Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (910)

Search Parameters:
Keywords = dendrimer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
58 pages, 4361 KB  
Review
Non-Perturbative Approaches to Linear and Nonlinear Responses of Atoms, Molecules, and Molecular Aggregates: A Theoretical Approach to Molecular Quantum Information and Quantum Biology
by Satoru Yamada, Takao Kobayashi, Masahiro Takahata, Hiroya Nitta, Hiroshi Isobe, Takashi Kawakami, Shusuke Yamanaka, Mitsutaka Okumura and Kizashi Yamaguchi
Chemistry 2025, 7(5), 164; https://doi.org/10.3390/chemistry7050164 - 7 Oct 2025
Viewed by 188
Abstract
Non-perturbative approaches to linear and nonlinear responses (NLR) of atoms, molecules, and molecular aggregates are reviewed in relation to low and high harmonic generations (HG) by laser fields. These response properties are effective for the generation of entangled light pairs for quantum information [...] Read more.
Non-perturbative approaches to linear and nonlinear responses (NLR) of atoms, molecules, and molecular aggregates are reviewed in relation to low and high harmonic generations (HG) by laser fields. These response properties are effective for the generation of entangled light pairs for quantum information processing by spontaneous parametric downconversion (SPDC) and stimulated four-wave mixing (SFWM). Quasi-energy derivative (QED) methods, such as QED Møller–Plesset (MP) perturbation, are reviewed as time-dependent variational methods (TDVP), providing analytical expressions of time-dependent linear and nonlinear responses of open-shell atoms, molecules, and molecular aggregates. Numerical Liouville methods for the low HG (LHG) and high HG (HHG) regimes are reviewed to elucidate the NLR of molecules in both LHG and HHG regimes. Three-step models for the generation of HHG in the latter regime are reviewed in relation to developments of attosecond science and spectroscopy. Orbital tomography is also reviewed in relation to the theoretical and experimental studies of the amplitudes and phases of wave functions of open-shell atoms and molecules, such as molecular oxygen, providing the Dyson orbital explanation. Interactions between quantum lights and molecules are theoretically examined in relation to derivations of several distribution functions for quantum information processing, quantum dynamics of molecular aggregates, and future developments of quantum molecular devices such as measurement-based quantum computation (MBQC). Quantum dynamics for energy transfer in dendrimer and related light-harvesting antenna systems are reviewed to examine the classical and quantum dynamics behaviors of photosynthesis. It is shown that quantum coherence plays an important role in the well-organized arrays of chromophores. Finally, applications of quantum optics to molecular quantum information and quantum biology are examined in relation to emerging interdisciplinary frontiers. Full article
Show Figures

Figure 1

23 pages, 1679 KB  
Review
Advancements in Agricultural Nanotechnology: An Updated Review
by Mario Pagano, Erika Lunetta, Francesco Belli, Giacomo Mocarli, Claudia Cocozza and Ilaria Cacciotti
Plants 2025, 14(18), 2939; https://doi.org/10.3390/plants14182939 - 22 Sep 2025
Viewed by 688
Abstract
Sustainable agriculture aims to meet the growing food demands of a rising global population while minimizing negative impacts on the environment, preserving natural resources, and ensuring long-term agricultural productivity. However, conventional agricultural practices often involve excessive use of chemical fertilizers, pesticides, and water, [...] Read more.
Sustainable agriculture aims to meet the growing food demands of a rising global population while minimizing negative impacts on the environment, preserving natural resources, and ensuring long-term agricultural productivity. However, conventional agricultural practices often involve excessive use of chemical fertilizers, pesticides, and water, leading to soil degradation, water pollution, and ecosystem imbalances. In this context, agricultural nanotechnology has emerged as a transformative field, offering innovative solutions to enhance crop productivity, improve soil health, and ensure sustainable agricultural practices. This review has explored the wide-ranging uses of nanotechnology in agriculture, highlighting innovative plant-targeted delivery systems—such as polymer-based nanoparticles, carbon nanomaterials, dendrimers, metal oxide particles, and nanoemulsions—as well as its contributions to minimizing pesticide application, alleviating plant stress, and improving interactions between plants and nanoparticles. By examining recent research and development, the review highlights the potential of nanotechnology to address critical challenges such as pest resistance, nutrient management, and environmental sustainability. In conclusion, we believe that, in the immediate future, key priorities should include: (1) scaling up field trials to validate laboratory findings, (2) developing biodegradable nanomaterials to ensure environmental safety, and (3) integrating nanotechnology with digital agriculture platforms to enable real-time monitoring and adaptive management. These steps are essential for translating promising research into practical, sustainable solutions that can effectively support global food security. Full article
Show Figures

