Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (276)

Search Parameters:
Keywords = delignification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4009 KB  
Article
Towards the Potential of Using Downstream-Separated Solvents as the Pulping Liquor of Upstream Lignocellulose Fractionation for Enhanced Acetone–Butanol–Ethanol Production
by Changsheng Su, Yunxing Gao, Gege Zhang, Hao Wen, Rui Chen, Jiajing Wang, Yujie Li, Mingyuan Sun, Jikang Cao and Di Cai
Fermentation 2025, 11(9), 514; https://doi.org/10.3390/fermentation11090514 - 1 Sep 2025
Abstract
Developing efficient, clean, and sustainable lignocellulose pretreatment technologies is essential for second-generation biofuel production. In this study, we attempted to use downstream-separated binary acetone-water, n-butanol-water, and ethanol-water solutions as the initial liquor for upstream organosolv pulping, in order to achieve the efficient [...] Read more.
Developing efficient, clean, and sustainable lignocellulose pretreatment technologies is essential for second-generation biofuel production. In this study, we attempted to use downstream-separated binary acetone-water, n-butanol-water, and ethanol-water solutions as the initial liquor for upstream organosolv pulping, in order to achieve the efficient and economic closed-circuit clean fractionation of the lignocelluloses for biological acetone–butanol–ethanol (ABE) production. Parameters, including concentration and temperature of the organosolv pulping, were optimized systematically. Results indicated that the 50 wt% ethanol and 30 wt% acetone aqueous solutions and pulping at 200 °C for 1 h exhibited better corn stover fractionation performances with higher fermentable sugar production. The total monosaccharide recovery (including glucose and xylose) was 50.92% and 50.89%, respectively, in subsequent enzymatic saccharification. While pulping corn stover using n-butanol solution as initial liquor showed higher delignification 86.16% (50 wt% of n-butanol and 200 °C for 1 h), the hydrolysate obtained by the organosolv pulps always exhibited good fermentability. A maximized 15.0 g/L of ABE with 0.36 g/g of yield was obtained in Ethanol-200 °C-50% group, corresponding to 112 g of ABE production from 1 kg of raw corn stover. As expected, the lignin specimens fractionated by closed-circuit organosolv pulping exhibited narrow molecule weight distribution, high purity, and high preservation of active groups, which supports further valorization. This novel strategy tightly bridges the upstream and downstream processes of second-generation ABE production, providing a new route for ‘energy-matter intensive’ and environmentally friendly lignocelluloses biorefineries. Full article
(This article belongs to the Special Issue Bioprocesses for Biomass Valorization in Biorefineries)
Show Figures

Figure 1

27 pages, 5329 KB  
Article
Energy Transition in Greece: A Regional and National Media Analysis
by Nikolaos Koukouzas, George S. Maraslidis, Christos L. Stergiou, Theodoros Zarogiannis, Eleonora Manoukian, Julia Haske, Stefan Möllerherm and Barbara Rogosz
Energies 2025, 18(17), 4595; https://doi.org/10.3390/en18174595 - 29 Aug 2025
Viewed by 123
Abstract
Media coverage plays a pivotal role in shaping public perception of the energy transition. This study provides a comprehensive analysis of how the lignite phase-out is represented in Greece, both by national and regional media, with a specific focus on the impacted region [...] Read more.
Media coverage plays a pivotal role in shaping public perception of the energy transition. This study provides a comprehensive analysis of how the lignite phase-out is represented in Greece, both by national and regional media, with a specific focus on the impacted region of Western Macedonia. Using data from the Leipzig Corpora Collection and regional news portals from 2013 to 2022, the analysis reveals significant divergences between media levels. While both show synchronized peaks for key terms like “Climate change” (2019) and “Western Macedonia” (2021), regional media addressed the direct impacts of the transition earlier and more intensely, with terms like “post-lignite” and “de-lignification” peaking in 2020 following the announcement of the Master Plan. National media framed the transition within a broader, top-down policy context, often with an optimistic tone, reflecting EU directives. In contrast, regional media provided a community-centric perspective, highlighting concerns over job losses and the preservation of local identity. The findings underscore a clear tension between official narratives of progress and local-level concerns, demonstrating that media discourse is a critical, multi-faceted component of just transition processes that policymakers must consider. Full article
Show Figures

