Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (98)

Search Parameters:
Keywords = deicing salts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3819 KB  
Article
Chemical Interactions of Deicing Salts with Concrete Pastes Containing Slag Cement
by Mohsen Torabi and Peter C. Taylor
Materials 2025, 18(17), 3962; https://doi.org/10.3390/ma18173962 - 24 Aug 2025
Viewed by 481
Abstract
Chloride-based deicing salt solutions have been contacted with concrete pastes containing slag cement at different conditions, such as slag replacement (20–80%), type (CaCl2, MgCl2, NaCl), and concentration (1 M–5 M) of the deicing salt, as well as temperature (ambient [...] Read more.
Chloride-based deicing salt solutions have been contacted with concrete pastes containing slag cement at different conditions, such as slag replacement (20–80%), type (CaCl2, MgCl2, NaCl), and concentration (1 M–5 M) of the deicing salt, as well as temperature (ambient & −18 °C), and the extent of their reactions have been studied using XRD and ICP-OES. Also, solubility of Friedel salt (FS) has been measured in different types and concentrations of deicing salt solutions. It has been observed that the chemical deterioration arising from the formation and then dissolution of FS is more significant than the damage caused by the formation and expansion of oxychlorides in the pastes containing slag. While calcium oxychloride in its dried form can linger inside the paste for a long time, FS undergoes incongruent dissolution in CaCl2 and MgCl2 solutions and leaves the system. Presence of higher levels of AFm phases in pastes containing slag will further underscore this phenomenon. The extent of this chemical deterioration is relatively lower in NaCl solutions. Also, it was found that the nature of the chemical interaction changes with the concentration of the salt, as some disappeared phases might reappear and then disappear again. Using XRD and ICP-OES, this study provides a mechanistic understanding of salt-induced chemical deterioration in slag cement pastes by identifying phase-specific vulnerabilities and tracking the formation, transformation, and dissolution of key phases, such as Friedel’s salt and calcium oxychloride; additionally, the influence of various parameters have been studied, and chemical mechanisms have been proposed. Full article
Show Figures

Figure 1

29 pages, 4258 KB  
Review
Corrosion Performance of Atmospheric Corrosion Resistant Steel Bridges in the Current Climate: A Performance Review
by Nafiseh Ebrahimi, Melina Roshanfar, Mojtaba Momeni and Olga Naboka
Materials 2025, 18(15), 3510; https://doi.org/10.3390/ma18153510 - 26 Jul 2025
Viewed by 783
Abstract
Weathering steel (WS) is widely used in bridge construction due to its high corrosion resistance, durability, and low maintenance requirements. This paper reviews the performance of WS bridges in Canadian climates, focusing on the formation of protective patina, influencing factors, and long-term maintenance [...] Read more.
Weathering steel (WS) is widely used in bridge construction due to its high corrosion resistance, durability, and low maintenance requirements. This paper reviews the performance of WS bridges in Canadian climates, focusing on the formation of protective patina, influencing factors, and long-term maintenance strategies. The protective patina, composed of stable iron oxyhydroxides, develops over time under favorable wet–dry cycles but can be disrupted by environmental aggressors such as chlorides, sulfur dioxide, and prolonged moisture exposure. Key alloying elements like Cu, Cr, Ni, and Nb enhance corrosion resistance, while design considerations—such as drainage optimization and avoidance of crevices—are critical for performance. The study highlights the vulnerability of WS bridges to microenvironments, including de-icing salt exposure, coastal humidity, and debris accumulation. Regular inspections and maintenance, such as debris removal, drainage system upkeep, and targeted cleaning, are essential to mitigate corrosion risks. Climate change exacerbates challenges, with rising temperatures, altered precipitation patterns, and ocean acidification accelerating corrosion in coastal regions. Future research directions include optimizing WS compositions with advanced alloys (e.g., rare earth elements) and integrating climate-resilient design practices. This review highlights the need for a holistic approach combining material science, proactive maintenance, and adaptive design to ensure the longevity of WS bridges in evolving environmental conditions. Full article
Show Figures

