Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (256)

Search Parameters:
Keywords = damping in composite materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3483 KB  
Review
Review and Experimental Update on Manufacturing of Hybrid Carbon Fiber Composites for Space Use
by Alice Proietti, Dounia Noqra, Fabrizio Quadrini and Loredana Santo
Appl. Sci. 2025, 15(18), 9863; https://doi.org/10.3390/app15189863 - 9 Sep 2025
Abstract
Hybrid materials have multifunctional capabilities that are particularly attractive for space applications in order to overcome issues related to the harshness of the environment, especially during long-duration missions. Hybridization is traditionally carried out by mixing reinforcements of different natures, such as carbon with [...] Read more.
Hybrid materials have multifunctional capabilities that are particularly attractive for space applications in order to overcome issues related to the harshness of the environment, especially during long-duration missions. Hybridization is traditionally carried out by mixing reinforcements of different natures, such as carbon with glass/kevlar fibers, or by integrating nanomaterials into the composite structure. Promising results in terms of improved toughness, ductility, and damping ability have been recorded by placing a thermoplastic interlayer between adjacent thermosetting plies reinforced with carbon fibers. These hybrid materials have additional functionalities such as thermoformability and repairability, which make them suitable for several industrial applications. In this work, a literature review on hybrid composites is presented and experimental results on the manufacturing of hybrid carbon fiber epoxy/PEEK laminates are reported. Thermoplastic films of 25 μm and 200 μm thickness have been used as well as two manufacturing procedures. The high-thickness interlayer laminate, that was compression-molded at 250 °C, showed the highest mechanical properties with a bending strength of 340 MPa and an elastic moules of 50 GPa. The other composite, that was molded at 350 °C, exhibited reduced mechanical properties. Full article
(This article belongs to the Special Issue Feature Review Papers in Section Applied Industrial Technologies)
Show Figures

Figure 1

13 pages, 1757 KB  
Proceeding Paper
Research Trends and Gaps Relevant to the Safety and Balance of Structures Affected by Earthquakes and Floods: A Combined Literature Review and Systematic Bibliometrix Analysis
by Paikun, Andika Putra Pribad, Villiawanti Lestari and Maulana Yusuf
Eng. Proc. 2025, 107(1), 53; https://doi.org/10.3390/engproc2025107053 - 3 Sep 2025
Viewed by 741
Abstract
This study examines research trends and identifies key gaps relevant to the field of structural safety and resilience; additionally, a systematic literature review (SLR) guided by the PRISMA methodology was conducted, analyzing 4188 documents ranging from 1975 to 2025. The research revealed key [...] Read more.
This study examines research trends and identifies key gaps relevant to the field of structural safety and resilience; additionally, a systematic literature review (SLR) guided by the PRISMA methodology was conducted, analyzing 4188 documents ranging from 1975 to 2025. The research revealed key trends, including a focus on various aspects of the structural stability and resilience of buildings affected by earthquakes through analysis of various innovative methods and materials. The present study encompasses work describing the use of steel–wood composite columns to improve building stability, assessment of the impact of wood accumulation on bridges during floods, and the effect of debris flow on the stability of check dams. In addition, this study also evaluates the seismic performance of school buildings in Mexico, a method of diagnosing cracks in concrete dams, and the application of recycled materials from old tires for seismic disaster mitigation. Acoustic emission monitoring methods in medieval towers and the design of seismic isolation systems with variable damping are also discussed. Bibliometric analysis highlighted increased collaboration and a thematic shift towards green and data-driven approaches. However, significant gaps were identified. The findings explain that the use of innovative materials and methods can improve the stability and resistance of building structures with respect to dynamic loads, such as those associated with earthquakes and floods. The findings provide guidance for the design and maintenance of safer and more sustainable infrastructure in the future. Full article
Show Figures

