Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (13,964)

Search Parameters:
Keywords = deep feature learning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 73507 KB  
Article
2C-Net: A Novel Spatiotemporal Dual-Channel Network for Soil Organic Matter Prediction Using Multi-Temporal Remote Sensing and Environmental Covariates
by Jiale Geng, Chong Luo, Jun Lu, Depiao Kong, Xue Li and Huanjun Liu
Remote Sens. 2025, 17(19), 3358; https://doi.org/10.3390/rs17193358 - 3 Oct 2025
Abstract
Soil organic matter (SOM) is essential for ecosystem health and agricultural productivity. Accurate prediction of SOM content is critical for modern agricultural management and sustainable soil use. Existing digital soil mapping (DSM) models, when processing temporal data, primarily focus on modeling the changes [...] Read more.
Soil organic matter (SOM) is essential for ecosystem health and agricultural productivity. Accurate prediction of SOM content is critical for modern agricultural management and sustainable soil use. Existing digital soil mapping (DSM) models, when processing temporal data, primarily focus on modeling the changes in input data across successive time steps. However, they do not adequately model the relationships among different input variables, which hinders the capture of complex data patterns and limits the accuracy of predictions. To address this problem, this paper proposes a novel deep learning model, 2-Channel Network (2C-Net), leveraging sequential multi-temporal remote sensing images to improve SOM prediction. The network separates input data into temporal and spatial data, processing them through independent temporal and spatial channels. Temporal data includes multi-temporal Sentinel-2 spectral reflectance, while spatial data consists of environmental covariates including climate and topography. The Multi-sequence Feature Fusion Module (MFFM) is proposed to globally model spectral data across multiple bands and time steps, and the Diverse Convolutional Architecture (DCA) extracts spatial features from environmental data. Experimental results show that 2C-Net outperforms the baseline model (CNN-LSTM) and mainstream machine learning model for DSM, with R2 = 0.524, RMSE = 0.884 (%), MAE = 0.581 (%), and MSE = 0.781 (%)2. Furthermore, this study demonstrates the significant importance of sequential spectral data for the inversion of SOM content and concludes the following: for the SOM inversion task, the bare soil period after tilling is a more important time window than other bare soil periods. 2C-Net model effectively captures spatiotemporal features, offering high-accuracy SOM predictions and supporting future DSM and soil management. Full article
(This article belongs to the Special Issue Remote Sensing in Soil Organic Carbon Dynamics)
17 pages, 10273 KB  
Article
Deep Learning-Based Approach for Automatic Defect Detection in Complex Structures Using PAUT Data
by Kseniia Barshok, Jung-In Choi and Jaesun Lee
Sensors 2025, 25(19), 6128; https://doi.org/10.3390/s25196128 - 3 Oct 2025
Abstract
This paper presents a comprehensive study on automated defect detection in complex structures using phased array ultrasonic testing data, focusing on both traditional signal processing and advanced deep learning methods. As a non-AI baseline, the well-known signal-to-noise ratio algorithm was improved by introducing [...] Read more.
This paper presents a comprehensive study on automated defect detection in complex structures using phased array ultrasonic testing data, focusing on both traditional signal processing and advanced deep learning methods. As a non-AI baseline, the well-known signal-to-noise ratio algorithm was improved by introducing automatic depth gate calculation using derivative analysis and eliminated the need for manual parameter tuning. Even though this method demonstrates robust flaw indication, it faces difficulties for automatic defect detection in highly noisy data or in cases with large pore zones. Considering this, multiple DL architectures—including fully connected networks, convolutional neural networks, and a novel Convolutional Attention Temporal Transformer for Sequences—are developed and trained on diverse datasets comprising simulated CIVA data and real-world data files from welded and composite specimens. Experimental results show that while the FCN architecture is limited in its ability to model dependencies, the CNN achieves a strong performance with a test accuracy of 94.9%, effectively capturing local features from PAUT signals. The CATT-S model, which integrates a convolutional feature extractor with a self-attention mechanism, consistently outperforms the other baselines by effectively modeling both fine-grained signal morphology and long-range inter-beam dependencies. Achieving a remarkable accuracy of 99.4% and a strong F1-score of 0.905 on experimental data, this integrated approach demonstrates significant practical potential for improving the reliability and efficiency of NDT in complex, heterogeneous materials. Full article
Show Figures

