Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (151)

Search Parameters:
Keywords = current speciation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
42 pages, 2426 KB  
Review
Population Genetic Structure: Where, What, and Why?
by Adomas Ragauskas, Evelina Maziliauskaitė, Petras Prakas and Dalius Butkauskas
Diversity 2025, 17(8), 584; https://doi.org/10.3390/d17080584 - 20 Aug 2025
Viewed by 567
Abstract
Biodiversity is crucial for humankind. It encompasses three main levels: ecosystem, species, and intraspecific genetic diversity. Species consist of populations that exhibit deoxyribonucleic acid (DNA) variability, which is a key component of intraspecific genetic diversity. In turn, intraspecific genetic diversity is directly linked [...] Read more.
Biodiversity is crucial for humankind. It encompasses three main levels: ecosystem, species, and intraspecific genetic diversity. Species consist of populations that exhibit deoxyribonucleic acid (DNA) variability, which is a key component of intraspecific genetic diversity. In turn, intraspecific genetic diversity is directly linked with the term population genetic structure (PGS). There is a great deal of uncertainty and confusion surrounding the concept of the PGS of species in the scientific literature, yet the term PGS is central to population genetics, and future research is expected to focus on the evolutionary continuum from populations to species. Therefore, it is necessary for current biologists and the next generation of scientists to acquire a better understanding of a PGS, both as a term and a concept, as well as the various roles PGSs play within a biodiversity context. This knowledge can then be applied to the expansion of both practical and theoretical science. Finding answers and reaching a consensus among the scientific community on certain questions regarding PGSs could expand the horizons of population genetics and related research disciplines. The major areas of interest and research are PGSs’ roles in the processes of microevolution and speciation, the sustainable use of natural resources, and the conservation of genetic diversity. Other important aspects of this perspective review include proposals for scientific definitions of some terms and concepts, as well as new perspectives and explanations that could be used as a basis for future theoretical models and applied research on PGSs. In conclusion, a PGS should be viewed as a fragile genetic mosaic encompassing at least three spatial dimensions and one temporal dimension. Full article
(This article belongs to the Section Biodiversity Conservation)
Show Figures

Graphical abstract

34 pages, 2268 KB  
Review
Recent Progress in Selenium Remediation from Aqueous Systems: State-of-the-Art Technologies, Challenges, and Prospects
by Muhammad Ali Inam, Muhammad Usman, Rashid Iftikhar, Svetlozar Velizarov and Mathias Ernst
Water 2025, 17(15), 2241; https://doi.org/10.3390/w17152241 - 28 Jul 2025
Viewed by 878
Abstract
The contamination of drinking water sources with selenium (Se) oxyanions, including selenite (Se(IV)) and selenate (Se(VI)), contains serious health hazards with an oral intake exceeding 400 µg/day and therefore requires urgent attention. Various natural and anthropogenic sources are responsible for high Se concentrations [...] Read more.
The contamination of drinking water sources with selenium (Se) oxyanions, including selenite (Se(IV)) and selenate (Se(VI)), contains serious health hazards with an oral intake exceeding 400 µg/day and therefore requires urgent attention. Various natural and anthropogenic sources are responsible for high Se concentrations in aquatic environments. In addition, the chemical behavior and speciation of selenium can vary noticeably depending on the origin of the source water. The Se(VI) oxyanion is more soluble and therefore more abundant in surface water. Se levels in contaminated waters often exceed 50 µg/L and may reach several hundred µg/L, well above drinking water limits set by the World Health Organization (40 µg/L) and Germany (10 µg/L), as well as typical industrial discharge limits (5–10 µg/L). Overall, Se is difficult to remove using conventionally available physical, chemical, and biological treatment technologies. The recent literature has therefore highlighted promising advancements in Se removal using emerging technologies. These include advanced physical separation methods such as membrane-based treatment systems and engineered nanomaterials for selective Se decontamination. Additionally, other integrated approaches incorporating photocatalysis coupled adsorption processes, and bio-electrochemical systems have also demonstrated high efficiency in redox transformation and capturing of Se from contaminated water bodies. These innovative strategies may offer enhanced selectivity, removal, and recovery potential for Se-containing species. Here, a current review outlines the sources, distribution, and chemical behavior of Se in natural waters, along with its toxicity and associated health risks. It also provides a broad and multi-perspective assessment of conventional as well as emerging physical, chemical, and biological approaches for Se removal and/or recovery with further prospects for integrated and sustainable strategies. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Graphical abstract

