Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline

Search Results (3)

Search Parameters:
Keywords = defect-tolerant memristor circuits

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2103 KB  
Article
Defect-Tolerant Memristor Crossbar Circuits for Local Learning Neural Networks
by Seokjin Oh, Rina Yoon and Kyeong-Sik Min
Nanomaterials 2025, 15(3), 213; https://doi.org/10.3390/nano15030213 - 28 Jan 2025
Cited by 2 | Viewed by 1171
Abstract
Local learning algorithms, such as Equilibrium Propagation (EP), have emerged as alternatives to global learning methods like backpropagation for training neural networks. EP offers the potential for more energy-efficient hardware implementation by utilizing only local neuron information for weight updates. However, the practical [...] Read more.
Local learning algorithms, such as Equilibrium Propagation (EP), have emerged as alternatives to global learning methods like backpropagation for training neural networks. EP offers the potential for more energy-efficient hardware implementation by utilizing only local neuron information for weight updates. However, the practical implementation of EP using memristor-based circuits has significant challenges due to the immature fabrication processes of memristors, resulting in defects and variability issues. Previous implementations of EP with memristor crossbars use two separate circuits for the free and nudge phases. This approach can suffer differences in defects and variability between the two circuits, potentially leading to significant performance degradation. To overcome these limitations, in this paper, we propose a novel time-multiplexing technique that combines the free and nudge phases into a single memristor circuit. Our proposed scheme integrates the dynamic equations of the free and nudge phases into one circuit, allowing defects and variability compensation during the training. Simulations using the MNIST dataset demonstrate that our approach maintains a 92% recognition rate even with a 10% defect rate in memristors, compared to 33% for the previous scheme. Furthermore, the proposed circuit reduces area overhead for both the memristor circuit solving EP’s algorithm and the weight-update control circuit. Full article
(This article belongs to the Special Issue Neuromorphic Devices: Materials, Structures and Bionic Applications)
Show Figures

Figure 1

13 pages, 4583 KB  
Article
Synapse-Neuron-Aware Training Scheme of Defect-Tolerant Neural Networks with Defective Memristor Crossbars
by Jiyong An, Seokjin Oh, Tien Van Nguyen and Kyeong-Sik Min
Micromachines 2022, 13(2), 273; https://doi.org/10.3390/mi13020273 - 8 Feb 2022
Cited by 8 | Viewed by 2556
Abstract
To overcome the limitations of CMOS digital systems, emerging computing circuits such as memristor crossbars have been investigated as potential candidates for significantly increasing the speed and energy efficiency of next-generation computing systems, which are required for implementing future AI hardware. Unfortunately, manufacturing [...] Read more.
To overcome the limitations of CMOS digital systems, emerging computing circuits such as memristor crossbars have been investigated as potential candidates for significantly increasing the speed and energy efficiency of next-generation computing systems, which are required for implementing future AI hardware. Unfortunately, manufacturing yield still remains a serious challenge in adopting memristor-based computing systems due to the limitations of immature fabrication technology. To compensate for malfunction of neural networks caused from the fabrication-related defects, a new crossbar training scheme combining the synapse-aware with the neuron-aware together is proposed in this paper, for optimizing the defect map size and the neural network’s performance simultaneously. In the proposed scheme, the memristor crossbar’s columns are divided into 3 groups, which are the severely-defective, moderately-defective, and normal columns, respectively. Here, each group is trained according to the trade-off relationship between the neural network’s performance and the hardware overhead of defect-tolerant training. As a result of this group-based training method combining the neuron-aware with the synapse-aware, in this paper, the new scheme can be successful in improving the network’s performance better than both the synapse-aware and the neuron-aware while minimizing its hardware burden. For example, when testing the defect percentage = 10% with MNIST dataset, the proposed scheme outperforms the synapse-aware and the neuron-aware by 3.8% and 3.4% for the number of crossbar’s columns trained for synapse defects = 10 and 138 among 310, respectively, while maintaining the smaller memory size than the synapse-aware. When the trained columns = 138, the normalized memory size of the synapse-neuron-aware scheme can be smaller by 3.1% than the synapse-aware. Full article
Show Figures

Figure 1

17 pages, 2519 KB  
Article
Hybrid Circuit of Memristor and Complementary Metal-Oxide-Semiconductor for Defect-Tolerant Spatial Pooling with Boost-Factor Adjustment
by Tien Van Nguyen, Khoa Van Pham and Kyeong-Sik Min
Materials 2019, 12(13), 2122; https://doi.org/10.3390/ma12132122 - 1 Jul 2019
Cited by 11 | Viewed by 3664
Abstract
Hierarchical Temporal Memory (HTM) has been known as a software framework to model the brain’s neocortical operation. However, mimicking the brain’s neocortical operation by not software but hardware is more desirable, because the hardware can not only describe the neocortical operation, but can [...] Read more.
Hierarchical Temporal Memory (HTM) has been known as a software framework to model the brain’s neocortical operation. However, mimicking the brain’s neocortical operation by not software but hardware is more desirable, because the hardware can not only describe the neocortical operation, but can also employ the brain’s architectural advantages. To develop a hybrid circuit of memristor and Complementary Metal-Oxide-Semiconductor (CMOS) for realizing HTM’s spatial pooler (SP) by hardware, memristor defects such as stuck-at-faults and variations should be considered. For solving the defect problem, we first show that the boost-factor adjustment can make HTM’s SP defect-tolerant, because the false activation of defective columns are suppressed. Second, we propose a memristor-CMOS hybrid circuit with the boost-factor adjustment to realize this defect-tolerant SP by hardware. The proposed circuit does not rely on the conventional defect-aware mapping scheme, which cannot avoid the false activation of defective columns. For the Modified subset of National Institute of Standards and Technology (MNIST) vectors, the boost-factor adjusted crossbar with defects = 10% shows a rate loss of only ~0.6%, compared to the ideal crossbar with defects = 0%. On the contrary, the defect-aware mapping without the boost-factor adjustment demonstrates a significant rate loss of ~21.0%. The energy overhead of the boost-factor adjustment is only ~0.05% of the programming energy of memristor synapse crossbar. Full article
Show Figures

Figure 1

Back to TopTop