Figure 1

14 pages, 1342 KB  
Article
Mitigating Deicer-Induced Salinity Through Activated Carbon and Salt-Tolerant Grass Integration: A Case of Pennisetum alopecuroides
by Jae-Hyun Park, Hyo-In Lim, Myung-Hun Lee, Yong-Han Yoon and Jin-Hee Ju
Environments 2025, 12(7), 250; https://doi.org/10.3390/environments12070250 - 20 Jul 2025
Viewed by 745
Abstract
The use of chloride-based deicing salts, particularly sodium chloride (NaCl) and calcium chloride (CaCl2), is a common practice in cold regions for maintaining road safety during winter. However, the accumulation of salt residues in adjacent soils poses serious environmental threats, including [...] Read more.
The use of chloride-based deicing salts, particularly sodium chloride (NaCl) and calcium chloride (CaCl2), is a common practice in cold regions for maintaining road safety during winter. However, the accumulation of salt residues in adjacent soils poses serious environmental threats, including reduced pH, increased electrical conductivity (EC), disrupted soil structure, and plant growth inhibition. This study aimed to evaluate the combined effect of activated carbon (AC) and Pennisetum alopecuroides, a salt-tolerant perennial grass, in alleviating salinity stress under deicer-treated soils. A factorial greenhouse experiment was conducted using three fixed factors: (i) presence or absence of Pennisetum alopecuroides, (ii) deicer type (NaCl or CaCl2), and (iii) activated carbon mixing ratio (0, 1, 2, 5, and 10%). Soil pH, EC, and ion concentrations (Na+, Cl, Ca2+) were measured, along with six plant growth indicators. The results showed that increasing AC concentrations significantly increased pH and reduced EC and ion accumulation, with the 5% AC treatment being optimal in both deicer systems. Plant physiological responses were improved in AC-amended soils, especially under CaCl2 treatment, indicating less ion toxicity and better root zone conditions. The interaction effects between AC, deicer type, and plant presence were statistically significant (p < 0.05), supporting a synergistic remediation mechanism involving both adsorption and biological uptake. Despite the limitations of short-term controlled conditions, this study offers a promising phytomanagement strategy using natural adsorbents and salt-tolerant plants for sustainable remediation of salt-affected soils in road-adjacent and urban environments. Full article
Show Figures

Figure 1

22 pages, 9661 KB  
Article
Regional Groundwater Flow and Advective Contaminant Transport Modeling in a Typical Hydrogeological Environment of Northern New Jersey
by Toritseju Oyen and Duke Ophori
Hydrology 2025, 12(7), 167; https://doi.org/10.3390/hydrology12070167 - 27 Jun 2025
Viewed by 736
Abstract
This study develops a numerical model to simulate groundwater flow and contaminant transport in a “typical hydrogeological environment” of northern New Jersey, addressing freshwater decline. Focusing on the Lower Passaic water management area (WMA), we model chloride transport in a fractured-rock aquifer, where [...] Read more.
This study develops a numerical model to simulate groundwater flow and contaminant transport in a “typical hydrogeological environment” of northern New Jersey, addressing freshwater decline. Focusing on the Lower Passaic water management area (WMA), we model chloride transport in a fractured-rock aquifer, where fracture networks control hydraulic conductivity and porosity. The urbanized setting—encompassing Montclair State University (MSU) and municipal wells—features heterogeneous groundwater systems and critical water resources, providing an ideal case study for worst-case contaminant transport scenarios. Using MODFLOW and MODPATH, we simulated flow and tracked particles over 20 years. Results show that chloride from MSU reached the Third River in 4 years and the Passaic River in 10 years in low-porosity fractures (0.2), with longer times (8 and 20 years) in high-porosity zones (0.4). The First Watchung Mountains were identified as the primary recharge area. Chloride was retained in immobile pores but transported rapidly through fractures, with local flow systems (MSU to Third River) faster than regional systems (MSU to Passaic River). These findings confirm chloride in groundwater, which may originate from road salt application, can reach discharge points in 4–20 years, emphasizing the need for recharge-area monitoring, salt-reduction policies, and site-specific assessments to protect fractured-rock aquifers. Full article
Show Figures