18 pages, 3259 KB  
Article
Emission Characteristics and Environmental Impact of VOCs from Bagasse-Fired Biomass Boilers
by Xia Yang, Xuan Xu, Jianguo Ni, Qun Zhang, Gexiang Chen, Ying Liu, Wei Hong, Qiming Liao and Xiongbo Chen
Sustainability 2025, 17(14), 6343; https://doi.org/10.3390/su17146343 - 10 Jul 2025
Viewed by 577
Abstract
This study investigates the emission characteristics and environmental impacts of pollutants from bagasse-fired biomass boilers through the integrated field monitoring of two sugarcane processing plants in Guangxi, China. Comprehensive analyses of flue gas components, including PM2.5, NOx, CO, heavy metals, VOCs, [...] Read more.
This study investigates the emission characteristics and environmental impacts of pollutants from bagasse-fired biomass boilers through the integrated field monitoring of two sugarcane processing plants in Guangxi, China. Comprehensive analyses of flue gas components, including PM2.5, NOx, CO, heavy metals, VOCs, HCl, and HF, revealed distinct physicochemical and emission profiles. Bagasse exhibited lower C, H, and S content but higher moisture (47~53%) and O (24~30%) levels compared to coal, reducing the calorific values (8.93~11.89 MJ/kg). Particulate matter removal efficiency exceeded 98% (water film dust collector) and 95% (bag filter), while NOx removal varied (10~56%) due to water solubility differences. Heavy metals (Cu, Cr, Ni, Pb) in fuel migrated to fly ash and flue gas, with Hg and Mn showing notable volatility. VOC speciation identified oxygenated compounds (OVOCs, 87%) as dominant in small boilers, while aromatics (60%) and alkenes (34%) prevailed in larger systems. Ozone formation potential (OFP: 3.34~4.39 mg/m3) and secondary organic aerosol formation potential (SOAFP: 0.33~1.9 mg/m3) highlighted aromatic hydrocarbons (e.g., benzene, xylene) as critical contributors to secondary pollution. Despite compliance with current emission standards (e.g., PM < 20 mg/m3), elevated CO (>1000 mg/m3) in large boilers indicated incomplete combustion. This work underscores the necessity of tailored control strategies for OVOCs, aromatics, and heavy metals, advocating for stricter fuel quality and clear emission standards to align biomass energy utilization with environmental sustainability goals. Full article
Show Figures