Figure 1

13 pages, 1843 KB  
Article
Ethanol Fermentation by Saccharomyces cerevisiae and Scheffersomyces stipitis Using Sugarcane Bagasse Selectively Delignified via Alkaline Sulfite Pretreatment
by João Tavares, Abdelwahab Rai, Teresa de Paiva and Flávio da Silva
ChemEngineering 2025, 9(5), 93; https://doi.org/10.3390/chemengineering9050093 - 27 Aug 2025
Viewed by 292
Abstract
Bioethanol from sugarcane bagasse is a promising second-generation biofuel due to its abundance as a sugar industry by-product. Herein, enzymatic hydrolysate obtained from sugarcane bagasse pretreated with optimized hydrothermal alkaline sulfite (HAS) was evaluated for its fermentability using Saccharomyces cerevisiae PE-2 and Scheffersomyces [...] Read more.
Bioethanol from sugarcane bagasse is a promising second-generation biofuel due to its abundance as a sugar industry by-product. Herein, enzymatic hydrolysate obtained from sugarcane bagasse pretreated with optimized hydrothermal alkaline sulfite (HAS) was evaluated for its fermentability using Saccharomyces cerevisiae PE-2 and Scheffersomyces stipitis CBS 5773. The HAS pretreatment achieved a high delignification rate (63%), resulting in a cellulose- and hemicellulose-enriched substrate (55% and 27%, respectively). While the cellulose content remained relatively constant, hemicellulose content was reduced by 25%, with significant removal of acetyl groups (80%) and arabinan groups (39%). The pretreated bagasse exhibited high digestibility, applying 10 FPU (filter paper unit) cellulase together with 10 CBU (cellobiose unit) β-glucosidase per gram of dry bagasse in the hydrolysis step, yielding 72% glucan and 66% xylan conversion within 72 h. The resulting hydrolysate was efficiently fermented by S. cerevisiae and S. stipitis, achieving ethanol yields of 0.51 and 0.43 g/g of sugars, respectively. The fermentation kinetics were comparable to those observed in a synthetic medium containing pure sugars, demonstrating the effectiveness of HAS pretreatment in generating readily fermentable, carbohydrate-rich substrates. HAS pretreatment enabled improved conversion of sugarcane bagasse into fermentation-ready sugars, constituting a potential resource for bioethanol synthesis applying both S. cerevisiae and S. stipitis in the future. Full article
Show Figures