Figure 1

24 pages, 1024 KB  
Review
Artificial Intelligence in Glioma Diagnosis: A Narrative Review of Radiomics and Deep Learning for Tumor Classification and Molecular Profiling Across Positron Emission Tomography and Magnetic Resonance Imaging
by Rafail C. Christodoulou, Rafael Pitsillos, Platon S. Papageorgiou, Vasileia Petrou, Georgios Vamvouras, Ludwing Rivera, Sokratis G. Papageorgiou, Elena E. Solomou and Michalis F. Georgiou
Eng 2025, 6(10), 262; https://doi.org/10.3390/eng6100262 - 3 Oct 2025
Abstract
Background: This narrative review summarizes recent progress in artificial intelligence (AI), especially radiomics and deep learning, for non-invasive diagnosis and molecular profiling of gliomas. Methodology: A thorough literature search was conducted on PubMed, Scopus, and Embase for studies published from January [...] Read more.
Background: This narrative review summarizes recent progress in artificial intelligence (AI), especially radiomics and deep learning, for non-invasive diagnosis and molecular profiling of gliomas. Methodology: A thorough literature search was conducted on PubMed, Scopus, and Embase for studies published from January 2020 to July 2025, focusing on clinical and technical research. In key areas, these studies examine AI models’ predictive capabilities with multi-parametric Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET). Results: The domains identified in the literature include the advancement of radiomic models for tumor grading and biomarker prediction, such as Isocitrate Dehydrogenase (IDH) mutation, O6-methylguanine-dna methyltransferase (MGMT) promoter methylation, and 1p/19q codeletion. The growing use of convolutional neural networks (CNNs) and generative adversarial networks (GANs) in tumor segmentation, classification, and prognosis was also a significant topic discussed in the literature. Deep learning (DL) methods are evaluated against traditional radiomics regarding feature extraction, scalability, and robustness to imaging protocol differences across institutions. Conclusions: This review analyzes emerging efforts to combine clinical, imaging, and histology data within hybrid or transformer-based AI systems to enhance diagnostic accuracy. Significant findings include the application of DL to predict cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) deletion and chemokine CCL2 expression. These highlight the expanding capabilities of imaging-based genomic inference and the importance of clinical data in multimodal fusion. Challenges such as data harmonization, model interpretability, and external validation still need to be addressed. Full article
Show Figures

Figure 1

21 pages, 4053 KB  
Article
Self-Attention-Enhanced Deep Learning Framework with Multi-Scale Feature Fusion for Potato Disease Detection in Complex Multi-Leaf Field Conditions
by Ke Xie, Decheng Xu and Sheng Chang
Appl. Sci. 2025, 15(19), 10697; https://doi.org/10.3390/app151910697 - 3 Oct 2025
Abstract
Potato leaf diseases are recognized as a major threat to agricultural productivity and global food security, emphasizing the need for rapid and accurate detection methods. Conventional manual diagnosis is limited by inefficiency and susceptibility to bias, whereas existing automated approaches are often constrained [...] Read more.
Potato leaf diseases are recognized as a major threat to agricultural productivity and global food security, emphasizing the need for rapid and accurate detection methods. Conventional manual diagnosis is limited by inefficiency and susceptibility to bias, whereas existing automated approaches are often constrained by insufficient feature extraction, inadequate integration of multiple leaves, and poor generalization under complex field conditions. To overcome these challenges, a ResNet18-SAWF model was developed, integrating a self-attention mechanism with a multi-scale feature-fusion strategy within the ResNet18 framework. The self-attention module was designed to enhance the extraction of key features, including leaf color, texture, and disease spots, while the feature-fusion module was implemented to improve the holistic representation of multi-leaf structures under complex backgrounds. Experimental evaluation was conducted using a comprehensive dataset comprising both simple and complex background conditions. The proposed model was demonstrated to achieve an accuracy of 98.36% on multi-leaf images with complex backgrounds, outperforming baseline ResNet18 (91.80%), EfficientNet-B0 (86.89%), and MobileNet_V2 (88.53%) by 6.56, 11.47, and 9.83 percentage points, respectively. Compared with existing methods, superior performance was observed, with an 11.55 percentage point improvement over the average accuracy of complex background studies (86.81%) and a 0.7 percentage point increase relative to simple background studies (97.66%). These results indicate that the proposed approach provides a robust, accurate, and practical solution for potato leaf disease detection in real field environments, thereby advancing precision agriculture technologies. Full article
(This article belongs to the Section Agricultural Science and Technology)
Show Figures