Figure 1

18 pages, 830 KB  
Review
Geochemical Speciation, Uptake, and Transportation Mechanisms of Arsenic, Cadmium, and Lead in Soil–Rice Systems: Additional Aspects and Challenges
by Chaw Su Lwin, Ha-il Jung, Myung-Sook Kim, Eun-Jin Lee and Tae-Gu Lee
Antioxidants 2025, 14(5), 607; https://doi.org/10.3390/antiox14050607 - 18 May 2025
Viewed by 782
Abstract
Potentially toxic elements (PTE), such as cadmium (Cd), lead (Pb), and arsenic (As), threaten rice (Oryza sativa L.) crop productivity and pose significant risks to human health when they are present in soil. This review summarizes the current understanding of soil and [...] Read more.
Potentially toxic elements (PTE), such as cadmium (Cd), lead (Pb), and arsenic (As), threaten rice (Oryza sativa L.) crop productivity and pose significant risks to human health when they are present in soil. This review summarizes the current understanding of soil and rice contamination with As, Cd, and Pb to provide an in-depth understanding of the dynamics of these contaminants and the mechanisms regulating their flow from soil to plants. It focuses on the following aspects: (1) these metals’ geochemical distribution and speciation in soil–rice systems; (2) factors influencing the transformation, bioavailability, and uptake of these metals in paddy soils; (3) metal uptake, transport, translocation, and accumulation mechanisms in rice grains; and (4) the roles of transporters involved in metal uptake, transport, and accumulation in rice plants. Moreover, this review contributes to a clearer understanding of the environmental risks associated with these toxic metals in soil–rice ecosystems. Furthermore, it highlights the challenges in simultaneously managing the risks of As, Cd, and Pb contamination in rice. The study findings may help inspire innovative methods, biotechnological applications, and sustainable management strategies to mitigate the accumulation of As, Cd, and Pb in rice grains while effectively addressing multi-metal contamination in paddy soils. Full article
(This article belongs to the Special Issue Oxidative Stress and Antioxidant Defense in Crop Plants, 2nd Edition)
Show Figures

Figure 1

24 pages, 2538 KB  
Review
Advancements and Challenges of Cobalt–Zeolite Composite Catalysts in Heterogeneous Catalysis
by Wanying Liang and Guangyue Xu
Chemistry 2025, 7(3), 81; https://doi.org/10.3390/chemistry7030081 - 16 May 2025
Viewed by 1013
Abstract
Cobalt–zeolite composite catalysts (Co–zeolite) and their heterogeneous catalytic systems have garnered significant research attention owing to their superior catalytic activity and cost-effectiveness. The speciation of cobalt within these catalysts—either through impregnation onto the zeolite framework or structural incorporation within the aluminosilicate matrix—is critically [...] Read more.
Cobalt–zeolite composite catalysts (Co–zeolite) and their heterogeneous catalytic systems have garnered significant research attention owing to their superior catalytic activity and cost-effectiveness. The speciation of cobalt within these catalysts—either through impregnation onto the zeolite framework or structural incorporation within the aluminosilicate matrix—is critically governed by the employed synthesis methodology, which subsequently dictates their distinct catalytic advantages in targeted reaction systems. Compared to homogeneous catalytic systems, heterogeneous Co–zeolite configurations demonstrate enhanced structural integrity that effectively mitigates cobalt leaching, thereby improving catalyst recyclability while minimizing environmental contamination. This review systematically examines recent advancements in Co–zeolite fabrication techniques and their catalytic performance across diverse applications, including Fischer–Tropsch synthesis, nitrogen oxide abatement, hydrogenation processes, and oxidative transformations. Particular emphasis is placed on elucidating the metal-framework interactions, with analysis of synergistic effects arising from multi-valent cobalt speciation and bimetallic cooperativity between cobalt and secondary transition metals. This work critically evaluates current challenges in Co–zeolite catalyst design. Finally, we propose future research directions focusing on a precise identification of active species and mechanistic elucidation, innovative synthesis strategies for cobalt speciation control, machine learning-guided catalyst optimization, and the advancement of eco-friendly catalysts. Full article
Show Figures

