Type 1 PVs at an operating hydrogen storage pressure of 35 MPa in an absolute vacuum. Additionally, the dynamic performance was assessed through modal and random vibration analyses. Various aspects of Ansys Workbench were explored, including the influence of the mesh element size, composite modeling methods, and their combined impact on the result accuracy. In terms of the survival temperature limits, the Type 4 PVs, which consisted of a Nylon 6 liner and a carbon fiber-reinforced epoxy (CFRE) prepreg composite shell, offered the optimal balance between the weight (56.2 kg) and a relatively narrow operating temperature range of 10–100 °C. The Type 3 PVs, which featured an Aluminum 6061-T6 liner, provided a broader operational temperature range of 0–145 °C but at a higher weight of 63.7 kg. Meanwhile, the Type 1 PVs demonstrated a superior cryogenic performance, with an operating range of −55–54 °C, though they were nearly twice as heavy as the Type 4 PVs, with a weight of 106 kg. The absolute vacuum environment had a negligible effect on the mechanical performance of all the PVs. Additionally, all the analyzed PV types maintained structural integrity and safety under launch-induced vibration loads. This study provided critical insights for selecting the most suitable pressure vessel type for space applications by considering operational temperature constraints and weight limitations, thereby ensuring an optimal mechanical–thermal performance and structural efficiency. Full article
Show Figures

Figure 1

Back to TopTop