Figure 1

18 pages, 1520 KB  
Article
Research of Fog Seal Performance with Sand Materials for Airport Asphalt Pavements
by Hui Zhang, Zhe Hu, Yongsheng Guan and Dongliang Hu
Materials 2025, 18(17), 4050; https://doi.org/10.3390/ma18174050 - 29 Aug 2025
Viewed by 403
Abstract
Asphalt pavements are widely used in airports due to their excellent skid resistance, vibration damping, and ease of construction. However, traditional fog seal materials often suffer from insufficient adhesion between fine sand and the emulsified asphalt binder, resulting in limited durability of the [...] Read more.
Asphalt pavements are widely used in airports due to their excellent skid resistance, vibration damping, and ease of construction. However, traditional fog seal materials often suffer from insufficient adhesion between fine sand and the emulsified asphalt binder, resulting in limited durability of the maintenance effect. This study aims to optimize the design of traditional fog seal materials and systematically evaluate their surface and durability performance. Firstly, a composite modified emulsified asphalt was prepared as the sand suspension slurry for the sand-containing fog seal. Through the dry wheel abrasion test, the optimal fine aggregates content was determined for four different spraying amounts (0.8, 0.9, 1.0, and 1.1 kg/m2). When the proportion of fine aggregates increases, the spraying amount needs to be increased accordingly to ensure the wrapping effect. Subsequently, pavement performance evaluation was conducted based on several indicators, including surface curing time, British Pendulum Number (BPN) friction coefficient, permeability coefficient, and mass loss rate. The results showed that the designed sand-containing fog seal significantly reduced surface curing time and exhibited superior skid resistance and permeability property compared to styrene-butadiene rubber (SBR)-modified emulsified asphalt. After freeze–thaw cycles, the maximum decrease in friction coefficient was 10.2%, and the mass loss rate after abrasion was approximately 67%, which were lower than those of SBR-modified emulsified asphalt (22.2% and 81%, respectively). Finally, considering the comprehensive performance comparison and evaluation, the optimal mix proportion was determined as 1.0 kg/m2 spraying amount with 30% fine aggregates content. The findings of this study provide practical support for improving the durability and service life of airport asphalt pavements. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

12 pages, 2020 KB  
Article
Numerical Simulations of 3C-SiC High-Sensitivity Strain Meters
by Annamaria Muoio, Angela Garofalo, Sergio Sapienza and Francesco La Via
Micromachines 2025, 16(9), 989; https://doi.org/10.3390/mi16090989 - 28 Aug 2025
Viewed by 376
Abstract
In the simulation of 3C-SiC strain gauges in dynamic environment—particularly those involving vibrations and wave propagation—the accurate representation of energy dissipation is essential for reliable predictive modeling. This paper discusses the implementation of both isotropic and anisotropic damping models within COMSOL Multiphysics. In [...] Read more.
In the simulation of 3C-SiC strain gauges in dynamic environment—particularly those involving vibrations and wave propagation—the accurate representation of energy dissipation is essential for reliable predictive modeling. This paper discusses the implementation of both isotropic and anisotropic damping models within COMSOL Multiphysics. In particular, it focuses on the use of an anisotropic loss factor, represented either as a scalar (ηS) for isotropic cases or as a symmetric 6 × 6 loss factor matrix (ηD) for anisotropic dissipation. This formulation enables the directional dependence of damping behavior to be captured, which is particularly important in composite materials, layered media, and metamaterials where energy dissipation mechanisms vary with orientation. The paper also explores the numerical implications of using anisotropic damping, such as its influence on eigenfrequency solutions, frequency response functions, and transient dynamic simulations. Furthermore, it highlights how the inclusion of directional damping can improve the correlation between simulated and experimental results in scenarios where standard isotropic models fail to capture key physical behaviors. Full article
(This article belongs to the Special Issue SiC Based Miniaturized Devices, 3rd Edition)
Show Figures