Figure 1

20 pages, 2128 KB  
Article
The Genus Petunia (Solanaceae): Evolutionary Synthesis and Taxonomic Review
by Luana S. Soares, João R. Stehmann and Loreta B. Freitas
Plants 2025, 14(10), 1478; https://doi.org/10.3390/plants14101478 - 15 May 2025
Cited by 2 | Viewed by 855
Abstract
Many plant groups exhibit complex evolutionary processes, including hybridization, incomplete lineage sorting, and variable evolutionary rates, which make species delimitation challenging. Molecular data have been essential for studying such groups, including Petunia, where local adaptation, allopatric speciation, pollinator interactions, and hybridization shape [...] Read more.
Many plant groups exhibit complex evolutionary processes, including hybridization, incomplete lineage sorting, and variable evolutionary rates, which make species delimitation challenging. Molecular data have been essential for studying such groups, including Petunia, where local adaptation, allopatric speciation, pollinator interactions, and hybridization shape diversity and population structure. In this study, we produced the first broadly inclusive phylogenetic tree of Petunia using high-throughput DNA sequence data generated by genome complexity reduction-based sequencing (DArT), and incorporating all currently accepted taxa. Additionally, we reviewed previously published phylogenetic and phylogeographic studies on these species to support the taxonomic revision. Phylogenetic analyses based on SNPs were largely congruent, revealing two well-supported clades divided by corolla tube length, consistent with previous studies. These clades likely originated and diversified during the Pleistocene. The phylogenetic trees provided strong support for taxonomic changes, resolving long-standing uncertainties. We recognize P. axillaris, P. parodii, and P. subandina as independent species, elevate P. integrifolia subsp. depauperata to P. dichotoma Sendtn., and resurrect P. guarapuavensis. Additionally, our results highlighted unsolved questions regarding the evolutionary history of the short corolla tube clade, suggesting the need for further investigation into its diversification and genetic structure. Full article
(This article belongs to the Special Issue Taxonomy, Phylogeny and Distribution of Vascular Plants)
Show Figures

Figure 1

18 pages, 6291 KB  
Article
A Study on the Oxidation Performance of Soil Chromium with Acid Birnessite and Cryptomelane
by Wei Zhang, Huan Yang, Shaohong You, Xia Zhong, Pingping Jiang, Xudong Lan and Rui Ma
Toxics 2025, 13(4), 262; https://doi.org/10.3390/toxics13040262 - 31 Mar 2025
Viewed by 613
Abstract
Current research focuses more on redox of toxic Cr(VI), with less attention to Cr(III) changes in flooded soil. First, the structure of acid birnessite and cryptomelane was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and other test [...] Read more.
Current research focuses more on redox of toxic Cr(VI), with less attention to Cr(III) changes in flooded soil. First, the structure of acid birnessite and cryptomelane was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and other test methods. This study investigated farmland soil in Yuxi, Yunnan Province, under flooding stress induced by the addition of two distinct concentrations of manganese oxides. Throughout the experiment, key physicochemical properties of the soil—including pH, redox potential (Eh), Cr(VI) concentration, and chromium speciation—were systematically measured and analyzed. Structural characterization demonstrated distinct morphological and surface area properties. Specifically, acid birnessite, with petal-like stacked spheres, has a specific surface area of 103.76 m2/g, while cryptomelane, strip-shaped, has an area of 95.92 m2/g. The submergence experiment yielded the following phenomena: (1) During the 60-day flooding experiment, soil amended with 0.5% or 1% acid birnessite or cryptomelane exhibited an increase in Eh compared to the control group. (2) At the end of the 60-day submergence period, the Cr(VI) concentration in the soil treated with 1% acid birnessite increased by 2.4 times compared to the control group. In addition, after 60 days, Cr(VI) concentrations in the soil exceeded 5 mg/L in soils with manganese oxide added to them. This study evaluates how manganese oxides oxidize Cr(III), aiding in assessing their environmental risks and long-term impacts on metal transformation. The findings help predict chromium behavior in farm soils and guide remediation strategies. Full article
Show Figures