Graphical abstract

22 pages, 6168 KB  
Article
Valorization of Sugarcane Bagasse in Thailand: An Economic Analysis of Ethanol and Co-Product Recovery via Organosolv Fractionation
by Suphalerk Khaowdang, Nopparat Suriyachai, Saksit Imman, Nathiya Kreetachat, Santi Chuetor, Surachai Wongcharee, Kowit Suwannahong, Methawee Nukunudompanich and Torpong Kreetachat
Sustainability 2025, 17(15), 7145; https://doi.org/10.3390/su17157145 - 7 Aug 2025
Viewed by 571
Abstract
A comprehensive techno-economic assessment was undertaken to determine the viability of bioethanol production from sugarcane bagasse in Thailand through organosolv fractionation, incorporating three distinct catalytic systems: sulfuric acid, formic acid, and sodium methoxide. Rigorous process simulations were executed using Aspen Plus, facilitating the [...] Read more.
A comprehensive techno-economic assessment was undertaken to determine the viability of bioethanol production from sugarcane bagasse in Thailand through organosolv fractionation, incorporating three distinct catalytic systems: sulfuric acid, formic acid, and sodium methoxide. Rigorous process simulations were executed using Aspen Plus, facilitating the derivation of detailed mass and energy balances, which served as the foundational input for downstream cost modeling. Economic performance metrics, including the total annualized cost and minimum ethanol selling price, were systematically quantified for each scenario. Among the evaluated configurations, the formic acid-catalyzed organosolv system exhibited superior techno-economic attributes, achieving the lowest unit production costs of 1.14 USD/L for ethanol and 1.84 USD/kg for lignin, corresponding to an estimated ethanol selling price of approximately 1.14 USD/L. This favorable outcome was attained with only moderate capital intensity, indicating a well-balanced trade-off between operational efficiency and investment burden. Conversely, the sodium methoxide-based process configuration imposed the highest economic burden, with a TAC of 15.27 million USD/year, culminating in a markedly elevated MESP of 5.49 USD/kg (approximately 4.33 USD/L). The sulfuric acid-driven system demonstrated effective delignification performance. Sensitivity analysis revealed that reagent procurement costs exert the greatest impact on TAC variation, highlighting chemical expenditure as the key economic driver. These findings emphasize the critical role of solvent choice, catalytic performance, and process integration in improving the cost-efficiency of lignocellulosic ethanol production. Among the examined options, the formic acid-based organosolv process stands out as the most economically viable for large-scale implementation within Thailand’s bioeconomy. Full article
Show Figures

Figure 1

17 pages, 415 KB  
Review
Advanced Wood Composites with Recyclable or Biodegradable Polymers Embedded—A Review of Current Trends
by Paschalina Terzopoulou, Dimitris S. Achilias and Evangelia C. Vouvoudi
J. Compos. Sci. 2025, 9(8), 415; https://doi.org/10.3390/jcs9080415 - 4 Aug 2025
Viewed by 825
Abstract
Wood polymer composites (WPCs) represent a rapidly growing class of sustainable materials, formed by combining lignocellulosic fibers with thermoplastic or thermoset polymeric matrices. This review summarizes the state of the art in WPC development, emphasizing the use of recyclable (or recycled) and biodegradable [...] Read more.
Wood polymer composites (WPCs) represent a rapidly growing class of sustainable materials, formed by combining lignocellulosic fibers with thermoplastic or thermoset polymeric matrices. This review summarizes the state of the art in WPC development, emphasizing the use of recyclable (or recycled) and biodegradable polymers as matrix materials. The integration of waste wood particles into the production of WPCs addresses global environmental challenges, including plastic pollution and deforestation, by offering an alternative to conventional wood-based and petroleum-based products. Key topics covered in the review include raw material sources, fiber pre-treatments, compatibilizers, mechanical performance, water absorption behavior, thermal stability and end-use applications. Full article
Show Figures

Figure 1

14 pages, 2011 KB  
Article
Circulating of In Situ Recovered Stream from Fermentation Broth as the Liquor for Lignocellulosic Biobutanol Production
by Changsheng Su, Yunxing Gao, Gege Zhang, Xinyue Zhang, Yating Li, Hongjia Zhang, Hao Wen, Wenqiang Ren, Changwei Zhang and Di Cai
Fermentation 2025, 11(8), 453; https://doi.org/10.3390/fermentation11080453 - 3 Aug 2025
Viewed by 573
Abstract
Developing a more efficient, cleaner, and energy-saving pretreatment process is the primary goal for lignocellulosic biofuels production. This study demonstrated the feasibility of circulating high-concentration acetone–butanol–ethanol (ABE) obtained via in situ product recovery (ISPR) as a pretreatment liquor. Taking ABE solvent separated from [...] Read more.
Developing a more efficient, cleaner, and energy-saving pretreatment process is the primary goal for lignocellulosic biofuels production. This study demonstrated the feasibility of circulating high-concentration acetone–butanol–ethanol (ABE) obtained via in situ product recovery (ISPR) as a pretreatment liquor. Taking ABE solvent separated from pervaporation (PV) and gas stripping (GS) as examples, results indicated that under dilute alkaline (1% NaOH) catalysis, the highly recalcitrant lignocellulosic matrices can be efficiently depolymerized, thereby improving fermentable sugars recovery in saccharification stage and ABE yield in subsequent fermentation stage. Results also revealed delignification of 91.5% (stream from PV) and 94.3% (stream from GS), with total monosaccharides recovery rates of 56.5% and 57.1%, respectively, can be realized when using corn stover as feedstock. Coupled with ABE fermentation, mass balance indicated a maximal 106.6 g of ABE (65.8 g butanol) can be produced from 1 kg of dry corn stover by circulating the GS condensate in pretreatment (the optimized pretreatment conditions were 1% w/v alkali and 160 °C for 1 h). Additionally, technical lignin with low molecular weight and narrow distribution was isolated, which enabled further side-stream valorisation. Therefore, integrating ISPR product circulation with lignocellulosic biobutanol shows strong potential for application under the concept of biorefinery. Full article
Show Figures