Figure 1

19 pages, 799 KB  
Review
Nanotechnology for the Efficacious Delivery of Medicinal Cannabis and Pharmaceutical Medicines
by Luis Vitetta, Jeremy David Henson, Evan Hayes, David Rutolo and Sean Hall
Pharmaceuticals 2025, 18(9), 1385; https://doi.org/10.3390/ph18091385 - 16 Sep 2025
Viewed by 521
Abstract
The application of nanoparticles as nanomedicines, particularly for the targeted and efficacious delivery of drugs is an expanding platform in the field of cannabinoid and pharmaceutical drug delivery. By refocusing the route of drug administration beyond the oral gut pathway, this technology provides [...] Read more.
The application of nanoparticles as nanomedicines, particularly for the targeted and efficacious delivery of drugs is an expanding platform in the field of cannabinoid and pharmaceutical drug delivery. By refocusing the route of drug administration beyond the oral gut pathway, this technology provides significant advancements that are especially relevant for cancer treatments. Orally administered drugs face significant challenges as they traverse the gastrointestinal tract (GIT) and are subject to first-pass GIT metabolism. Physiological conditions encountered in the GIT such as food effects, hormones, gastric pH, emptying time, and intestinal transit time vary widely across individuals. Fluid composition and enzymatic activity in the small intestine and large bowel also influence drug dissolution and absorption. These factors in conjunction with the intestinal cohort of bacteria can metabolize drugs before absorption, contributing to poor and variable drug bioavailability, which can be exacerbated by gut dysbiosis. Drug delivery that bypasses the oral-GIT route and hence first-pass metabolism offers a plausible solution for enhanced safety and drug efficacy. Full article
Show Figures

Figure 1

29 pages, 4897 KB  
Review
Review of Current Achievements in Dendrimers and Nanomaterials for Potential Detection and Remediation of Chemical, Biological, Radiological and Nuclear Contamination—Integration with Artificial Intelligence and Remote Sensing Technologies
by Agnieszka Gonciarz, Robert Pich, Krzysztof A. Bogdanowicz, Witalis Pellowski, Jacek Miedziak, Sebastian Lalik, Marcin Szczepaniak, Monika Marzec and Agnieszka Iwan
Nanomaterials 2025, 15(18), 1395; https://doi.org/10.3390/nano15181395 - 10 Sep 2025
Viewed by 387
Abstract
Current scientific and technological developments indicate that the need for dendrimers and nanomaterials should be taken into account in aspects such as the detection and remediation of chemical, biological, radiological and nuclear (CBRN) contamination. To evaluate the benefits of dendrimers in CBRN contamination, [...] Read more.
Current scientific and technological developments indicate that the need for dendrimers and nanomaterials should be taken into account in aspects such as the detection and remediation of chemical, biological, radiological and nuclear (CBRN) contamination. To evaluate the benefits of dendrimers in CBRN contamination, different characterization methods, toxicological evaluation, and recyclability must be used. The aim of this article is to systematize knowledge about selected nanomaterials and dendrimers as well as chemical, biological, radiological and nuclear (CBRN) hazards in accordance with the principles of green chemistry, engineering, technology and environmental safety. So far, many review articles on dendrimers and nanomaterials have focused on biomedical applications or environmental remediation. In this article, we discuss this topic in more detail, especially in relation to the integration of dendrimers with artificial intelligence and remote sensing technologies. We highlight interdisciplinary synergies—artificial intelligence for smarter design and remote sensing for deployment—that could bridge the gap between nanoscale innovation and real CBRN countermeasures. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Bioimaging: 2nd Edition)
Show Figures