Figure 1

14 pages, 5734 KB  
Article
Rheological Behaviors of Rubber-Modified Asphalt Under Complicated Environment
by Xia Wu, Chunfeng Zhu, Zhenyu Wang, Lei Yang, Fang Liu, Jianxin Chen, Khusniddin Nuriddinov, Shukhrat Giyasov, Natalia Borisovna Morozova, Wenqing Shi, Chao Lu, Anastassios Papageorgiou and Di Tie
Polymers 2025, 17(13), 1753; https://doi.org/10.3390/polym17131753 - 25 Jun 2025
Viewed by 408
Abstract
While crumb rubber powder has demonstrated effectiveness in enhancing the mechanical properties of asphalt binders, its viscoelastic behavior under freeze–thaw conditions in clean water and de-icing salt, typically urban road conditions in winter, remains insufficiently explored. This study systematically investigated the microstructural evolution, [...] Read more.
While crumb rubber powder has demonstrated effectiveness in enhancing the mechanical properties of asphalt binders, its viscoelastic behavior under freeze–thaw conditions in clean water and de-icing salt, typically urban road conditions in winter, remains insufficiently explored. This study systematically investigated the microstructural evolution, compositional changes, and mechanical behavior of asphalt modified with rubber under the influence of freeze–thaw conditions in clean water and de-icing salt. The findings revealed that rubber powder incorporation accelerates the precipitation of oil, enhancing material stability in both aqueous and saline environments. Notably, asphalt containing 10% crumb rubber powder (Asphalt-10% RP) and 20% crumb rubber powder (Asphalt-20% RP) exhibit creep recovery rates 50.53% and 28.94% higher, respectively, under de-icing salt freeze–thaw cycles than under clean water freeze–thaw cycles. Therefore, in regions with extremely low temperatures and frequent snowfall, rubber powder exhibits significant research potential, providing theoretical support for the design of asphalt pavements in cold climates. Full article
Show Figures

Figure 1

24 pages, 3885 KB  
Article
Spatiotemporal Analysis of Available Freshwater Resources in Watersheds Across Northern New Jersey
by Toritseju Oyen and Duke Ophori
Hydrology 2025, 12(6), 149; https://doi.org/10.3390/hydrology12060149 - 12 Jun 2025
Cited by 1 | Viewed by 1310
Abstract
Groundwater is a critical freshwater resource, yet its quality is increasingly threatened by anthropogenic activities, particularly in urbanized regions. This study employs geospatial analysis to evaluate the spatiotemporal variability of groundwater quality across 11 Watershed Management Areas (WMAs) in northern New Jersey, from [...] Read more.
Groundwater is a critical freshwater resource, yet its quality is increasingly threatened by anthropogenic activities, particularly in urbanized regions. This study employs geospatial analysis to evaluate the spatiotemporal variability of groundwater quality across 11 Watershed Management Areas (WMAs) in northern New Jersey, from 1999 to 2016. Using specific conductance (SC) as a proxy for salinity, we applied Ordinary Kriging interpolation to estimate SC values in unmonitored locations, leveraging data from 295 shallow wells within the New Jersey Ambient Groundwater Quality Monitoring Network. The results reveal significant spatial heterogeneity in groundwater quality, strongly associated with land use and road density. The Northeast water region, characterized by high urbanization and extensive road networks, exhibited the poorest water quality, with salinity levels exceeding the 750 μS/cm threshold for freshwater in WMAs such as Lower Passaic (WMA-4) and Hackensack (WMA-5). In contrast, the Northwest region, dominated by agricultural and undeveloped land, maintained better water quality. Temporal analysis showed a worrying decline in freshwater coverage, from 80% in 1999–2004 to 74% in 2014–2016, with deicing salts and aging sewer infrastructure identified as major contamination sources. The study highlights the efficacy of Kriging and GIS tools in mapping groundwater quality trends and highlights the urgent need for targeted water management strategies in vulnerable regions. These findings provide policymakers and stakeholders with actionable insights to mitigate groundwater degradation and ensure long-term freshwater sustainability in northern New Jersey. Full article
Show Figures