Figure 1

18 pages, 4549 KB  
Article
Efficiency Determination of Water Lily (Eichhornia crassipes) Fiber Delignification by Electrohydrolysis Using Different Electrolytes
by R. Sanchez-Torres, E. Onofre Bustamante, T. Pérez López and A. C. Espindola-Flores
Recycling 2025, 10(4), 130; https://doi.org/10.3390/recycling10040130 - 1 Jul 2025
Viewed by 399
Abstract
Nowadays, biomass use has increased due to it being the most abundant raw material on the planet, and treating it is a difficult task, as a result of the number of existing methods and the applications’ diversification. This research work shows the results [...] Read more.
Nowadays, biomass use has increased due to it being the most abundant raw material on the planet, and treating it is a difficult task, as a result of the number of existing methods and the applications’ diversification. This research work shows the results obtained using different delignification methods (physical and chemical) on water lily ((Eichhornia crassipes) fiber lignocellulosic biomass including a seldom exploited method, known as “electrohydrolysis” in order to determinate the removal efficiency of lignin and hemicellulose. The characterization of the physicochemical and morphological properties of the water lily (Eichhornia crassipes) fiber before and after the pretreatments were applied were by means of Fourier Transform Infrared (FT-IR), X-ray diffraction (XRD) and optical microscopy (OM). The results of FT-IR show a significant decrease in the bands associated with lignin and hemicellulose. By XRD, it was determined that the crystallinity of the cellulose increased by 60% for the treated samples with respect to the reference, and an increase in the surface roughness of the samples was observed by OM. In conclusion, it was determined that electrochemistry delignification is an efficient, environmentally friendly methodology to remove the soluble sugars, opening the possibility to use the water lily (Eichhornia crassipes) fiber to produce a green concrete. Full article
(This article belongs to the Special Issue Biomass Revival: Rethinking Waste Recycling for a Greener Future)
Show Figures