Figure 1

16 pages, 2576 KB  
Article
Viscoelastic and Damping Behavior of Composed Modified Asphalt for Functional Interlayers in Photovoltaic Pavements
by Jianrong Rao, Yian Zhao, Xichun Cao, Jiantao Li and Jinbo Xie
Buildings 2025, 15(16), 2830; https://doi.org/10.3390/buildings15162830 - 9 Aug 2025
Viewed by 436
Abstract
This study presents the development and performance evaluation of a rock asphalt-modified damping asphalt binder tailored for interlayer applications in photovoltaic pavement systems. A series of composite binders was formulated by incorporating Qingchuan rock asphalt, crumb rubber powder, and SBS polymer into base [...] Read more.
This study presents the development and performance evaluation of a rock asphalt-modified damping asphalt binder tailored for interlayer applications in photovoltaic pavement systems. A series of composite binders was formulated by incorporating Qingchuan rock asphalt, crumb rubber powder, and SBS polymer into base asphalt using an orthogonal design approach. The effects of different modifiers and their interactions were systematically assessed through conventional physical tests, DSR, BBR and damping ratio measurements. Furthermore, full-scale specimens (30 cm × 30 cm) were subjected to both single-pass and 24 h sustained loading tests to simulate real-world stress conditions. The results revealed that rock asphalt (RA) significantly enhanced the high-temperature stiffness and rutting resistance, while SBS improved ductility and low-temperature flexibility. Rubber powder (RP) notably increased the damping ratio, demonstrating superior energy dissipation potential. Among the nine formulations, the ternary blend of SBS, RA, and RP (denoted as L5) exhibited the most balanced and optimal performance, with G*/sinδ exceeding 5.0 kPa at 64 °C, a ductility of 132 cm, and damping ratios above 0.14. Load testing confirmed the material’s capacity for both instantaneous deformation resistance and delayed elastic recovery. These findings suggest that the L5 formulation is well suited for use in smart pavements where both mechanical durability and vibration attenuation are required. Full article
(This article belongs to the Special Issue Advances in Performance-Based Asphalt and Asphalt Mixtures)
Show Figures

Figure 1

19 pages, 3913 KB  
Article
Temperature-Dependent Elastic and Damping Properties of Basalt- and Glass-Fabric-Reinforced Composites: A Comparative Study
by Hubert Rahier, Jun Gu, Guillermo Meza Hernandez, Gulsen Nazerian and Hugo Sol
Fibers 2025, 13(8), 99; https://doi.org/10.3390/fib13080099 - 24 Jul 2025
Viewed by 501
Abstract
Fiber-reinforced composite materials exhibit orthotropic behavior, characterized by complex orthotropic engineering constants such as Young’s modulus, Poisson’s ratio, and shear modulus. It is widely recognized that basalt fibers possess superior resistance to elevated temperatures compared to glass fibers. However, the behavior of these [...] Read more.
Fiber-reinforced composite materials exhibit orthotropic behavior, characterized by complex orthotropic engineering constants such as Young’s modulus, Poisson’s ratio, and shear modulus. It is widely recognized that basalt fibers possess superior resistance to elevated temperatures compared to glass fibers. However, the behavior of these fibers within composites at typical operational temperatures for automotive and consumer goods applications has not been thoroughly investigated. A novel measurement setup based on the non-destructive impulse excitation method has been developed for the automated identification of complex orthotropic engineering constants as a function of temperature. This study provides a comparative analysis of the identified engineering constants of bidirectionally fabric-reinforced glass and basalt composites with an epoxy matrix, across a temperature range from −20 °C to 60 °C. The results reveal only minimal differences in stiffness and damping behavior between the examined glass and basalt samples. Full article
Show Figures

Figure 1

26 pages, 1923 KB  
Review
Review of Energy Dissipation Mechanisms in Concrete: Role of Advanced Materials, Mix Design, and Curing Conditions
by Hadi Bahmani, Hasan Mostafaei and Davood Mostofinejad
Sustainability 2025, 17(15), 6723; https://doi.org/10.3390/su17156723 - 24 Jul 2025
Cited by 1 | Viewed by 697
Abstract
Concrete structures increasingly face dynamic loading conditions, such as seismic events, vehicular traffic, and environmental vibrations, necessitating enhanced energy dissipation capabilities. The damping ratio, a critical parameter quantifying a material’s ability to dissipate vibrational energy, is typically low in conventional concrete, prompting extensive [...] Read more.
Concrete structures increasingly face dynamic loading conditions, such as seismic events, vehicular traffic, and environmental vibrations, necessitating enhanced energy dissipation capabilities. The damping ratio, a critical parameter quantifying a material’s ability to dissipate vibrational energy, is typically low in conventional concrete, prompting extensive research into strategies for improvement. This review comprehensively explores the impact of advanced concrete types—such as Engineered Cementitious Composites (ECCs), Ultra-High-Performance Concrete (UHPC), High-Performance Concrete (HPC), and polymer concrete—on enhancing the damping behavior. Additionally, key mix design innovations, including fiber reinforcement, rubber powder incorporation, and aggregate modification, are evaluated for their roles in increasing energy dissipation. External factors, particularly curing conditions, are also discussed for their influence on the damping performance. The findings consolidate experimental and theoretical insights into how material composition, mix design, and external treatments interact to optimize dynamic resilience. To guide future research, this paper identifies critical gaps including the need for multi-scale numerical simulation frameworks, standardized damping test protocols, and long-term performance evaluation under realistic service conditions. Advancing work in material innovation, optimized mix design, and controlled curing environments will be essential for developing next-generation concretes with superior vibration control, durability, and sustainability. These insights provide a strategic foundation for applications in seismic-prone and vibration-sensitive infrastructure. Full article
(This article belongs to the Special Issue Advanced Concrete- and Cement-Based Composite Materials)
Show Figures