Figure 1

27 pages, 7784 KB  
Article
Performance and Mechanism Analysis of an Anti-Skid Wear Layer of Active Slow-Release Ice–Snow Melting Modified by Gels
by Yuanzhao Chen, Zhenxia Li, Tengteng Guo, Chenze Fang, Peng Guo, Chaohui Wang, Bing Bai, Weiguang Zhang, Haobo Yan and Qi Chen
Gels 2025, 11(6), 449; https://doi.org/10.3390/gels11060449 - 11 Jun 2025
Viewed by 607
Abstract
Winter pavement maintenance faces challenges in balancing large-scale upkeep and driving safety, particularly regarding the application of active slow-release materials. This study proposes a gel-modified salt-storing ceramsite asphalt mixture to enhance ice-melting capabilities through controlled salt release. By replacing a conventional coarse aggregate [...] Read more.
Winter pavement maintenance faces challenges in balancing large-scale upkeep and driving safety, particularly regarding the application of active slow-release materials. This study proposes a gel-modified salt-storing ceramsite asphalt mixture to enhance ice-melting capabilities through controlled salt release. By replacing a conventional coarse aggregate with salt-storing ceramsite in SMA-10 graded mixtures (0–80% content), we systematically evaluate its mechanical performance and de-icing functionality. The experimental results demonstrate that 40% salt-storing ceramsite content optimizes high-temperature stability while maintaining acceptable low-temperature performance and water resistance. Microstructural analysis reveals that silicone–acrylic emulsion forms a hydrophobic film on ceramsite surfaces, enabling uniform salt distribution and sustained release. The optimal 10% gel modification achieves effective salt retention and controlled release through pore-structure regulation. These findings establish a 40–60% salt-storing ceramsite content range as the practical range for winter pavement applications, offering insights into the design of durable snow-melting asphalt surfaces. Full article
(This article belongs to the Special Issue Synthesis, Properties, and Applications of Novel Polymer-Based Gels)
Show Figures

Figure 1

29 pages, 5912 KB  
Review
Mechanical Performance of Asphalt Materials Under Salt Erosion Environments: A Literature Review
by Wensheng Wang, Qingyu Zhang, Jiaxiang Liang, Yongchun Cheng and Weidong Jin
Polymers 2025, 17(8), 1078; https://doi.org/10.3390/polym17081078 - 16 Apr 2025
Cited by 1 | Viewed by 556
Abstract
Asphalt pavements are subjected to both repeated vehicle loads and erosive deterioration from complicated environments in service. Salt erosion exerts a serious negative impact on the service performance of asphalt pavements in salt-rich areas such as seasonal frozen areas with snow melting and [...] Read more.
Asphalt pavements are subjected to both repeated vehicle loads and erosive deterioration from complicated environments in service. Salt erosion exerts a serious negative impact on the service performance of asphalt pavements in salt-rich areas such as seasonal frozen areas with snow melting and deicing, coastal areas, and saline soils areas. In recent years, the performance evolution of asphalt materials under salt erosion environments has been widely investigated. However, there is a lack of a systematic summary of salt erosion damage for asphalt materials from a multi-scale perspective. The objective in this paper is to review the performance evolution and the damage mechanism of asphalt mixtures and binders under salt erosion environments from a multi-scale perspective. The salt erosion damage and damage mechanism of asphalt mixtures is discussed. The influence of salt categories and erosion modes on the asphalt binder is classified. The salt erosion resistance of different asphalt binders is determined. In addition, the application of microscopic test methods to investigate the salt damage mechanism of asphalt binders is generalized. This review finds that the pavement performance of asphalt mixtures decreased significantly after salt erosion. A good explanation for the salt erosion mechanism of asphalt mixtures can be provided from the perspective of pores, interface adhesion, and asphalt mortar. Salt categories and erosion modes exerted great influences on the rheological performance of asphalt binders. The performance of different asphalt binders showed a remarkable diversity under salt erosion environments. In addition, the evolution of the chemical composition and microscopic morphology of asphalt binders under salt erosion environments can be well characterized by Fourier Infrared Spectroscopy (FTIR), Gel Permeation Chromatography (GPC), and microscopic tests. Finally, the major focus of future research and the challenges that may be encountered are discussed. From this literature review, pore expansion mechanisms differ fundamentally between conventional and salt storage asphalt mixtures. Sulfate ions exhibit stronger erosive effects than chlorides due to their chemical reactivity with asphalt components. Molecular-scale analyses confirm that salt solutions accelerate asphalt aging through light-component depletion and heavy-component accumulation. These collective findings from prior studies establish critical theoretical foundations for designing durable pavements in saline environments. Full article
Show Figures