Figure 1

38 pages, 5753 KB  
Article
EfficientNet-B3-Based Automated Deep Learning Framework for Multiclass Endoscopic Bladder Tissue Classification
by A. A. Abd El-Aziz, Mahmood A. Mahmood and Sameh Abd El-Ghany
Diagnostics 2025, 15(19), 2515; https://doi.org/10.3390/diagnostics15192515 - 3 Oct 2025
Abstract
Background: Bladder cancer (BLCA) is a malignant growth that originates from the urothelial lining of the urinary bladder. Diagnosing BLCA is complex due to the variety of tumor features and its heterogeneous nature, which leads to significant morbidity and mortality. Understanding tumor [...] Read more.
Background: Bladder cancer (BLCA) is a malignant growth that originates from the urothelial lining of the urinary bladder. Diagnosing BLCA is complex due to the variety of tumor features and its heterogeneous nature, which leads to significant morbidity and mortality. Understanding tumor histopathology is crucial for developing tailored therapies and improving patient outcomes. Objectives: Early diagnosis and treatment are essential to lower the mortality rate associated with bladder cancer. Manual classification of muscular tissues by pathologists is labor-intensive and relies heavily on experience, which can result in interobserver variability due to the similarities in cancerous cell morphology. Traditional methods for analyzing endoscopic images are often time-consuming and resource-intensive, making it difficult to efficiently identify tissue types. Therefore, there is a strong demand for a fully automated and reliable system for classifying smooth muscle images. Methods: This paper proposes a deep learning (DL) technique utilizing the EfficientNet-B3 model and a five-fold cross-validation method to assist in the early detection of BLCA. This model enables timely intervention and improved patient outcomes while streamlining the diagnostic process, ultimately reducing both time and costs for patients. We conducted experiments using the Endoscopic Bladder Tissue Classification (EBTC) dataset for multiclass classification tasks. The dataset was preprocessed using resizing and normalization methods to ensure consistent input. In-depth experiments were carried out utilizing the EBTC dataset, along with ablation studies to evaluate the best hyperparameters. A thorough statistical analysis and comparisons with five leading DL models—ConvNeXtBase, DenseNet-169, MobileNet, ResNet-101, and VGG-16—showed that the proposed model outperformed the others. Conclusions: The EfficientNet-B3 model achieved impressive results: accuracy of 99.03%, specificity of 99.30%, precision of 97.95%, recall of 96.85%, and an F1-score of 97.36%. These findings indicate that the EfficientNet-B3 model demonstrates significant potential in accurately and efficiently diagnosing BLCA. Its high performance and ability to reduce diagnostic time and cost make it a valuable tool for clinicians in the field of oncology and urology. Full article
(This article belongs to the Special Issue AI and Big Data in Medical Diagnostics)
18 pages, 3114 KB  
Article
A Novel Empirical-Informed Neural Network Method for Vehicle Tire Noise Prediction
by Peisong Dai, Ruxue Dai, Yingqi Yin, Jingjing Wang, Haibo Huang and Weiping Ding
Machines 2025, 13(10), 911; https://doi.org/10.3390/machines13100911 - 2 Oct 2025
Abstract
In the evaluation of vehicle noise, vibration and harshness (NVH) performance, interior noise control is the core consideration. In the early stage of automobile research and development, accurate prediction of interior noise caused by road surface is very important for optimizing NVH performance [...] Read more.
In the evaluation of vehicle noise, vibration and harshness (NVH) performance, interior noise control is the core consideration. In the early stage of automobile research and development, accurate prediction of interior noise caused by road surface is very important for optimizing NVH performance and shortening the development cycle. Although the data-driven machine learning method has been widely used in automobile noise research due to its advantages of no need for accurate physical modeling, data learning and generalization ability, it still faces the challenge of insufficient accuracy in capturing key local features, such as peaks, in practical NVH engineering. Aiming at this challenge, this paper introduces a forecast approach that utilizes an empirical-informed neural network, which aims to integrate a physical mechanism and a data-driven method. By deeply analyzing the transmission path of interior noise, this method embeds the acoustic mechanism features such as local peak and noise correlation into the deep neural network as physical constraints; therefore, this approach significantly enhances the model’s predictive performance. Experimental findings indicate that, in contrast to conventional deep learning techniques, this method is able to develop better generalization capabilities with limited samples, while still maintaining prediction accuracy. In the verification of specific models, this method shows obvious advantages in prediction accuracy and computational efficiency, which verifies its application value in practical engineering. The main contributions of this study are the proposal of an empirical-informed neural network that embeds vibro-acoustic mechanisms into the loss function and the introduction of an adaptive weight strategy to enhance model robustness. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