Figure 1

27 pages, 4306 KB  
Article
Extrusion-Biodelignification Approach for Biomass Pretreatment
by Delon Konan, Adama Ndao, Ekoun Koffi, Saïd Elkoun, Mathieu Robert, Denis Rodrigue and Kokou Adjallé
Waste 2025, 3(3), 21; https://doi.org/10.3390/waste3030021 - 26 Jun 2025
Viewed by 371
Abstract
This work presents a new approach for lignocellulosic biomass pretreatment. The process is a sequential combination of extrusion (Ex) and semi-solid fermentation (SSF). To assess the Ex-SSF pretreatment efficiency, black spruce chips (wood residues) and corn stover (crop residues) were subjected to the [...] Read more.
This work presents a new approach for lignocellulosic biomass pretreatment. The process is a sequential combination of extrusion (Ex) and semi-solid fermentation (SSF). To assess the Ex-SSF pretreatment efficiency, black spruce chips (wood residues) and corn stover (crop residues) were subjected to the process. The negative controls were the pretreatment of both residues with SSF alone without extrusion. Lignin peroxidase was the main ligninolytic enzyme contributing to the delignification in the negative controls. High lignin peroxide (LiP) activities were recorded for raw black spruce (53.7 ± 2.7 U/L) and corn stover (16.4 ± 0.8 U/L) compared to the Ex-SSF pretreated biomasses where the highest LiP activity recorded was 6.0 ± 0.3 U/L (corn residues). However, with the negative controls, only a maximum of 17% delignification was achieved for both biomasses. As for the Ex-SSF process, the pretreatments were preceded by the optimization of the extrusion (Ex) step and the semi-solid fermentation (SSF) step via experimental designs. The Ex-SSF pretreatments led to interesting results and offered cost-effective advantages compared to existing pretreatments. Biomass delignification reached 59.1% and 65.4% for black spruce and corn stover, respectively. For the analyses performed, it was found that manganese peroxidase (MnP) was the main contributor to delignification during the SSF step. MnP activity was up to 13.8 U/L for Ex-SSF pretreated black spruce, and 32.0 U/L for Ex-SSF pretreated corn stover, while the maximum MnP recorded in the negative controls was 1.4 ± 0.1 U/L. Ex-SSF pretreatment increased the cellulose crystallinity index (CrI) by 13% for black spruce and 4% for corn stover. But enzymatic digestibility of the Ex-SSF pretreated biomasses with 0.25 mL/g of enzyme led to 7.6 mg/L sugar recovery for black spruce, which is 2.3 times the raw biomass yield. The Ex-SSF pretreated corn stover led to 17.0 mg/L sugar recovery, which is a 44% improvement in sugar concentration compared to raw corn stover. However, increasing the enzyme content from 0.25 mL/g to 0.50 mg/L and 0.75 mg/L generated lower hydrolysis efficiency (the sugar recovery decreased). Full article
(This article belongs to the Special Issue Agri-Food Wastes and Biomass Valorization—2nd Edition)
Show Figures

Figure 1

18 pages, 1628 KB  
Article
A More Environmentally Friendly Method for Pulp Processing Using DES-like Mixtures: Comparison of Physical Properties with Oxygen Bleached Pulp
by Lota Chrvalová, Veronika Jančíková, Ida Skotnicová, Michal Jablonský and Štefan Šutý
Processes 2025, 13(6), 1930; https://doi.org/10.3390/pr13061930 - 18 Jun 2025
Viewed by 2677
Abstract
The traditional papermaking process uses petroleum-based additives, which raise environmental concerns. As a result, these concerns have attracted the scientific community to explore green additives by introducing environmentally friendly cellulose modifications as additives to the papermaking process. A promising way to process pulp [...] Read more.
The traditional papermaking process uses petroleum-based additives, which raise environmental concerns. As a result, these concerns have attracted the scientific community to explore green additives by introducing environmentally friendly cellulose modifications as additives to the papermaking process. A promising way to process pulp is the application of deep eutectic solvent-like mixtures, which expand new possibilities for delignification processes. This article aims to characterize the physical properties of pulps modified with deep eutectic solvent-like mixtures and to compare these properties to untreated softwood kraft pulp and pulp obtained after oxygen delignification (commercially available pulp; obtained from Mondi Štětí a.s.). The physical properties (mechanical and optical) of the original pulp and delignified pulps were evaluated based on the degree of beating (Schopper–Riegler degree), zeta potential, water retention value, tensile strength, modulus of elasticity, and whiteness. Technology employing deep eutectic solvent-like mixtures shows great promise for sustainable pulp production; however, its full-scale adoption will require further research focused on process optimization, solvent recovery, and economic cost reduction. Full article
(This article belongs to the Special Issue Circular Economy on Production Processes and Systems Engineering)
Show Figures