Figure 1

13 pages, 3341 KB  
Article
Design and Experimentation of Variable-Density Damping Materials Based on Topology Optimization
by Xiangkun Zeng, Biaojie Han, Ziheng Kuang, Han Ding, Kaixin Wang, Canyi Du, Wei Wu, Hongluo Li and Jiangang Wang
Processes 2025, 13(7), 2276; https://doi.org/10.3390/pr13072276 - 17 Jul 2025
Viewed by 378
Abstract
In engineering structures, damping materials are an effective way to improve vibration characteristics, but they can significantly increase the weight and cost of the structure. In this study, based on the variable density topology optimization algorithm, combined with finite element simulation and experimental [...] Read more.
In engineering structures, damping materials are an effective way to improve vibration characteristics, but they can significantly increase the weight and cost of the structure. In this study, based on the variable density topology optimization algorithm, combined with finite element simulation and experimental validation, the vibration damping performance of a composite structure with steel plate and damping material is optimized. With the objective of minimizing the resonance response and the constraint of damping material volume, the material distribution of the damping layer is optimized, and the amount of damping material used is successfully reduced by 31.2%. By building a test rig and comparing the vibration responses under the three working conditions of no damping, full damping coverage, and optimized damping, the effectiveness of the optimization strategy is verified, and a significant reduction in vibration response is achieved. This study provides an innovative solution for lightweight design and cost control in engineering. Full article
Show Figures

Figure 1

31 pages, 3523 KB  
Article
Sustainable Tunable Anisotropic Ultrasound Medical Phantoms for Skin, Skeletal Muscle, and Other Fibrous Biological Tissues Using Natural Fibers and a Bio-Elastomeric Matrix
by Nuno A. T. C. Fernandes, Diana I. Alves, Diana P. Ferreira, Maria Monteiro, Ana Arieira, Filipe Silva, Betina Hinckel, Ana Leal and Óscar Carvalho
J. Compos. Sci. 2025, 9(7), 370; https://doi.org/10.3390/jcs9070370 - 16 Jul 2025
Cited by 1 | Viewed by 1048
Abstract
Medical phantoms are essential to imaging calibration, clinician training, and the validation of therapeutic procedures. However, most ultrasound phantoms prioritize acoustic realism while neglecting the viscoelastic and anisotropic properties of fibrous soft tissues. This gap limits their effectiveness in modeling realistic biomechanical behavior, [...] Read more.
Medical phantoms are essential to imaging calibration, clinician training, and the validation of therapeutic procedures. However, most ultrasound phantoms prioritize acoustic realism while neglecting the viscoelastic and anisotropic properties of fibrous soft tissues. This gap limits their effectiveness in modeling realistic biomechanical behavior, especially in wave-based diagnostics and therapeutic ultrasound. Current materials like gelatine and agarose fall short in reproducing the complex interplay between the solid and fluid components found in biological tissues. To address this, we developed a soft, anisotropic composite whose dynamic mechanical properties resemble fibrous biological tissues such as skin and skeletal muscle. This material enables wave propagation and vibration studies in controllably anisotropic media, which are rare and highly valuable. We demonstrate the tunability of damping and stiffness aligned with fiber orientation, providing a versatile platform for modeling soft-tissue dynamics and validating biomechanical simulations. The phantoms achieved Young’s moduli of 7.16–11.04 MPa for skin and 0.494–1.743 MPa for muscles, shear wave speeds of 1.51–5.93 m/s, longitudinal wave speeds of 1086–1127 m/s, and sound absorption coefficients of 0.13–0.76 dB/cm/MHz, with storage, loss, and complex moduli reaching 1.035–6.652 kPa, 0.1831–0.8546 kPa, and 2.138–10.82 kPa. These values reveal anisotropic response patterns analogous to native tissues. This novel natural fibrous composite system affords sustainable, low-cost ultrasound phantoms that support both mechanical fidelity and acoustic realism. Our approach offers a route to next-gen tissue-mimicking phantoms for elastography, wave propagation studies, and dynamic calibration across diverse clinical and research applications. Full article
Show Figures