Figure 1

18 pages, 5199 KB  
Article
Impact of Concrete Sealer and Salt Usage on Concrete Bridge Deck Condition and Life Cycle Cost
by Wei Huang, Hao Wang and Danny Xiao
Infrastructures 2025, 10(4), 87; https://doi.org/10.3390/infrastructures10040087 - 6 Apr 2025
Cited by 1 | Viewed by 510
Abstract
The objective of this study is to analyze bridge deck condition deterioration and evaluate the impact of concrete sealer and salt usage on deck condition and life-cycle cost. To achieve this goal, machine learning models were built to predict the evolution of bridge [...] Read more.
The objective of this study is to analyze bridge deck condition deterioration and evaluate the impact of concrete sealer and salt usage on deck condition and life-cycle cost. To achieve this goal, machine learning models were built to predict the evolution of bridge deck rating. The deck maintenance history shows that the average bridge age at deck overlay and deck replacement is around 25 and 50 years, respectively. Deck overlay can improve deck condition from an average rating of 6.3 to 7.1, and deck replacement can efficiently recover deck condition from an average rating of 5.3 to 8.5. The effect of concrete sealer on bridge deck condition is only observable at the stage before the first overlay, indicating that concrete sealer may not be effective over the long term. More usages of prewet salt and salt brine in anti-icing result in slightly higher deck condition ratings, while more dry salt in deicing presents slightly lower deck condition ratings, indicating the benefits of salt brine over dry salt. When concrete sealer is applied every 2 or 4 years, it can help extend the service life of the bridge deck by around 1~2 years. If concrete sealer is applied every 12 years, a 6% reduction in life cycle cost could be achieved. Full article
Show Figures

Figure 1

20 pages, 7282 KB  
Article
Stormwater Management and Late-Winter Chloride Runoff into an Urban Lake in Minnesota, USA
by Neal D. Mundahl and John Howard
Hydrology 2025, 12(4), 76; https://doi.org/10.3390/hydrology12040076 - 28 Mar 2025
Cited by 1 | Viewed by 839
Abstract
Stormwater runoff containing road deicing salts has led to the increasing salinization of surface waters in northern climates, and urban municipalities are increasingly being mandated to manage stormwater runoff to improve water quality. We assessed chloride concentrations in runoff from late-winter snowmelt and [...] Read more.
Stormwater runoff containing road deicing salts has led to the increasing salinization of surface waters in northern climates, and urban municipalities are increasingly being mandated to manage stormwater runoff to improve water quality. We assessed chloride concentrations in runoff from late-winter snowmelt and rainfall events flowing into an urban Minnesota, USA, lake during two different years, predicting that specific stormwater drainages with greater concentrations of roadways and parking lots would produce higher chloride loads during runoff than other drainages with fewer impervious surfaces. Chloride levels were measured in runoff draining into Lake Winona via 11 stormwater outfalls, a single channelized creek inlet, and two in-lake locations during each snowmelt or rainfall event from mid-February through early April in 2021 and 2023. In total, 33% of outfall runoff samples entering the lake collected over two years had chloride concentrations exceeding the 230 ppm chronic standard for aquatic life in USA surface waters, but no sample exceeded the 860 ppm acute standard. Chloride concentrations in outfall runoff (mean ± SD; 190 ± 191 ppm, n = 143) were significantly higher than in-lake concentrations (43 ± 14 ppm, n = 25), but chloride levels did not differ significantly between snowmelt and rainfall runoff events. Runoff from highway locations had higher chloride concentrations than runoff from residential areas. Site-specific chloride levels were highly variable both within and between years, with only a single monitored outfall displaying high chloride levels in both years. There are several possible avenues available within the city to reduce deicer use, capture and treat salt-laden runoff, and prevent or reduce the delivery of chlorides to the lake. Full article
Show Figures