Graphical abstract

33 pages, 1352 KB  
Review
Delignification as a Key Strategy for Advanced Wood-Based Materials: Chemistry, Delignification Parameters, and Emerging Applications
by Paschalina Terzopoulou, Evangelia C. Vouvoudi and Dimitris S. Achilias
Forests 2025, 16(6), 993; https://doi.org/10.3390/f16060993 - 12 Jun 2025
Viewed by 1439
Abstract
Wood is a naturally abundant, biodegradable, and renewable material with significant potential as an alternative to petroleum-based materials. However, its inherent heterogeneity, anisotropy, and modest mechanical properties limit its application in high-performance structural uses. Delignification, a critical process in papermaking and biorefining, has [...] Read more.
Wood is a naturally abundant, biodegradable, and renewable material with significant potential as an alternative to petroleum-based materials. However, its inherent heterogeneity, anisotropy, and modest mechanical properties limit its application in high-performance structural uses. Delignification, a critical process in papermaking and biorefining, has emerged as a promising pretreatment technique to enhance the properties of wood for advanced subsequent applications. This process selectively removes lignin while preserving the aligned cellulose structure, thereby improving mechanical strength, dimensional stability, and potential for functionalization. Various delignification methods, including alkaline, acidic, and reductive catalytic fractionation, have been explored to optimize the wood’s structural and chemical properties. When combined with densification or impregnation, delignified wood exhibits superior mechanical performance, making it suitable for a range of applications, including structural materials, optical devices, biomedical applications, and energy storage. This detailed review examines the chemistry and mechanisms of delignification, its impact on the physical and mechanical properties of wood, and its role in developing sustainable, high-performance bio-based materials. Furthermore, challenges and future opportunities in delignification research are discussed, highlighting its potential for next-generation wood-based innovative applications. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

18 pages, 4018 KB  
Article
Assessing the Efficiency of Open-System Densification on Chemically Treated Dendrocalamus asper Bamboo
by André Luiz Pereira de Godoy Junior, Marzieh Kadivar, Leo Maia do Amaral, Adriano Galvão de Souza Azevedo, Juan Camilo Adrada Molano, Esmaeil Biazar and Holmer Savastano Junior
Materials 2025, 18(12), 2719; https://doi.org/10.3390/ma18122719 - 10 Jun 2025
Viewed by 520
Abstract
The natural variability and moisture sensitivity of bamboo limit its widespread use in construction applications. To address these challenges, densification and delignification processes have emerged as promising modification techniques. Densification and delignification processes can lead to significant improvements in the physical, mechanical, and [...] Read more.
The natural variability and moisture sensitivity of bamboo limit its widespread use in construction applications. To address these challenges, densification and delignification processes have emerged as promising modification techniques. Densification and delignification processes can lead to significant improvements in the physical, mechanical, and chemical properties of solid wood. In this study, a two-step process of delignification and densification was carried out on Dendrocalamus asper bamboo specimens. The objective was to assess whether the optimized parameters of densification for natural bamboo on an open pressing system can be transferred for delignified bamboo. Delignification was achieved using an alkali solution (NaOH and Na2SO3) with two different temperature settings (25 °C or 100 °C). The pre-treated samples were dried in one of the two different conditions, either at 100 °C for 24 h or 25 °C for 30 days, resulting in four different groups with an average moisture content ranging from 7 to 10%. The samples were densified to 50% of their original thickness through an open thermo-mechanical press system at 160 °C with a compression rate of 6.7 mm/min and compared to densified bamboo without delignification (reference). The compression stress required to achieve a 50% degree of densification was evaluated, with untreated samples exhibiting an average value close to 17 MPa. Following treatment, the compression stress ranged from 7 to 13.4 MPa, indicating that the exposure to a high pH solution facilitates the densification process. However, a reduction in flexural properties (MOR, LOP, and MOE) was observed on the alkali-treated samples after a three-point bending test. Physical properties (water absorption and thickness swelling) were not altered after delignification. These findings demonstrate that the direct application of a densification process optimized for natural bamboo is not fully effective for chemically modified bamboo, highlighting the need for adjustments. Delignified bamboo showed an increase in free space after chemical treatment, which should be further densified under higher degrees. Full article
Show Figures