Graphical abstract

27 pages, 1363 KB  
Review
Promising Nanotechnology-Based Strategies for Melanoma Treatment
by Letícia Sias-Fonseca, Paulo C. Costa, Lucília Saraiva, Ana Alves and Maria Helena Amaral
Colloids Interfaces 2025, 9(4), 53; https://doi.org/10.3390/colloids9040053 - 20 Aug 2025
Viewed by 739
Abstract
Melanoma is a type of skin cancer with high lethality and increasing incidence. Current treatments typically involve surgery as the first step, followed by adjuvant treatments, which are necessary in most cases. These adjuvant treatments may include radiotherapy, phototherapy, chemotherapy, immunotherapy, and combined [...] Read more.
Melanoma is a type of skin cancer with high lethality and increasing incidence. Current treatments typically involve surgery as the first step, followed by adjuvant treatments, which are necessary in most cases. These adjuvant treatments may include radiotherapy, phototherapy, chemotherapy, immunotherapy, and combined therapies. However, patients with melanoma still face great difficulties, such as the inefficiency of therapies and serious side effects, in addition to uncomfortable scars. Most of these problems are related to limitations of antitumor therapies, such as the low bioavailability of drugs, degradation in biological fluids, rapid clearance, difficulty in reaching the tumors, the low capacity for accumulation and infiltration in tumor cells, toxicity to healthy cells, and systemic action. Thus, antitumor therapy for melanoma remains a challenge. In this line, nanotechnology has brought new perspectives and has been the subject of intensive research on the use of nanoparticles (liposomes, lipid nanoparticles, polymeric nanoparticles, inorganic nanoparticles, carbon nanotubes, dendrimers, nanogels, and biomimetic nanoparticles, among others) as carriers for the controlled release of drugs and tumor diagnosis. This work outlines the main limitations of current melanoma therapies and explores how nanoparticle-based drug delivery systems can overcome these challenges, highlighting recent research and clinical developments. Full article
(This article belongs to the Special Issue Feature Reviews in Colloids and Interfaces)
Show Figures

Graphical abstract

19 pages, 3483 KB  
Article
Thiophosphoryl-PMMH Dendrimers for Potential Detection and Remediation of CBRN Contamination: Selected Studies and General Guidelines and Procedures
by Sebastian Lalik, Agnieszka Gonciarz, Robert Pich, Krzysztof A. Bogdanowicz, Witalis Pellowski, Jacek Miedziak, Marcin Szczepaniak, Monika Marzec and Agnieszka Iwan
Materials 2025, 18(16), 3805; https://doi.org/10.3390/ma18163805 - 13 Aug 2025
Cited by 1 | Viewed by 384
Abstract
The main idea of this work is to implement organic nanomaterials, such as thiophosphoryl-PMMH dendrimers, for the potential detection and remediation of chemical, biological, radiological, and nuclear (CBRN) contamination. An IR–thermal technique for determining the material specific surface morphology and defects of a [...] Read more.
The main idea of this work is to implement organic nanomaterials, such as thiophosphoryl-PMMH dendrimers, for the potential detection and remediation of chemical, biological, radiological, and nuclear (CBRN) contamination. An IR–thermal technique for determining the material specific surface morphology and defects of a thiophosphoryl-PMMH dendrimers is presented. Optical (UV-Vis), thermal (DSC), and electrical (dielectric spectroscopy and thermal imaging) characterizations show that the generation and number of surface groups influence the properties of the investigated dendrimers. Finally, general guidelines and procedures of thiophosphoryl-PMMH dendrimers with various generations are proposed for both civilian and military users. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Graphical abstract

28 pages, 896 KB  
Review
Nanoparticles as an Encouraging Therapeutic Approach to Alzheimer’s Disease
by Joanna Koga-Batko, Katarzyna Antosz-Popiołek, Hanna Nowakowska, Marta Błażejewska, Eunika Milena Kowalik, Jan Aleksander Beszłej and Jerzy Leszek
Int. J. Mol. Sci. 2025, 26(16), 7725; https://doi.org/10.3390/ijms26167725 - 10 Aug 2025
Viewed by 1545
Abstract
Alzheimer’s disease (AD) is an irreversible neurodegenerative disease of the central nervous system, responsible for 60–80% of dementia. Its pathogenesis is mainly based on the accumulation of beta-amyloid and tau proteins. Current pharmacological treatment includes acetylcholinesterase inhibitors, NMDA receptor antagonists, and monoclonal antibodies. [...] Read more.
Alzheimer’s disease (AD) is an irreversible neurodegenerative disease of the central nervous system, responsible for 60–80% of dementia. Its pathogenesis is mainly based on the accumulation of beta-amyloid and tau proteins. Current pharmacological treatment includes acetylcholinesterase inhibitors, NMDA receptor antagonists, and monoclonal antibodies. However, their effect is limited by the blood–brain barrier (BBB). A new and promising way for different drugs to cross the BBB is the use of nanoparticles such as liposomes, micelles, solid lipid nanocarriers, polymeric nanoparticles, dendrimers, nanoemulsions, and inorganic nanoparticles as their carriers. Additionally, some nanoparticles present anti-inflammatory or neuroprotective effects. Some of them can also be used to treat cerebral amyloid angiopathy (CAA) by aiming at amyloid deposits in brain arterioles. All the properties of nanoparticles listed and discussed in the article allow us to hope that there will be more effective treatment in the future, which is extremely important as the number of patients with AD is still growing. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Graphical abstract