Graphical abstract

24 pages, 14003 KB  
Review
Preliminary Review of the Diploid Taxa in Hieracium s.s.
by Giacomo Baldesi, Jean-Marc Tison and Simone Orsenigo
Plants 2025, 14(7), 1057; https://doi.org/10.3390/plants14071057 - 29 Mar 2025
Cited by 1 | Viewed by 645
Abstract
A review of the known diploid species in Hieracium L. s.s. (Asteraceae, Cichorieae) is presented. This article aims to summarize the current knowledge of the taxa with the basic ploidy level in the genus (2n = 2x = 18), as these entities [...] Read more.
A review of the known diploid species in Hieracium L. s.s. (Asteraceae, Cichorieae) is presented. This article aims to summarize the current knowledge of the taxa with the basic ploidy level in the genus (2n = 2x = 18), as these entities are supposed to have originated the outstanding diversity observed nowadays, which is largely ascribable to polyploid microspecies. The study of extant diploid species is crucial for the understanding of the speciation dynamics that occurred in hawkweeds. All available cytological data in the literature, pertinent to Europe and adjacent countries, are included to have an overview of the obligately sexual species in this genus and highlight gaps and uncertainties. In order to preliminarily investigate the geographical distribution, all records are georeferenced and projected on a map to highlight the hotspots of Hieracium diversity. A brief account of each taxon is included, with some additional considerations and remarks on doubtful records. Full article
(This article belongs to the Special Issue Taxonomy, Phylogeny and Distribution of Vascular Plants)
Show Figures

Figure 1

8 pages, 525 KB  
Article
Evaluation of Solubility and Complexation Ability of Vanillic, Syringic and Gallic Acids Towards Aluminum Cation
by Donatella Aiello, Tiziana Marino, Anna Napoli, Emilia Furia and Pierluigi Plastina
Inorganics 2025, 13(1), 2; https://doi.org/10.3390/inorganics13010002 - 25 Dec 2024
Viewed by 1173
Abstract
Chelation therapy is currently successfully applied to reduce the aluminum burden and its neurodegenerative consequences. In view of a possible application to aluminum chelation therapy, here we have studied the complexation of hydroxybenzoic acids, namely, vanillic, syringic and gallic acids, towards aluminum ion [...] Read more.
Chelation therapy is currently successfully applied to reduce the aluminum burden and its neurodegenerative consequences. In view of a possible application to aluminum chelation therapy, here we have studied the complexation of hydroxybenzoic acids, namely, vanillic, syringic and gallic acids, towards aluminum ion at physiologically relevant conditions as regards temperature (37 °C) and ionic strength (i.e., 0.16 M NaCl). The solubility values and the protonation constants of the hydroxybenzoic acids were primarily assessed to estimate the competition of these acids towards aluminum and H+ ions. Then, potentiometric titrations were carried out, and the speciation analysis indicated a pH-dependent complexation occurring at a 1:1 hydroxybenzoic acid-to-aluminum ratio for vanillic and syringic, and 1:1, 2:1 and 3:1 ligand-to-Al(III) ratios for gallic. Gallic acid forms more stable complexes with Al(III) ion than vanillic and syringic acids and could therefore represent a good candidate for being used as sequestering agents for Al(III) ion. Full article
Show Figures

Figure 1

23 pages, 3590 KB  
Review
Arbuscular Mycorrhizal Fungi-Assisted Phytoremediation: A Promising Strategy for Cadmium-Contaminated Soils
by Shaopeng Zhao, Lei Yan, Muhammad Kamran, Shanshan Liu and Muhammad Riaz
Plants 2024, 13(23), 3289; https://doi.org/10.3390/plants13233289 - 22 Nov 2024
Cited by 8 | Viewed by 2958
Abstract
Arbuscular mycorrhizal fungi (AMF) have been shown to play a major role in regulating the accumulation, transport, and toxicity of cadmium (Cd) in plant tissues. This review aims to highlight the current understanding of the mechanisms by which AMF alleviate Cd toxicity in [...] Read more.
Arbuscular mycorrhizal fungi (AMF) have been shown to play a major role in regulating the accumulation, transport, and toxicity of cadmium (Cd) in plant tissues. This review aims to highlight the current understanding of the mechanisms by which AMF alleviate Cd toxicity in plants. Cd accumulation in agricultural soils has become an increasing global concern due to industrial activities and the use of phosphatic fertilizers. Cd toxicity disrupts various physiological processes in plants, adversely affecting growth, photosynthesis, oxidative stress responses, and secondary metabolism. AMF alleviate Cd stress in plants through multiple mechanisms, including reduced Cd transport into plant roots, improved plant nutritional status, modulation of organic acid and protein exudation, enhanced antioxidant capacity, and maintenance of ion homeostasis. AMF colonization also influences Cd speciation, bioavailability, and compartmentalization within plant tissues. The expression of metal transporter genes, as well as the synthesis of phytochelatins and metallothioneins, are modulated by AMF during Cd stress. However, the efficacy of AMF in mitigating Cd toxicity depends on several factors, such as soil properties, plant species, AMF taxa, and experimental duration. Further knowledge of the intricate plant–AMF–Cd interactions is crucial for optimizing AMF-assisted phytoremediation strategies and developing Cd-tolerant and high-yielding crop varieties for cultivation in contaminated soils. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