Figure 1

12 pages, 6886 KB  
Article
Hydrogen Peroxide Bleaching Induces a Dual Enhancement of Liquid Permeability and Fungal Resistance in Bamboo Through Microstructural Engineering
by Dandan Xu, Sheng He, Weiqi Leng, Yuhe Chen and Haiyang Quan
Forests 2025, 16(6), 964; https://doi.org/10.3390/f16060964 - 6 Jun 2025
Viewed by 584
Abstract
Bamboo, as a sustainable and renewable biomass resource, possesses significant application prospects along with underutilized potential. However, challenges such as mildew infestation, insect damage, and discoloration during processing and utilization negatively impact its service life and economic value. This study proposes a simplified [...] Read more.
Bamboo, as a sustainable and renewable biomass resource, possesses significant application prospects along with underutilized potential. However, challenges such as mildew infestation, insect damage, and discoloration during processing and utilization negatively impact its service life and economic value. This study proposes a simplified hydrogen peroxide bleaching method for bamboo processing, resulting in bleached materials with uniform coloration and improved mildew resistance. The scanning electron microscopy (SEM) analysis of bleached bamboo showed significantly reduced starch and protein inclusions, expanded intercellular spacing, partial fiber detachment, and localized structural deformation in treated bamboo. The X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) analyses revealed substantial lignin degradation in hydrogen peroxide-treated samples. The color difference (ΔE) was measured at 13.65 between treated and untreated samples, confirming effective bleaching efficacy. The mercury intrusion porosimetry (MIP) analysis revealed enhanced porosity accompanied by diameter enlargement in treated bamboo. Antifungal assessments indicated that hydrogen peroxide bleaching delayed the onset of mold colonization and significantly enhanced the mildew resistance of bamboo substrates. Full article
(This article belongs to the Special Issue Ecological Research in Bamboo Forests: 2nd Edition)
Show Figures

Figure 1

14 pages, 1379 KB  
Article
Efficient Co-Production of Reducing Sugars and Xylo-Oligosaccharides from Waste Wheat Straw Through FeCl3-Mediated p-Toluene Sulfonic Acid Pretreatment
by Xiuying Hu, Qianqian Gao and Yucai He
Processes 2025, 13(5), 1615; https://doi.org/10.3390/pr13051615 - 21 May 2025
Viewed by 451
Abstract
Waste wheat straw (WS) is a common agricultural waste with a low acquisition cost and a high annual yield, making it a promising feedstock for a biorefinery. In this work, efficient co-production of reducing sugars and xylo-oligosaccharides (XOSs) from WS was realized through [...] Read more.
Waste wheat straw (WS) is a common agricultural waste with a low acquisition cost and a high annual yield, making it a promising feedstock for a biorefinery. In this work, efficient co-production of reducing sugars and xylo-oligosaccharides (XOSs) from WS was realized through FeCl3-assisted p-toluene sulfonic acid (PTSA) pretreatment. The effects of reaction conditions (PTSA content, FeCl3 loading, pretreatment duration, and temperature) on lignin and xylan elimination and enzymolysis were analyzed. The results manifested that the enzymolysis of WS substantially elevated from 22.0% to 79.3% through the treatment with FeCl3-PTSA/water (120 °C, 60 min). The xylan removal and delignification were 79.7% and 66.6%, respectively. XOSs (4.0 g/L) were acquired in the pretreatment liquor. The linear fitting about LogR0 with enzymolysis, delignification, xylan elimination and XOSs content was investigated to explain the reasons for the elevated enzymolysis and to clarify the comprehensive understanding of WS enzymolysis through the FeCl3-PTSA/water treatment. In addition, the recycling test of FeCl3-PTSA/water manifested a good recycling ability for WS treatment, which would reduce the pretreatment cost and enhance the economic benefit. To sum up, FeCl3-assisted PTSA treatment of biomass for co-production of reducing sugars and XOSs is an alternative method of waste biomass valorization. Full article
(This article belongs to the Section Catalysis Enhanced Processes)
Show Figures