30 pages, 2414 KB  
Review
Melittin-Based Nanoparticles for Cancer Therapy: Mechanisms, Applications, and Future Perspectives
by Joe Rizkallah, Nicole Charbel, Abdallah Yassine, Amal El Masri, Chris Raffoul, Omar El Sardouk, Malak Ghezzawi, Therese Abou Nasr and Firas Kreidieh
Pharmaceutics 2025, 17(8), 1019; https://doi.org/10.3390/pharmaceutics17081019 - 6 Aug 2025
Viewed by 4179
Abstract
Melittin, a cytolytic peptide derived from honeybee venom, has demonstrated potent anticancer activity through mechanisms such as membrane disruption, apoptosis induction, and modulation of key signaling pathways. Melittin exerts its anticancer activity by interacting with key molecular targets, including downregulation of the PI3K/Akt [...] Read more.
Melittin, a cytolytic peptide derived from honeybee venom, has demonstrated potent anticancer activity through mechanisms such as membrane disruption, apoptosis induction, and modulation of key signaling pathways. Melittin exerts its anticancer activity by interacting with key molecular targets, including downregulation of the PI3K/Akt and NF-κB signaling pathways, and by inducing mitochondrial apoptosis through reactive oxygen species generation and cytochrome c release. However, its clinical application is hindered by its systemic and hemolytic toxicity, rapid degradation in plasma, poor pharmacokinetics, and immunogenicity, necessitating the development of targeted delivery strategies to enable safe and effective treatment. Nanoparticle-based delivery systems have emerged as a promising strategy for overcoming these challenges, offering improved tumor targeting, reduced off-target effects, and enhanced stability. This review provides a comprehensive overview of the mechanisms through which melittin exerts its anticancer effects and evaluates the development of various melittin-loaded nanocarriers, including liposomes, polymeric nanoparticles, dendrimers, micelles, and inorganic systems. It also summarizes the preclinical evidence for melittin nanotherapy across a wide range of cancer types, highlighting both its cytotoxic and immunomodulatory effects. The potential of melittin nanoparticles to overcome multidrug resistance and synergize with chemotherapy, immunotherapy, photothermal therapy, and radiotherapy is discussed. Despite promising in vitro and in vivo findings, its clinical translation remains limited. Key barriers include toxicity, manufacturing scalability, regulatory approval, and the need for more extensive in vivo validation. A key future direction is the application of computational tools, such as physiologically based pharmacokinetic modeling and artificial-intelligence-based modeling, to streamline development and guide its clinical translation. Addressing these challenges through focused research and interdisciplinary collaboration will be essential to realizing the full therapeutic potential of melittin-based nanomedicines in oncology. Overall, this review synthesizes the findings from over 100 peer-reviewed studies published between 2008 and 2025, providing an up-to-date assessment of melittin-based nanomedicine strategies across diverse cancer types. Full article
(This article belongs to the Special Issue Development of Novel Tumor-Targeting Nanoparticles, 2nd Edition)
Show Figures