19 pages, 5351 KB  
Article
Deactivation and Regeneration Studies of Molybdenum-Based Catalysts in the Oxidative Desulfurization of Marine Fuel Oil
by Teddy Roy, Joy Alakari, Christine Lancelot, Pascal Blanchard, Line Poinel and Carole Lamonier
Catalysts 2024, 14(11), 823; https://doi.org/10.3390/catal14110823 - 15 Nov 2024
Cited by 2 | Viewed by 1569
Abstract
The oxidative desulfurization (ODS) of heavy fuel oil (HFO) offers a promising solution for desulfurizing marine fuels under mild conditions, in line with current environmental regulations. While most studies focus on model or light fuels, explaining deactivation through leaching or sulfone adsorption, the [...] Read more.
The oxidative desulfurization (ODS) of heavy fuel oil (HFO) offers a promising solution for desulfurizing marine fuels under mild conditions, in line with current environmental regulations. While most studies focus on model or light fuels, explaining deactivation through leaching or sulfone adsorption, the deactivation mechanisms of catalysts in HFO remain poorly understood. In this work, Mo-based catalysts supported on alumina were extensively characterized before and after catalytic reactions, and regeneration through air calcination was considered. Techniques such as XRD, Raman spectroscopy, XRF, and TGA, alongside catalytic testing with H2O2 as an oxidant, revealed that Mo surface speciation significantly impacted both activity and deactivation. Contrary to well-dispersed polymolybdates, crystalline MoO3 induced low activity and hindered regeneration. No leaching of the active phase was demonstrated during the reaction. Sulfone adsorption had minimal impact on deactivation, while non-sulphur compounds appeared to be the key contributors. Regeneration outcomes were found to be molybdenum content-dependent: 10Mo/Al recovered its activity, while 20Mo/Al formed inactive phases, like Al2(MoO4)3. Using an organic oxidant (tBHP) during ODS influenced the regeneration, as it prevented Al2(MoO4)3 formation and redispersed crystalline MoO3, enhancing performance. These findings advance understanding of catalyst deactivation and suggest strategies to extend catalyst life in the ODS of HFO. Full article
Show Figures