22 pages, 2526 KB  
Article
An Explainable Deep Learning Framework with Adaptive Feature Selection for Smart Lemon Disease Classification in Agriculture
by Naeem Ullah, Michelina Ruocco, Antonio Della Cioppa, Ivanoe De Falco and Giovanna Sannino
Electronics 2025, 14(19), 3928; https://doi.org/10.3390/electronics14193928 - 2 Oct 2025
Abstract
Early and accurate detection of lemon disease is necessary for effective citrus crop management. Traditional approaches often lack refined diagnosis, necessitating more powerful solutions. The article introduces adaptive PSO-LemonNetX, a novel framework integrating a novel deep learning model, adaptive Particle Swarm Optimization (PSO)-based [...] Read more.
Early and accurate detection of lemon disease is necessary for effective citrus crop management. Traditional approaches often lack refined diagnosis, necessitating more powerful solutions. The article introduces adaptive PSO-LemonNetX, a novel framework integrating a novel deep learning model, adaptive Particle Swarm Optimization (PSO)-based feature selection, and explainable AI (XAI) using LIME. The approach improves the accuracy of classification while also enhancing the explainability of the model. Our end-to-end model obtained 97.01% testing and 98.55% validation accuracy. Performance was enhanced further with adaptive PSO and conventional classifiers—100% validation accuracy using Naive Bayes and 98.8% testing accuracy using Naive Bayes and an SVM. The suggested PSO-based feature selection performed better than ReliefF, Kruskal–Wallis, and Chi-squared approaches. Due to its lightweight design and good performance, this approach can be adapted for edge devices in IoT-enabled smart farms, contributing to sustainable and automated disease detection systems. These results show the potential of integrating deep learning, PSO, grid search, and XAI into smart agriculture workflows for enhancing agricultural disease detection and decision-making. Full article
(This article belongs to the Special Issue Image Processing and Pattern Recognition)
Show Figures