Figure 1

20 pages, 1677 KB  
Review
Applications of Nanoparticles in the Diagnosis and Treatment of Ovarian Cancer
by Ahmed El-Mallul, Ryszard Tomasiuk, Tadeusz Pieńkowski, Małgorzata Kowalska, Dilawar Hasan, Marcin Kostrzewa, Dominik Czerwonka, Aleksandra Sado, Wiktoria Rogowska, Igor Z. Zubrzycki and Magdalena Wiacek
Nanomaterials 2025, 15(15), 1200; https://doi.org/10.3390/nano15151200 - 6 Aug 2025
Viewed by 964
Abstract
Nanotechnology offers innovative methodologies for enhancing the diagnosis and treatment of ovarian cancer by utilizing specialized nanoparticles. The utilization of nanoparticles offers distinct advantages, specifically that these entities enhance the bioavailability of therapeutic agents and facilitate the targeted delivery of pharmacological agents to [...] Read more.
Nanotechnology offers innovative methodologies for enhancing the diagnosis and treatment of ovarian cancer by utilizing specialized nanoparticles. The utilization of nanoparticles offers distinct advantages, specifically that these entities enhance the bioavailability of therapeutic agents and facilitate the targeted delivery of pharmacological agents to neoplastic cells. A diverse array of nanoparticles, including but not limited to liposomes, dendrimers, and gold nanoparticles, function as proficient carriers for drug delivery. Nevertheless, notwithstanding the auspicious potential of these applications, challenges pertaining to toxicity, biocompatibility, and the necessity for comprehensive clinical evaluations pose considerable barriers to the widespread implementation of these technologies. The incorporation of nanotechnology into clinical practice holds the promise of significantly transforming the management of ovarian cancer, offering novel diagnostic tools and therapeutic strategies that enhance patient outcomes and prognoses. In summary, the deployment of nanotechnology in the context of ovarian cancer epitomizes a revolutionary paradigm in medical science, amalgamating sophisticated materials and methodologies to enhance both diagnostic and therapeutic outcomes. Continued research and development endeavors are essential to fully realize the extensive potential of these innovative solutions and address the existing challenges associated with their application in clinical settings. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

53 pages, 3300 KB  
Review
A Comprehensive Review of Smart Thermosensitive Nanocarriers for Precision Cancer Therapy
by Atena Yaramiri, Rand Abo Asalh, Majd Abo Asalh, Nour AlSawaftah, Waad H. Abuwatfa and Ghaleb A. Husseini
Int. J. Mol. Sci. 2025, 26(15), 7322; https://doi.org/10.3390/ijms26157322 - 29 Jul 2025
Cited by 1 | Viewed by 1918
Abstract
By 2030, millions of new cancer cases will be diagnosed, as well as millions of cancer-related deaths. Traditional drug delivery methods have limitations, so developing smart drug delivery systems (SDDs) has emerged as a promising avenue for more effective and precise cancer treatment. [...] Read more.
By 2030, millions of new cancer cases will be diagnosed, as well as millions of cancer-related deaths. Traditional drug delivery methods have limitations, so developing smart drug delivery systems (SDDs) has emerged as a promising avenue for more effective and precise cancer treatment. Nanotechnology, particularly nanomedicine, provides innovative approaches to enhance drug delivery, including the use of nanoparticles. One such type of SDD is thermosensitive nanoparticles, which respond to internal and external stimuli, such as temperature changes, to release drugs precisely at tumor sites and minimize off-target effects. On the other hand, hyperthermia is a cancer treatment mode that goes back centuries and has become popular because it can target cancer cells while sparing healthy tissue. This paper presents a comprehensive review of smart thermosensitive nanoparticles for cancer treatment, with a primary focus on organic nanoparticles. The integration of hyperthermia with temperature-sensitive nanocarriers, such as micelles, hydrogels, dendrimers, liposomes, and solid lipid nanoparticles, offers a promising approach to improving the precision and efficacy of cancer therapy. By leveraging temperature as a controlled drug release mechanism, this review highlights the potential of these innovative systems to enhance treatment outcomes while minimizing adverse side effects. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