Graphical abstract

29 pages, 4900 KB  
Article
Physicochemical Rationale of Matrix Effects Involved in the Response of Hydrogel-Embedded Luminescent Metal Biosensors
by Elise Rotureau, Christophe Pagnout and Jérôme F. L. Duval
Biosensors 2024, 14(11), 552; https://doi.org/10.3390/bios14110552 - 13 Nov 2024
Viewed by 1434
Abstract
There is currently a critical need for understanding how the response and activity of whole-cell bacterial reporters positioned in a complex biological or environmental matrix are impacted by the physicochemical properties of their micro-environment. Accordingly, a comprehensive analysis of the bioluminescence response of [...] Read more.
There is currently a critical need for understanding how the response and activity of whole-cell bacterial reporters positioned in a complex biological or environmental matrix are impacted by the physicochemical properties of their micro-environment. Accordingly, a comprehensive analysis of the bioluminescence response of Cd(II)-inducible PzntA-luxCDABE Escherichia coli biosensors embedded in silica-based hydrogels is reported to decipher how metal bioavailability, cell photoactivity and ensuing light bioproduction are impacted by the hydrogel environment and the associated matrix effects. The analysis includes the account of (i) Cd speciation and accumulation in the host hydrogels, in connection with their reactivity and electrostatic properties, and (ii) the reduced bioavailability of resources for the biosensors confined (deep) inside the hydrogels. The measurements of the bioluminescence response of the Cd(II) inducible-lux biosensors in both hydrogels and free-floating cell suspensions are completed by those of the constitutive rrnB P1-luxCDABE E. coli so as to probe cell metabolic activity in these two situations. The approach contributes to unraveling the connections between the electrostatic hydrogel charge, the nutrient/metal bioavailabilities and the resulting Cd-triggered bioluminescence output. Biosensors are hosted in hydrogels with thickness varying between 0 mm (the free-floating cell situation) and 1.6 mm, and are exposed to total Cd concentrations from 0 to 400 nM. The partitioning of bioavailable metals at the hydrogel/solution interface following intertwined metal speciation, diffusion and Boltzmann electrostatic accumulation is addressed by stripping chronopotentiometry. In turn, we detail how the bioluminescence maxima generated by the Cd-responsive cells under all tested Cd concentration and hydrogel thickness conditions collapse remarkably well on a single plot featuring the dependence of bioluminescence on free Cd concentration at the individual cell level. Overall, the construction of this master curve integrates the contributions of key and often overlooked processes that govern the bioavailability properties of metals in 3D matrices. Accordingly, the work opens perspectives for quantitative and mechanistic monitoring of metals by biosensors in environmental systems like biofilms or sediments. Full article
(This article belongs to the Section Environmental Biosensors and Biosensing)
Show Figures

Graphical abstract

20 pages, 2779 KB  
Article
Coal Mine Dust Size Distributions, Chemical Compositions, and Source Apportionment
by Xiaoliang Wang, Behrooz Abbasi, Mohammadreza Elahifard, Bankole Osho, Lung-Wen Antony Chen, Judith C. Chow and John G. Watson
Minerals 2024, 14(11), 1122; https://doi.org/10.3390/min14111122 - 6 Nov 2024
Cited by 2 | Viewed by 1612
Abstract
Current regulations mandate the monitoring of respirable coal mine dust (RCMD) mass and crystalline silica in underground coal mines to safeguard miner health. However, other RCMD characteristics, such as particle size and chemical composition, may also influence health outcomes. This study collected RCMD [...] Read more.
Current regulations mandate the monitoring of respirable coal mine dust (RCMD) mass and crystalline silica in underground coal mines to safeguard miner health. However, other RCMD characteristics, such as particle size and chemical composition, may also influence health outcomes. This study collected RCMD samples from two underground coal mines and performed detailed chemical speciation. Source apportionment was used to estimate RCMD and silica contributions from various sources, including intake air, fire suppression limestone dust, coal dust, diesel engine exhaust, and rock strata. The mine dust mass-based size distributions were comparable to those recorded over a decade ago, with a peak around 10 μm and the majority of the mass in the supermicron size range. The current mine conditions and mining practices do not appear to have significantly increased the generation of smaller particles. Limestone rock dust was prevalent in many locations and, along with coal dust, was the main contributor to RCMD at high-concentration locations. Silica accounted for over 10% of RCMD mass at several active mining locations, primarily from limestone and rock strata dust. Reducing the concentration of limestone dust and its silica content could reduce RCMD and silica levels. Further cleaning of the intake air could also improve the overall mine air quality. Full article
(This article belongs to the Special Issue Size Distribution, Chemical Composition and Morphology of Mine Dust)
Show Figures