Figure 1

18 pages, 17064 KB  
Article
Interplay of the Genetic Variants and Allele Specific Methylation in the Context of a Single Human Genome Study
by Maria D. Voronina, Olga V. Zayakina, Kseniia A. Deinichenko, Olga Sergeevna Shingalieva, Olga Y. Tsimmer, Darya A. Tarasova, Pavel Alekseevich Grebnev, Ekaterina A. Snigir, Sergey I. Mitrofanov, Vladimir S. Yudin, Anton A. Keskinov, Sergey M. Yudin, Dmitry V. Svetlichnyy and Veronika I. Skvortsova
Int. J. Mol. Sci. 2025, 26(19), 9641; https://doi.org/10.3390/ijms26199641 - 2 Oct 2025
Abstract
The methylation of CpG sites with 5mC mark is a dynamic epigenetic modification. However, the relationship between the methylation and the surrounding genomic sequence context remains poorly explored. Investigation of the allele methylation provides an opportunity to decipher the interplay between differences in [...] Read more.
The methylation of CpG sites with 5mC mark is a dynamic epigenetic modification. However, the relationship between the methylation and the surrounding genomic sequence context remains poorly explored. Investigation of the allele methylation provides an opportunity to decipher the interplay between differences in the primary DNA sequence and epigenetic variation. Here, we performed high-coverage long-read whole-genome direct DNA sequencing of one individual using Oxford Nanopore technology. We also used Illumina whole-genome sequencing of the parental genomes in order to identify allele-specific methylation sites with a trio-binning approach. We have compared the results of the haplotype-specific methylation detection and revealed that trio binning outperformed other approaches that do not take into account parental information. Also, we analysed the cis-regulatory effects of the genomic variations for influence on CpG methylation. To this end, we have used available Deep Learning models trained on the primary DNA sequence to score the cis-regulatory potential of the genomic loci. We evaluated the functional role of the allele-specific epigenetic changes with respect to gene expression using long-read Nanopore RNA sequencing. Our analysis revealed that the frequency of SNVs near allele-specific methylation positions is approximately four times higher compared to the biallelic methylation positions. In addition, we identified that allele-specific methylation sites are more conserved and enriched at the chromatin states corresponding to bivalent promoters and enhancers. Together, these findings suggest that significant impact on methylation can be encoded in the DNA sequence context. In order to elucidate the effect of the SNVs around sites of allele-specific methylation, we applied the Deep Learning model for detection of the cis-regulatory modules and estimated the impact that a genomic variant brings with respect to changes to the regulatory activity of a DNA loci. We revealed higher cis-regulatory impact variants near differentially methylated sites that we further coupled with transcriptomic long-read sequencing results. Our investigation also highlights technical aspects of allele methylation analysis and the impact of sequencing coverage on the accuracy of genomic phasing. In particular, increasing coverage above 30X does not lead to a significant improvement in allele-specific methylation discovery, and only the addition of trio binning information significantly improves phasing. We investigated genomic variation in a single human individual and coupled computational discovery of cis-regulatory modules with allele-specific methylation (ASM) profiling. In this proof-of-concept analysis, we observed that SNPs located near methylated CpG sites on the same haplotype were enriched for sequence features suggestive of high-impact regulatory potential. This finding—derived from one deeply sequenced genome—illustrates how phased genetic and epigenetic data analyses can jointly put forward a hypotheses about the involvement of regulatory protein machinery in shaping allele-specific epigenetic states. Our investigation provides a methodological framework and candidate loci for future studies of genomic imprinting and cis-mediated epigenetic regulation in humans. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

16 pages, 13271 KB  
Article
Smartphone-Based Estimation of Cotton Leaf Nitrogen: A Learning Approach with Multi-Color Space Fusion
by Shun Chen, Shizhe Qin, Yu Wang, Lulu Ma and Xin Lv
Agronomy 2025, 15(10), 2330; https://doi.org/10.3390/agronomy15102330 - 2 Oct 2025
Abstract
To address the limitations of traditional cotton leaf nitrogen content estimation methods, which include low efficiency, high cost, poor portability, and challenges in vegetation index acquisition owing to environmental interference, this study focused on emerging non-destructive nutrient estimation technologies. This study proposed an [...] Read more.
To address the limitations of traditional cotton leaf nitrogen content estimation methods, which include low efficiency, high cost, poor portability, and challenges in vegetation index acquisition owing to environmental interference, this study focused on emerging non-destructive nutrient estimation technologies. This study proposed an innovative method that integrates multi-color space fusion with deep and machine learning to estimate cotton leaf nitrogen content using smartphone-captured digital images. A dataset comprising smartphone-acquired cotton leaf images was processed through threshold segmentation and preprocessing, then converted into RGB, HSV, and Lab color spaces. The models were developed using deep-learning architectures including AlexNet, VGGNet-11, and ResNet-50. The conclusions of this study are as follows: (1) The optimal single-color-space nitrogen estimation model achieved a validation set R2 of 0.776. (2) Feature-level fusion by concatenation of multidimensional feature vectors extracted from three color spaces using the optimal model, combined with an attention learning mechanism, improved the validation R2 to 0.827. (3) Decision-level fusion by concatenating nitrogen estimation values from optimal models of different color spaces into a multi-source decision dataset, followed by machine learning regression modeling, increased the final validation R2 to 0.830. The dual fusion method effectively enabled rapid and accurate nitrogen estimation in cotton crops using smartphone images, achieving an accuracy 5–7% higher than that of single-color-space models. The proposed method provides scientific support for efficient cotton production and promotes sustainable development in the cotton industry. Full article
(This article belongs to the Special Issue Crop Nutrition Diagnosis and Efficient Production)
Show Figures