22 pages, 4856 KB  
Article
In Vitro and In Vivo Evaluation of Alectinib-Loaded Dendrimer Nanoparticles as a Drug Delivery System for Non-Small Cell Lung Carcinoma
by Mahmood R. Atta, Israa Al-Ani, Ibrahim Aldeeb, Khaldun M. AlAzzam, Tha’er Ata, Mohammad A. Almullah, Enas Daoud and Feras Al-Hajji
Pharmaceutics 2025, 17(8), 974; https://doi.org/10.3390/pharmaceutics17080974 - 28 Jul 2025
Viewed by 2194
Abstract
Background/Objectives: Alectinib, a second-generation tyrosine kinase inhibitor indicated for the treatment of non-small-cell lung cancer (NSCLC), exhibits suboptimal oral bioavailability, primarily attributable to its inherently low aqueous solubility and limited dissolution kinetics. This study aimed to enhance Alectinib’s solubility and therapeutic efficacy [...] Read more.
Background/Objectives: Alectinib, a second-generation tyrosine kinase inhibitor indicated for the treatment of non-small-cell lung cancer (NSCLC), exhibits suboptimal oral bioavailability, primarily attributable to its inherently low aqueous solubility and limited dissolution kinetics. This study aimed to enhance Alectinib’s solubility and therapeutic efficacy by formulating a G4-NH2-PAMAM dendrimer complex. Methods: The complex was prepared using the organic solvent evaporation method and characterized by DSC, FTIR, dynamic light scattering (DLS), and zeta potential measurements. A validated high-performance liquid chromatography (HPLC) method quantified the Alectinib. In vitro drug release studies compared free Alectinib with the G4-NH2-PAMAM dendrimer complex. Cytotoxicity against NSCLC cell line A549 was assessed using MTT assays, clonogenic assay, and scratch-wound assay. Xenograft effect was investigated in the H460 lung cell line. Pharmacokinetic parameters were evaluated in rats using LC–MS/MS. Results: Alectinib exhibited an encapsulation efficiency of 59 ± 5%. In vitro release studies demonstrated sustained drug release at pH 6.8 and faster degradation at pH 2.5. Anticancer activity in vitro showed comparable efficacy to free Alectinib, with 98% migration inhibition. In vivo tumor suppression studies revealed near-complete tumor regression (~100%) after 17 days of treatment, compared to 75% with free Alectinib. Pharmacokinetic analysis indicated enhanced absorption (shorter Tmax), prolonged systemic circulation (longer half-life), and higher bioavailability (increased AUC) for the dendrimer-complexed drug. Conclusions: These findings suggest that the G4-NH2-PAMAM dendrimer system significantly improves Alectinib’s pharmacokinetics and therapeutic potential, making it a promising approach for NSCLC treatment. Full article
Show Figures

Graphical abstract

26 pages, 1363 KB  
Review
From Structure to Function: The Promise of PAMAM Dendrimers in Biomedical Applications
by Said Alamos-Musre, Daniel Beltrán-Chacana, Juan Moyano, Valeria Márquez-Miranda, Yorley Duarte, Sebastián Miranda-Rojas, Yusser Olguín, Juan A. Fuentes, Danilo González-Nilo and María Carolina Otero
Pharmaceutics 2025, 17(7), 927; https://doi.org/10.3390/pharmaceutics17070927 - 18 Jul 2025
Cited by 2 | Viewed by 1341
Abstract
PAMAM dendrimers are distinguished by their capacity for functionalization, which enhances the properties of the compounds they transport, rendering them highly versatile nanoparticles with extensive applications in the biomedical domain, including drug, vaccine, and gene delivery. These dendrimers can be internalized into cells [...] Read more.
PAMAM dendrimers are distinguished by their capacity for functionalization, which enhances the properties of the compounds they transport, rendering them highly versatile nanoparticles with extensive applications in the biomedical domain, including drug, vaccine, and gene delivery. These dendrimers can be internalized into cells through various endocytic mechanisms, such as passive diffusion, clathrin-mediated endocytosis, and caveolae-mediated endocytosis, allowing them to traverse the cytoplasm and reach intracellular targets, such as the mitochondria or nucleus. Despite the significant challenge posed by the cytotoxicity of these nanoparticles, which is contingent upon the dendrimer size, surface charge, and generation, numerous strategies have been documented to modify the dendrimer surface using polyethylene glycol and other chemical groups to temporarily mitigate their cytotoxic effects. The potential of PAMAM dendrimers in cancer therapy and other biomedical applications is substantial, owing to their ability to enhance bioavailability, pharmacokinetics, and pharmacodynamics of active ingredients within the body. This underscores the necessity for further investigation into the optimization of internalization pathways and cytotoxicity of these nanoparticles. This review offers a comprehensive synthesis of the current literature on the diverse cellular internalization pathways of PAMAM dendrimers and their cargo molecules, emphasizing the mechanisms of entry, intracellular trafficking, and factors influencing these processes. Full article
(This article belongs to the Special Issue Biomedical Applications: Advances in Bioengineering and Drug Delivery)
Show Figures