Graphical abstract

62 pages, 4192 KB  
Review
Advancements in Magnetorheological Foams: Composition, Fabrication, AI-Driven Enhancements and Emerging Applications
by Hesamodin Khodaverdi and Ramin Sedaghati
Polymers 2025, 17(14), 1898; https://doi.org/10.3390/polym17141898 - 9 Jul 2025
Viewed by 837
Abstract
Magnetorheological (MR) foams represent a class of smart materials with unique tunable viscoelastic properties when subjected to external magnetic fields. Combining porous structures with embedded magnetic particles, these materials address challenges such as leakage and sedimentation, typically encountered in conventional MR fluids while [...] Read more.
Magnetorheological (MR) foams represent a class of smart materials with unique tunable viscoelastic properties when subjected to external magnetic fields. Combining porous structures with embedded magnetic particles, these materials address challenges such as leakage and sedimentation, typically encountered in conventional MR fluids while offering advantages like lightweight design, acoustic absorption, high energy harvesting capability, and tailored mechanical responses. Despite their potential, challenges such as non-uniform particle dispersion, limited durability under cyclic loads, and suboptimal magneto-mechanical coupling continue to hinder their broader adoption. This review systematically addresses these issues by evaluating the synthesis methods (ex situ vs. in situ), microstructural design strategies, and the role of magnetic particle alignment under varying curing conditions. Special attention is given to the influence of material composition—including matrix types, magnetic fillers, and additives—on the mechanical and magnetorheological behaviors. While the primary focus of this review is on MR foams, relevant studies on MR elastomers, which share fundamental principles, are also considered to provide a broader context. Recent advancements are also discussed, including the growing use of artificial intelligence (AI) to predict the rheological and magneto-mechanical behavior of MR materials, model complex device responses, and optimize material composition and processing conditions. AI applications in MR systems range from estimating shear stress, viscosity, and storage/loss moduli to analyzing nonlinear hysteresis, magnetostriction, and mixed-mode loading behavior. These data-driven approaches offer powerful new capabilities for material design and performance optimization, helping overcome long-standing limitations in conventional modeling techniques. Despite significant progress in MR foams, several challenges remain to be addressed, including achieving uniform particle dispersion, enhancing viscoelastic performance (storage modulus and MR effect), and improving durability under cyclic loading. Addressing these issues is essential for unlocking the full potential of MR foams in demanding applications where consistent performance, mechanical reliability, and long-term stability are crucial for safety, effectiveness, and operational longevity. By bridging experimental methods, theoretical modeling, and AI-driven design, this work identifies pathways toward enhancing the functionality and reliability of MR foams for applications in vibration damping, energy harvesting, biomedical devices, and soft robotics. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

14 pages, 8408 KB  
Article
MRE Encapsulating MRG: Synergistic Improvement in Modulus Tunability and Energy Dissipation
by Mi Zhu, Wang Li, Qi Hou and Yanmei Li
Nanomaterials 2025, 15(13), 1031; https://doi.org/10.3390/nano15131031 - 3 Jul 2025
Viewed by 453
Abstract
Traditional magnetorheological elastomers (MREs) often suffer from limited modulus tunability and insufficient energy dissipation, which restrict their applications. This study prepared a novel composite material by an MR gel (MRG) embedded within the MRE, called the MRE encapsulating MRG, to synergistically enhance these [...] Read more.
Traditional magnetorheological elastomers (MREs) often suffer from limited modulus tunability and insufficient energy dissipation, which restrict their applications. This study prepared a novel composite material by an MR gel (MRG) embedded within the MRE, called the MRE encapsulating MRG, to synergistically enhance these properties. Annular and radial MRE encapsulating MRG configurations were fabricated using 3D-printed molds, and their dynamic mechanical performance was characterized under varying magnetic fields (0–1 T) via a rheometer. The results revealed that the composite materials demonstrated significantly improved magnetic-induced modulus and magnetorheological (MR) effects compared to conventional MREs. Specifically, the annular MRE encapsulating MRG exhibited a 238.47% increase in the MR effect and a 51.35% enhancement in the magnetic-induced modulus compared to traditional MREs. Correspondingly, the radial configuration showed respective improvements of 168.19% and 27.03%. Furthermore, both the annular and radial composites displayed superior energy dissipation capabilities, with loss factors 2.68 and 2.03 times greater than those of pure MREs, respectively. Dynamic response tests indicated that composite materials, particularly the annular MRE encapsulating MRG, achieve faster response times. These advancements highlight the composite’s potential for high-precision damping systems, vibration isolation, and adaptive control applications. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