Figure 1

22 pages, 782 KB  
Article
Hybrid CNN-Swin Transformer Model to Advance the Diagnosis of Maxillary Sinus Abnormalities on CT Images Using Explainable AI
by Mohammad Alhumaid and Ayman G. Fayoumi
Computers 2025, 14(10), 419; https://doi.org/10.3390/computers14100419 - 2 Oct 2025
Abstract
Accurate diagnosis of sinusitis is essential due to its widespread prevalence and its considerable impact on patient quality of life. While multiple imaging techniques are available for detecting maxillary sinus, computed tomography (CT) remains the preferred modality because of its high sensitivity and [...] Read more.
Accurate diagnosis of sinusitis is essential due to its widespread prevalence and its considerable impact on patient quality of life. While multiple imaging techniques are available for detecting maxillary sinus, computed tomography (CT) remains the preferred modality because of its high sensitivity and spatial resolution. Although recent advances in deep learning have led to the development of automated methods for sinusitis classification, many existing models perform poorly in the presence of complex pathological features and offer limited interpretability, which hinders their integration into clinical workflows. In this study, we propose a hybrid deep learning framework that combines EfficientNetB0, a convolutional neural network, with the Swin Transformer, a vision transformer, to improve feature representation. An attention-based fusion module is used to integrate both local and global information, thereby enhancing diagnostic accuracy. To improve transparency and support clinical adoption, the model incorporates explainable artificial intelligence (XAI) techniques using Gradient-weighted Class Activation Mapping (Grad-CAM). This allows for visualization of the regions influencing the model’s predictions, helping radiologists assess the clinical relevance of the results. We evaluate the proposed method on a curated maxillary sinus CT dataset covering four diagnostic categories: Normal, Opacified, Polyposis, and Retention Cysts. The model achieves a classification accuracy of 95.83%, with precision, recall, and F1 score all at 95%. Grad-CAM visualizations indicate that the model consistently focuses on clinically significant regions of the sinus anatomy, supporting its potential utility as a reliable diagnostic aid in medical practice. Full article
19 pages, 2476 KB  
Article
Deep Reinforcement Learning-Based DCT Image Steganography
by Rongjian Yang, Lixin Liu, Bin Han and Feng Hu
Mathematics 2025, 13(19), 3150; https://doi.org/10.3390/math13193150 - 2 Oct 2025
Abstract
In this article, we present a novel reinforcement learning-based framework in the discrete cosine transform to achieve better image steganography. First, the input image is divided into several blocks to extract semantic and structural features, evaluating their suitability for data embedding. Second, the [...] Read more.
In this article, we present a novel reinforcement learning-based framework in the discrete cosine transform to achieve better image steganography. First, the input image is divided into several blocks to extract semantic and structural features, evaluating their suitability for data embedding. Second, the Proximal Policy Optimization algorithm (PPO) is introduced in the block selection process to learn adaptive embedding policies, which effectively balances image fidelity and steganographic security. Moreover, the Deep Q-network (DQN) is used for adaptively adjusting the weights of the peak signal-to-noise ratio, structural similarity index, and detection accuracy in the reward formulation. Experimental results on the BOSSBase dataset confirm the superiority of our framework, achieving both lower detection rates and higher visual quality across a range of embedding payloads, particularly under low-bpp conditions. Full article
Show Figures