Figure 1

38 pages, 16780 KB  
Review
An Evaluation of Metal Binding Constants to Cell Surface Receptors in Freshwater Organisms, and Their Application in Biotic Ligand Models to Predict Metal Toxicity
by Paul L. Brown and Scott J. Markich
Water 2024, 16(20), 2999; https://doi.org/10.3390/w16202999 - 21 Oct 2024
Cited by 1 | Viewed by 1560
Abstract
Biotic ligand models (BLMs) predict the toxicity of metals in aquatic environments by accounting for metal interactions with cell surface receptors (biotic ligands) in organisms, including water chemistry (metal speciation) and competing cations. Metal binding constants (log KMBL values), which indicate the [...] Read more.
Biotic ligand models (BLMs) predict the toxicity of metals in aquatic environments by accounting for metal interactions with cell surface receptors (biotic ligands) in organisms, including water chemistry (metal speciation) and competing cations. Metal binding constants (log KMBL values), which indicate the affinity of metals for cell surface receptors, are fundamental to BLMs, but have only been reported for a few commonly investigated metals and freshwater species. This review evaluated literature toxicity and uptake data for seven key metals (cadmium (Cd), cobalt (Co), copper (Cu), nickel (Ni), lead (Pb), uranium (U), and zinc (Zn)) and four key competing cations (protons (H), calcium (Ca), magnesium (Mg), and sodium (Na)), to derive average metal binding constants for freshwater organisms/taxa. These constants will improve current BLMs for Cd, Cu, Ni, Pb, and Zn, and aid in developing new BLMs for Co and U. The derived metal binding constants accurately predicted metal toxicity for a wide range of freshwater organisms (75–88% of data were within a factor of two and 88–98% of data were within a factor of three of the ideal 1:1 agreement line), when considering metal speciation, competing cations and the fraction of cell receptors ((fC)M50%) occupied by the metal at the median (50%) effect concentration (EC50). For many organisms, toxicity occurs when 50% of cell surface receptors are occupied by the metal, though this threshold can vary. Some organisms exhibit toxicity with less than 50% receptor occupancy, while others with protective mechanisms show reduced toxicity, even with similar log KMBL values. For Cu, U, and Pb, the toxic effect of the metal hydroxide (as MOH+) must be considered in addition to the free metal ion (M2+), as these metals hydrolyse in circumneutral freshwaters (pH 5.5 to 8.5), contributing to toxicity. Full article
(This article belongs to the Special Issue Ecotoxicity of Pollutants on Aquatic Species)
Show Figures

Figure 1

9 pages, 634 KB  
Communication
The Impact of Cobalt Species on the Hazardous Characteristics of Cobalt-Leaching Residue: A Case Study from Guangdong Province, China
by Yang Lv, Yi Wang, Cheng Zhang, Chaoyue Wu, Xiaowei Xu, Keke Xiao, Zehua Zhao and Houhu Zhang
Water 2024, 16(20), 2953; https://doi.org/10.3390/w16202953 - 17 Oct 2024
Cited by 2 | Viewed by 1308
Abstract
Cobalt (Co) is a hazardous element of significant environmental concern, primarily due to its potential leaching toxicity. However, the current assessments of leached Co residues have focused solely on the total cobalt concentration, often overlooking the distinct Co species that contribute to its [...] Read more.
Cobalt (Co) is a hazardous element of significant environmental concern, primarily due to its potential leaching toxicity. However, the current assessments of leached Co residues have focused solely on the total cobalt concentration, often overlooking the distinct Co species that contribute to its hazardous nature. This study attempts to determine the impact of cobalt speciation on the toxicity of cobalt and the related hazardous characteristics. The objective of this study is to enhance the understanding of how different Co species influence the environmental toxicity of leached residues. Cobalt speciation is studied by a multivariate analysis including ignitability, reactivity, corrosiveness, acute toxicity, leaching toxicity, and toxic substance concentration. The tested concentrations are compared with the identification standards and technical specifications in China. Co species, particularly cobalt oxide, are identified as the main contributors to the toxicity of the leached Co residue. It is also noted that Co occurrence significantly affects the calculation results of cumulative toxicity, thus impacting the hazard characteristics of leached cobalt residue. The findings benefit risk evaluators and decision makers by offering a new approach for managing leached Co residues and providing a scientific foundation for the development of relevant laws and regulations in China. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

Back to TopTop