16 pages, 3031 KB  
Article
Mechanical Properties and Microstructure of Ramie Fiber-Reinforced Natural Rubber Composites
by Ajith Kuriakose Mani, Aju Zachariah Mani, Abin Varghese Jacob, Anantha Krishnan, Alen Shibu Paul, Akash V. Krishnan, Sivasubramanian Palanisamy, Sathiyalingam Kannaiyan and Song-Jeng Huang
J. Compos. Sci. 2025, 9(7), 332; https://doi.org/10.3390/jcs9070332 - 27 Jun 2025
Viewed by 827
Abstract
The pressing issue of global warming has prompted industries to seek sustainable and renewable materials that can reduce the use of petroleum-based products. Natural fibers, as bio-based and environmentally friendly materials, offer a promising solution. In this study, ramie fiber, which is one [...] Read more.
The pressing issue of global warming has prompted industries to seek sustainable and renewable materials that can reduce the use of petroleum-based products. Natural fibers, as bio-based and environmentally friendly materials, offer a promising solution. In this study, ramie fiber, which is one of the strongest natural fibers, is used as reinforcement, and the mechanical properties of natural rubber composites are evaluated. The composites were fabricated using a vulcanizing technique at 150 °C, and the fibers were cut into different lengths (5 mm, 10 m, and 15 mm) and weights (15 g, 30 g, and 60 g). Mechanical performance tests, including tensile and tear strength and hardness, were conducted. The results showed that as fiber concentration increased, so did the curing time. Moreover, the composites with higher fiber concentration had higher strength. The composite with a 10 mm fiber length and 60 g weight showed the highest tensile strength (10.35 MPa). Maximum tear strength (52.51 kN/m) was achieved with 5 mm fiber length and 60 g weight. Hardness values reached up to 88 Shore A (10 mm fiber length and 60 g weight), indicating excellent wear resistance. The specimen with the highest tensile strength was subjected to scanning electron microscope analysis. The SEM analysis revealed that the composite had a ductile type of fracture with appreciable plastic deformation, confirming good fiber–matrix interaction. These findings underscore the potential of ramie fiber–reinforced natural rubber composites as sustainable, high-performance alternatives to petroleum-based materials in structural and vibration-damping applications. Full article
(This article belongs to the Special Issue Mechanical Properties of Composite Materials and Joints)
Show Figures

Graphical abstract

14 pages, 2579 KB  
Article
Impact Sound Insulation Behavior of Ceramic Tile and Rubber Mat Lightweight Floating Floors Under Prolonged Loading in Residential Buildings
by Sérgio Klippel Filho, Fernanda Pacheco, Hinoel Zamis Ehrenbring, Roberto Christ, Bernardo Fonseca Tutikian and Jorge Patrício
Buildings 2025, 15(13), 2200; https://doi.org/10.3390/buildings15132200 - 23 Jun 2025
Viewed by 474
Abstract
Concerning building acoustics, the impact of sound propagation in the building structure can be considered one of the most relevant problems. Floating floors are an efficient solution, composed of a rigid walking surface above a resilient material. Functioning as a spring, the resilient [...] Read more.
Concerning building acoustics, the impact of sound propagation in the building structure can be considered one of the most relevant problems. Floating floors are an efficient solution, composed of a rigid walking surface above a resilient material. Functioning as a spring, the resilient layer must have adequate damping properties and compressive strength against permanent and imposed loads to guarantee its performance over time. In this context, this study aims to completely evaluate the impact sound reduction of composite lightweight floating floors formed by ceramic tiles and recycled rubber mats when subjected to prolonged loads, from material characterization to their application in a hypothetical scenario. This study was based on the dynamic stiffness (ISO 9052-1) and compressive creep (ISO 16534) of the resilient layer and the physical characterization of the ceramic tiles, predicting the present and future (15 years) impact sound reductions and their application in a hypothetical room, considering direct and indirect transmissions paths (ISO 12354-2). The results showed that the lightweight floating floor compositions lost their damping capability to a degree that can reduce their weighted reduction in the impact sound pressure level by up to 2 dB over prolonged periods (15 years). Howsoever, the compositions had considerable initial impact sound insulation capability and adequate performance maintenance over time. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