Figure 1

26 pages, 5861 KB  
Article
Robust Industrial Surface Defect Detection Using Statistical Feature Extraction and Capsule Network Architectures
by Azeddine Mjahad and Alfredo Rosado-Muñoz
Sensors 2025, 25(19), 6063; https://doi.org/10.3390/s25196063 - 2 Oct 2025
Abstract
Automated quality control is critical in modern manufacturing, especially for metallic cast components, where fast and accurate surface defect detection is required. This study evaluates classical Machine Learning (ML) algorithms using extracted statistical parameters and deep learning (DL) architectures including ResNet50, Capsule Networks, [...] Read more.
Automated quality control is critical in modern manufacturing, especially for metallic cast components, where fast and accurate surface defect detection is required. This study evaluates classical Machine Learning (ML) algorithms using extracted statistical parameters and deep learning (DL) architectures including ResNet50, Capsule Networks, and a 3D Convolutional Neural Network (CNN3D) using 3D image inputs. Using the Dataset Original, ML models with the selected parameters achieved high performance: RF reached 99.4 ± 0.2% precision and 99.4 ± 0.2% sensitivity, GB 96.0 ± 0.2% precision and 96.0 ± 0.2% sensitivity. ResNet50 trained with extracted parameters reached 98.0 ± 1.5% accuracy and 98.2 ± 1.7% F1-score. Capsule-based architectures achieved the best results, with ConvCapsuleLayer reaching 98.7 ± 0.2% accuracy and 100.0 ± 0.0% precision for the normal class, and 98.9 ± 0.2% F1-score for the affected class. CNN3D applied on 3D image inputs reached 88.61 ± 1.01% accuracy and 90.14 ± 0.95% F1-score. Using the Dataset Expanded with ML and PCA-selected features, Random Forest achieved 99.4 ± 0.2% precision and 99.4 ± 0.2% sensitivity, K-Nearest Neighbors 99.2 ± 0.0% precision and 99.2 ± 0.0% sensitivity, and SVM 99.2 ± 0.0% precision and 99.2 ± 0.0% sensitivity, demonstrating consistent high performance. All models were evaluated using repeated train-test splits to calculate averages of standard metrics (accuracy, precision, recall, F1-score), and processing times were measured, showing very low per-image execution times (as low as 3.69×104 s/image), supporting potential real-time industrial application. These results indicate that combining statistical descriptors with ML and DL architectures provides a robust and scalable solution for automated, non-destructive surface defect detection, with high accuracy and reliability across both the original and expanded datasets. Full article
(This article belongs to the Special Issue AI-Based Computer Vision Sensors & Systems—2nd Edition)
Show Figures

Figure 1

13 pages, 1111 KB  
Article
Enhancing Pediatric Asthma Homecare Management: The Potential of Deep Learning Associated with Spirometry-Labelled Data
by Heidi Cleverley-Leblanc, Johan N. Siebert, Jonathan Doenz, Mary-Anne Hartley, Alain Gervaix, Constance Barazzone-Argiroffo, Laurence Lacroix and Isabelle Ruchonnet-Metrailler
Appl. Sci. 2025, 15(19), 10662; https://doi.org/10.3390/app151910662 - 2 Oct 2025
Abstract
A critical factor contributing to the burden of childhood asthma is the lack of effective self-management in homecare settings. Artificial intelligence (AI) and lung sound monitoring could help address this gap. Yet, existing AI-driven auscultation tools focus on wheeze detection and often rely [...] Read more.
A critical factor contributing to the burden of childhood asthma is the lack of effective self-management in homecare settings. Artificial intelligence (AI) and lung sound monitoring could help address this gap. Yet, existing AI-driven auscultation tools focus on wheeze detection and often rely on subjective human labels. To improve the early detection of asthma worsening in children in homecare setting, we trained and evaluated a Deep Learning model based on spirometry-labelled lung sounds recordings to detect asthma exacerbation. A single-center prospective observational study was conducted between November 2020 and September 2022 at a tertiary pediatric pulmonology department. Electronic stethoscopes were used to record lung sounds before and after bronchodilator administration in outpatients. In the same session, children also underwent spirometry, which served as the reference standard for labelling the lung sound data. Model performance was assessed on an internal validation set using receiver operating characteristic (ROC) curves. A total of 16.8 h of lung sound recordings from 151 asthmatic pediatric outpatients were collected. The model showed promising discrimination performance, achieving an AUROC of 0.763 in the training set, but performance in the validation set was limited (AUROC = 0.398). This negative result demonstrates that acoustic features alone may not provide sufficient diagnostic information for the early detection of asthma attacks, especially in mostly asymptomatic outpatients typical of homecare settings. It also underlines the challenges introduced by differences in how digital stethoscopes process sounds and highlights the need to define the severity threshold at which acoustic monitoring becomes informative, and clinically relevant for home management. Full article
(This article belongs to the Special Issue Deep Learning and Data Mining: Latest Advances and Applications)
Show Figures