Figure 1

22 pages, 5793 KB  
Article
Concrete Durability Performance in Aggressive Salt and Deicing Environments—Case Study of Select Pavement and Bridge Concrete Mixtures
by Olaniyi S. Arowojolu, Milena Rangelov, Somayeh Nassiri, Fouad Bayomy and Ahmed Ibrahim
Materials 2025, 18(6), 1266; https://doi.org/10.3390/ma18061266 - 13 Mar 2025
Viewed by 819
Abstract
Transportation infrastructure such as concrete pavements, parapets, barriers, and bridge decks in cold regions are usually exposed to a heavy amount of deicing chemicals during the winter for ice and snow control. Various deicer salts can physically and chemically react with concrete and [...] Read more.
Transportation infrastructure such as concrete pavements, parapets, barriers, and bridge decks in cold regions are usually exposed to a heavy amount of deicing chemicals during the winter for ice and snow control. Various deicer salts can physically and chemically react with concrete and result in damage and deterioration. Currently, Idaho uses four different types of deicers during the winter: salt brine, mag bud converse, freeze guard plus, and mag chloride. The most often utilized substance is salt brine, which is created by dissolving rock salt at a concentration of 23.3%. Eight concrete mixtures for paving and structural purposes were made and put through a battery of durability tests. Following batching, measurements were made of the unit weight, entrained air, slump, and super air meter (SAM) fresh characteristics. Rapid freeze–thaw (F-T) cycle experiments, deicing scaling tests, and surface electrical resistivity testing were used to test and assess all mixes. Tests with mag bud converse, freeze guard plus mag chloride, and acid-soluble chloride were conducted following an extended period of soaking in salt brine. Two different structural mixtures were suggested as a result of the severe scaling observed in the structural mixtures lacking supplemental cementitious materials (SCMs) and the moderate scaling observed in the other combinations. The correlated values of the SAM number with the spacing factor have been shown that mixture with no SCMs has a spacing factor of 0.24, which is higher than the recommended value of 0.2 and concentrations of acid soluble chloride over the threshold limit were discernible. In addition, the highest weight of calcium hydroxide using the TGA test was observed. For all examined mixes, the residual elastic moduli after 300 cycles varied between 76.0 and 83.3 percent of the initial moduli. Mixture M5 displayed the lowest percentage of initial E (76.0 percent), while mixtures M1 and M2 showed the highest percentage of residual E (83.3 and 80.0 percent, respectively) among the evaluated combinations. There were no significant variations in the percentage of maintained stiffness between the combinations. As a result, it was difficult to identify distinct patterns about how the air content or SAM number affected the mixture’s durability. Class C coal fly ash and silica fume were present in the suggested mixtures, which were assessed using the same testing matrix as the original mixtures. Because of their exceptional durability against large concentrations of chemical deicers, the main findings suggest altering the concrete compositions to incorporate SCMs in a ternary form. Full article
Show Figures