Figure 1

12 pages, 4832 KB  
Article
Preparation and Performance of Biomimetic Zebra-Striped Wood-Based Photothermal Evaporative Materials
by Zebin Zhao, Wenxuan Wang, Zhichen Ba, Yuze Zhang, Hongbo Xu and Daxin Liang
Biomimetics 2025, 10(5), 334; https://doi.org/10.3390/biomimetics10050334 - 20 May 2025
Viewed by 505
Abstract
An efficient solar water evaporator is an important strategy for addressing the problem of water shortage. Constructing high-performance solar interfacial evaporators through bionic design has become a crucial approach for performance enhancement. Through the study of zebra patterns, it has been found that [...] Read more.
An efficient solar water evaporator is an important strategy for addressing the problem of water shortage. Constructing high-performance solar interfacial evaporators through bionic design has become a crucial approach for performance enhancement. Through the study of zebra patterns, it has been found that the black-and-white alternating patterns generate vortices on the surface of the zebra’s skin, thereby reducing the temperature. By utilizing the vortices brought about by the temperature difference, the design of a solar water evaporator is created based on the bionic zebra pattern, so as to improve its water evaporation performance. In this work, green and sustainable wood is used as the base of the evaporator, and the bionic design of zebra stripes is adopted. Meanwhile, the following research is conducted: The wood is cut into thin slices with dimensions of 30 × 30 × 5 mm3, and a delignification treatment is performed. Tannic acid-Fe ions are used as the photothermal material for functionalization. A series of stable patterned water evaporators based on delignification wood loaded with tannic acid-Fe ion complex (TA-Fe3+) are successfully prepared. Among them, the wood-based solar water evaporator with 3 mm zebra stripes exhibits excellent photothermal water evaporation performance, achieving a water evaporation rate of 1.44 kg·m−2·h−1 under the illumination intensity of one sun. Its water evaporation performance is significantly superior to that of other coating patterns, proving that the bionic design of zebra patterns is effective and can improve water evaporation efficiency. This work provides new insights into the development of safe and environmentally friendly solar interfacial water evaporation materials through bionic design. Full article
(This article belongs to the Section Biomimetics of Materials and Structures)
Show Figures

Graphical abstract

15 pages, 9206 KB  
Article
Enhancement of Thermal–Acoustic Properties of Pinus radiata by Impregnation of Bio-Phase-Change Materials
by Paulo Molina, Mamié Sancy, Gabrielle Sève, Deborah Córdova, Ignacio Erazo, Carlos Sepúlveda-Vásquez, David Di Mambro, Kesiya George, Ignacio A. Urzúa-Parra, Diego A. Vasco and Gonzalo Rodríguez-Grau
Buildings 2025, 15(8), 1320; https://doi.org/10.3390/buildings15081320 - 16 Apr 2025
Viewed by 651
Abstract
Using fatty acids has generated significant interest in the building sector for improving energy storage in the form of latent heat. In this work, using vacuum impregnation, we analyzed the properties of a capric acid and myristic acid eutectic (83-17%) as a bio-based [...] Read more.
Using fatty acids has generated significant interest in the building sector for improving energy storage in the form of latent heat. In this work, using vacuum impregnation, we analyzed the properties of a capric acid and myristic acid eutectic (83-17%) as a bio-based phase change material in Pinus radiata. The delignification of Pinus radiata samples facilitated the impregnation process, which was carried out using the Kraft pulping method. Morphological, chemical, mechanical, thermal, and acoustic impedance analyses were performed. The results revealed that impregnating PCM in Pinus radiata samples increases the thermal inertia of the impregnated samples, which is comparable to that of delignified samples. Additionally, the analyses showed no significant difference between natural and delignified samples after treatment with PCM. Full article
(This article belongs to the Special Issue Research on Timber and Timber–Concrete Buildings)
Show Figures

Figure 1

Back to TopTop