40 pages, 1120 KB  
Review
Optimization of Composite Sandwich Structures: A Review
by Muhammad Ali Sadiq and György Kovács
Machines 2025, 13(7), 536; https://doi.org/10.3390/machines13070536 - 20 Jun 2025
Cited by 2 | Viewed by 1849
Abstract
Composite sandwich structures play a significant role in various engineering applications due to their excellent strength-to-weight ratio, durability, fatigue life, acoustic performance, damping characteristics, stealth performance, and energy absorption capabilities. The optimization of these structures results in enhancing their mechanical performance, weight reduction, [...] Read more.
Composite sandwich structures play a significant role in various engineering applications due to their excellent strength-to-weight ratio, durability, fatigue life, acoustic performance, damping characteristics, stealth performance, and energy absorption capabilities. The optimization of these structures results in enhancing their mechanical performance, weight reduction, cost-effectiveness, and sustainability. This review provides a comprehensive analysis of recent advancements in the optimization techniques applied in the case of composite sandwich structures, focusing on structural configuration, facesheets, and innovative cores design, loading conditions, analysis methodologies, and practical applications. Various optimization procedures, single- and multi-objective algorithms, Genetic Algorithms (GAs), Particle Swarm Optimization (PSO), and Machine Learning (ML)-based optimization frameworks, as well as Finite Element (FE)-based numerical simulations, are discussed in detail. It highlights the role of core material and geometry, face sheet material selection, and manufacturing limitations in achieving optimal performance under static, dynamic, thermal, and impact loads under various boundary conditions. Furthermore, challenges such as computational efficiency, experimental validation, and trade-offs between structural weight and performance are examined. The findings of this review offer insights into the recent and future research directions of optimizing sandwich constructions, emphasizing the integration of advanced numerical techniques for analysis and efficient structural optimization. Full article
(This article belongs to the Special Issue Design and Manufacturing for Lightweight Components and Structures)
Show Figures

Figure 1

13 pages, 8476 KB  
Article
Investigation of the Vibrational Behavior of Thermoformed Magnetic Piezoelectrets
by Amélia M. Santos, Rui A. S. Moreira, Leonardo S. Caires, Ronaldo M. Lima, Elvio P. Silva, Polyane A. Santos, Jéssica F. Alves, Sergio M. O. Tavares, Kenedy Marconi G. Santos, Ruy A. P. Altafim and Ruy A. C. Altafim
Polymers 2025, 17(11), 1506; https://doi.org/10.3390/polym17111506 - 28 May 2025
Viewed by 491
Abstract
This study explores the vibrational behavior of Thermoformed Magneto-Piezoelectrets (TMPs), multifunctional materials consisting of thermoformed piezoelectrets with open tubular channels integrated with an additional magnetic layer. The inverse piezoelectric effect was characterized using laser vibrometry analysis, measuring the mechanical response of TMPs subjected [...] Read more.
This study explores the vibrational behavior of Thermoformed Magneto-Piezoelectrets (TMPs), multifunctional materials consisting of thermoformed piezoelectrets with open tubular channels integrated with an additional magnetic layer. The inverse piezoelectric effect was characterized using laser vibrometry analysis, measuring the mechanical response of TMPs subjected to electrical excitation over a frequency range of 0–20 kHz. Vibrational analysis was conducted at 144 spatial points, enabling the construction of detailed three-dimensional (3D) maps of the vibration operational modes and the spatial distribution of the piezoelectric coefficient (d33). The results demonstrated significant frequency-dependent behavior, with open channels exhibiting pronounced resonance peaks, whereas valleys displayed smoother and more uniform responses due to enhanced damping effects. The observed heterogeneity in vibrational behavior is attributed to structural variations, material composition, and anisotropic coupling between the piezoelectric and magnetic properties. The findings presented in this research provide a comprehensive understanding of the development and utilization of TMPs, offering parameters for enhancing their application and supporting new discoveries in studies related to the fabrication of novel thermoformed piezoelectric sensors. Full article
(This article belongs to the Special Issue High-Performance Polymeric Sensors, 3rd Edition)
Show Figures

Graphical abstract

Back to TopTop