Figure 1

18 pages, 4400 KB  
Article
Investigation of Chloride Salt Erosion on Asphalt Binders and Mixtures: Performance Evaluation and Correlation Analysis
by Xin Qiu, Jianghui Deng, Qinghong Fu, Yunxi Lou, Yingci Ye and Dingchuan Zhang
Materials 2025, 18(1), 156; https://doi.org/10.3390/ma18010156 - 2 Jan 2025
Cited by 2 | Viewed by 854
Abstract
Asphalt pavement, widely utilized in transportation infrastructure due to its favourable properties, faces significant degradation from chloride salt erosion in coastal areas and winter deicing regions. In this study, two commonly used asphalt binders, 70# base asphalt and SBS (Styrene–Butadiene–Styrene)-modified asphalt, were utilized [...] Read more.
Asphalt pavement, widely utilized in transportation infrastructure due to its favourable properties, faces significant degradation from chloride salt erosion in coastal areas and winter deicing regions. In this study, two commonly used asphalt binders, 70# base asphalt and SBS (Styrene–Butadiene–Styrene)-modified asphalt, were utilized to study the chloride salt erosion effect on asphalt pavement by immersing materials in laboratory-prepared chloride salt solutions. The conventional properties and adhesion of asphalt were assessed using penetration, softening point, ductility, and pull-off tests, while Fourier transform infrared spectroscopy (FTIR) elucidated the erosion mechanism. The Marshall stability test, freeze–thaw splitting test, and Cantabro test were applied to study the effects of chloride exposure on the strength, water stability, and structural integrity of the asphalt mixture. Finally, the grey correlation analysis was employed to assess the impact of chloride salt erosion on the performance of asphalt binders and mixtures. The findings highlight that chloride salt erosion reduces penetration and ductility in both types of asphalt binders, raises the softening point, and weakens asphalt–aggregate adhesion, confirmed as a primarily physical effect by FTIR analysis. Asphalt mixtures showed decreased strength and water stability, intensifying these impacts at higher chloride concentrations and longer erosion duration. SBS-modified asphalt binders and mixtures exhibited greater resistance to chloride salt erosion, particularly in adhesion, as demonstrated by the Cantabro and pull-out tests. Grey relational analysis revealed that erosion duration is the most influential factor, with TSR and softening point emerging as the most responsive indicators of chloride-induced changes. These findings offer critical insights for practice, providing evidence-based guidance for designing and constructing asphalt pavements in environments with high chloride levels. Full article
Show Figures

Figure 1

18 pages, 1652 KB  
Article
Role of Cement Type on Properties of High Early-Strength Concrete
by Nader Ghafoori, Matthew O. Maler, Meysam Najimi, Ariful Hasnat and Aderemi Gbadamosi
J. Compos. Sci. 2025, 9(1), 3; https://doi.org/10.3390/jcs9010003 - 25 Dec 2024
Cited by 1 | Viewed by 1869
Abstract
Properties of high early-strength concretes (HESCs) containing Type V, Type III, and rapid hardening calcium sulfoaluminate (CSA) cements were investigated at curing ages of opening time, 24 h, and 28 days. Investigated properties included the fresh (workability, setting time, air content, unit weight, [...] Read more.
Properties of high early-strength concretes (HESCs) containing Type V, Type III, and rapid hardening calcium sulfoaluminate (CSA) cements were investigated at curing ages of opening time, 24 h, and 28 days. Investigated properties included the fresh (workability, setting time, air content, unit weight, and released heat of hydration), mechanical (compressive and flexural strengths), transport (absorption, volume of permeable voids, water penetration, rapid chloride permeability, and accelerated corrosion resistance), dimensional stability (drying shrinkage), and durability (de-icing salt and abrasion resistance) properties. Test results revealed that the HESC containing Rapid-Set cement achieved the shortest opening time to attain the required minimum strength, followed by Type III and Type V cement HESCs. For the most part, Type V cement HESC produced the best transport and de-icing salt resistance, whereas Rapid-Set cement HESC displayed the best dimensional stability and wear resistance. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