Figure 1

23 pages, 4303 KB  
Article
LMCSleepNet: A Lightweight Multi-Channel Sleep Staging Model Based on Wavelet Transform and Muli-Scale Convolutions
by Jiayi Yang, Yuanyuan Chen, Tingting Yu and Ying Zhang
Sensors 2025, 25(19), 6065; https://doi.org/10.3390/s25196065 - 2 Oct 2025
Abstract
Sleep staging is a crucial indicator for assessing sleep quality, which contributes to sleep monitoring and the diagnosis of sleep disorders. Although existing sleep staging methods achieve high classification performance, two major challenges remain: (1) the ability to effectively extract salient features from [...] Read more.
Sleep staging is a crucial indicator for assessing sleep quality, which contributes to sleep monitoring and the diagnosis of sleep disorders. Although existing sleep staging methods achieve high classification performance, two major challenges remain: (1) the ability to effectively extract salient features from multi-channel sleep data remains limited; (2) excessive model parameters hinder efficiency improvements. To address these challenges, this work proposes a lightweight multi-channel sleep staging network (LMCSleepNet). LMCSleepNet is composed of four modules. The first module enhances frequency domain features through continuous wavelet transform. The second module extracts time–frequency features using multi-scale convolutions. The third module optimizes ResNet18 with depthwise separable convolutions to reduce parameters. The fourth module improves spatial correlation using the Convolutional Block Attention Module (CBAM). On the public datasets SleepEDF-20, SleepEDF-78, and LMCSleepNet, respectively, LMCSleepNet achieved classification accuracies of 88.2% (κ = 0.84, MF1 = 82.4%) and 84.1% (κ = 0.77, MF1 = 77.7%), while reducing model parameters to 1.49 M. Furthermore, experiments validated the influence of temporal sampling points in wavelet time–frequency maps on sleep classification performance (accuracy, Cohen’s kappa, and macro-average F1-score) and the influence of multi-scale dilated convolution module fusion methods on classification performance. LMCSleepNet is an efficient lightweight model for extracting and integrating multimodal features from multichannel Polysomnography (PSG) data, which facilitates its application in resource-constrained scenarios. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

26 pages, 4017 KB  
Article
Research on Multi-Source Information-Based Mineral Prospecting Prediction Using Machine Learning
by Jie Xu, Yongmei Li, Wei Liu, Shili Han, Kaixuan Tan, Yanshi Xie and Yi Zhao
Minerals 2025, 15(10), 1046; https://doi.org/10.3390/min15101046 - 1 Oct 2025
Abstract
The Shizhuyuan polymetallic deposit in Hunan Province, China, is a world-class ore field rich in tungsten (W), tin (Sn), molybdenum (Mo), and bismuth (Bi), now facing resource depletion due to prolonged exploitation. This study addresses the limitations of traditional geological prediction methods in [...] Read more.
The Shizhuyuan polymetallic deposit in Hunan Province, China, is a world-class ore field rich in tungsten (W), tin (Sn), molybdenum (Mo), and bismuth (Bi), now facing resource depletion due to prolonged exploitation. This study addresses the limitations of traditional geological prediction methods in complex terrain by integrating multi-source datasets—including γ-ray spectrometry, high-precision magnetometry, induced polarization (IP), and soil radon measurements—across 5049 samples. Unsupervised factor analysis was employed to extract five key ore-indicating factors, explaining 82.78% of data variance. Based on these geological features, predictive models including Support Vector Machine (SVM), Random Forest (RF), and Extreme Gradient Boosting (XGBoost) were constructed and compared. SHAP values were employed to quantify the contribution of each geological feature to the prediction outcomes, thereby transforming the machine learning “black-box models” into an interpretable geological decision-making basis. The results demonstrate that machine learning, particularly when integrated with multi-source data, provides a powerful and interpretable approach for deep mineral prospectivity mapping in concealed terrains. Full article
(This article belongs to the Section Mineral Exploration Methods and Applications)
Show Figures

Figure 1

Back to TopTop