19 pages, 10156 KB  
Article
Experimental Study on Fatigue Properties of Q420 Bridge Steel in a Deicing Salt Corrosion Environment in Western China
by Tingkun Zhou, Wenjing Qiao, Shoufu Li, Fan Yang, Yiqian Li and Zhuoda Li
Buildings 2024, 14(12), 3791; https://doi.org/10.3390/buildings14123791 - 27 Nov 2024
Cited by 2 | Viewed by 796
Abstract
The corrosive environment in the western region will adversely affect the fatigue performance of bridges. In order to determine the influence of the corrosion environment in western China on the fatigue failure of bridges, this paper simulated corrosion environment characteristics in northwest China, [...] Read more.
The corrosive environment in the western region will adversely affect the fatigue performance of bridges. In order to determine the influence of the corrosion environment in western China on the fatigue failure of bridges, this paper simulated corrosion environment characteristics in northwest China, conducted alternating corrosion and high-cycle fatigue experiments on Q420 bridge steel, and used Origin (2019b 64Bit) to fit S-N curves of specimens with different corrosion periods to study the influence of corrosion damage in western China on their fatigue properties. Based on the damage theory, the corrosion fatigue failure degree of Q420 bridge steel was analyzed, and the crack propagation law was revealed by microscopic scanning of the fracture. The findings indicate that the damage to Q420 bridge steel progressively worsens with more prolonged corrosion exposure in the deicing salt conditions of western China. The 60-day corrosion resulted in a rust rate ηs of 2.17% and a corrosion rate K of 1.413 mm/a. The fatigue life of Q420 bridge steel is significantly affected by the coupling of stress level and corrosion damage. After 60 days of corrosion, the specimen’s fatigue limit decreases by 12.28%, which accelerates the fatigue property degradation rate of the specimen. The damage index effectively represents the internal damage behavior of materials under corrosion fatigue conditions. Fatigue damage escalates as the corrosion period extends, and the number of fatigue bands decreases, with the stress corrosion threshold σth diminishing by 1.77%, 3.55%, 4.61%, and 6.38% across various corrosion durations. The research results are significant for the fatigue failure prediction and reliability analysis of Q420 bridge steel in a deicing salt corrosion environment in western China. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 8181 KB  
Article
Frequency–Time Domain Analysis Based on Electrochemical Noise of Dual-Phase (DP) and Ferrite–Bainite (FB) Steels in Chloride Solutions for Automotive Applications
by Facundo Almeraya-Calderón, Marvin Montoya-Rangel, Demetrio Nieves-Mendoza, Jesús Manuel Jáquez-Muñoz, Miguel Angel Baltazar-Zamora, Laura Landa-Ruiz, Maria Lara-Banda, Erick Maldonado-Bandala, Francisco Estupiñan-Lopez and Citlalli Gaona-Tiburcio
Metals 2024, 14(11), 1208; https://doi.org/10.3390/met14111208 - 23 Oct 2024
Cited by 1 | Viewed by 1379
Abstract
The automotive industry uses high-strength (HS), low-alloy (HSLA) steels and advanced high-strength steels (AHSSs) to manufacture front and rear rails and safety posts, as well as the car body, suspension, and chassis components of cars. These steels can be exposed to corrosive environments, [...] Read more.
The automotive industry uses high-strength (HS), low-alloy (HSLA) steels and advanced high-strength steels (AHSSs) to manufacture front and rear rails and safety posts, as well as the car body, suspension, and chassis components of cars. These steels can be exposed to corrosive environments, such as in countries where de-icing salts are used. This research aims to characterize the corrosion behavior of AHSSs based on electrochemical noise (EN) [dual-phase (DP) and ferrite–bainite (FB)]. At room temperature, the steels were immersed in NaCl, CaCl2, and MgCl2 solutions and were studied by frequency–time domain analysis using wavelet decomposition, Hilbert–Huang analysis, and recurrence plots (RPs) related to the corrosion process and noise impedance (Zn). Optical microscopy (OM) was used to observe the microstructure of the tested samples. The results generally indicated that the main corrosion process is related to uniform corrosion. The corrosion behavior of AHSSs exposed to a NaCl solution could be related to the morphology of the phase constituents that are exposed to solutions with chlorides. The Zn results showed that DP780 presented a higher corrosion resistance with 918 Ω·cm2; meanwhile, FB780 presented 409 Ω·cm2 when exposed to NaCl. Also, the corrosion mechanism of materials begins with a localized corrosion process spreading to all the surfaces, generating a uniform corrosion process after some exposition time. Full article
(This article belongs to the Special Issue Recent Advances in Corrosion and Protection of Metallic Materials)
Show Figures

Graphical abstract

Back to TopTop