Figure 1

34 pages, 4581 KB  
Review
Nanoradiopharmaceuticals: Design Principles, Radiolabeling Strategies, and Biomedicine Applications
by Andrés Núñez-Salinas, Cristian Parra-Garretón, Daniel Acuña, Sofía Peñaloza, Germán Günther, Soledad Bollo, Francisco Arriagada and Javier Morales
Pharmaceutics 2025, 17(7), 912; https://doi.org/10.3390/pharmaceutics17070912 - 14 Jul 2025
Cited by 1 | Viewed by 1366
Abstract
Nanoradiopharmaceuticals integrate nanotechnology with nuclear medicine to enhance the precision and effectiveness of radiopharmaceuticals used in diagnostic imaging and targeted therapies. Nanomaterials offer improved targeting capabilities and greater stability, helping to overcome several limitations. This review presents a comprehensive overview of the fundamental [...] Read more.
Nanoradiopharmaceuticals integrate nanotechnology with nuclear medicine to enhance the precision and effectiveness of radiopharmaceuticals used in diagnostic imaging and targeted therapies. Nanomaterials offer improved targeting capabilities and greater stability, helping to overcome several limitations. This review presents a comprehensive overview of the fundamental design principles, radiolabeling techniques, and biomedical applications of nanoradiopharmaceuticals, with a particular focus on their expanding role in precision oncology. It explores key areas, including single- and multi-modal imaging modalities (SPECT, PET), radionuclide therapies involving beta, alpha, and Auger emitters, and integrated theranostic systems. A diverse array of nanocarriers is examined, including liposomes, micelles, albumin nanoparticles, PLGA, dendrimers, and gold, iron oxide, and silica-based platforms, with an assessment of both preclinical and clinical research outcomes. Theranostic nanoplatforms, which integrate diagnostic and therapeutic functions within a single system, enable real-time monitoring and personalized dose optimization. Although some of these systems have progressed to clinical trials, several obstacles remain, including formulation stability, scalable manufacturing, regulatory compliance, and long-term safety considerations. In summary, nanoradiopharmaceuticals represent a promising frontier in personalized medicine, particularly in oncology. By combining diagnostic and therapeutic capabilities within a single nanosystem, they facilitate more individualized and adaptive treatment approaches. Continued innovation in formulation, radiochemistry, and regulatory harmonization will be crucial to their successful routine clinical use. Full article
(This article belongs to the Special Issue Nanosystems for Advanced Diagnostics and Therapy)
Show Figures

Figure 1

19 pages, 1620 KB  
Article
Cellular Entry, Cytotoxicity, and Antifungal Activity of Newly Synthesized Dendrimers
by Aneliya Kostadinova, Ema Gaydarska, Tanya Topouzova-Hristova, Dayana Benkova, Galya Staneva, Ekaterina Krumova, Rusina Hazarosova, Miroslav Marinov, Asya Tsanova, Albena Jordanova and Ivo Grabchev
Appl. Sci. 2025, 15(14), 7764; https://doi.org/10.3390/app15147764 - 10 Jul 2025
Viewed by 2867
Abstract
Dendrimers, 4-dimethylamino-1,8-naphthalimide (DAB) and its halogenated analog 3-bromo-4-dimethylamino-1,8-naphthalimide (DAB-Br), were evaluated on eukaryotic cells, human HFF-1 fibroblast cells, and five fungal species. Although both dendrimers have demonstrated antibacterial and antiviral potential, thus far, their effects on eukaryotic cells, particularly human and fungal cells, [...] Read more.
Dendrimers, 4-dimethylamino-1,8-naphthalimide (DAB) and its halogenated analog 3-bromo-4-dimethylamino-1,8-naphthalimide (DAB-Br), were evaluated on eukaryotic cells, human HFF-1 fibroblast cells, and five fungal species. Although both dendrimers have demonstrated antibacterial and antiviral potential, thus far, their effects on eukaryotic cells, particularly human and fungal cells, have not been investigated. For this purpose, their cytotoxicity, mechanisms of cellular entry, and antifungal activity were studied. Dynamic light scattering measurements revealed that both dendrimers exhibited positive surface charges (+28 to +35 mV), good colloidal stability, and nanoscale dimensions (117–234 nm), facilitating interactions with target cells. The MTT assay showed that DAB was more cytotoxic toward HFF-1 cells (IC50 = 27 µg/mL) compared to DAB-Br (IC50 = 68 µg/mL). In contrast, the resazurin-based antifungal assay demonstrated that DAB-Br had superior antifungal activity, achieving a lower minimum inhibitory concentration (0.148 µg/µL), compared to DAB (0.295 µg/µL). A trypan blue exclusion test revealed that both dendrimers entered cells through membrane permeabilization, either temporarily or permanently, depending on the concentration and exposure time. At concentrations above 30 µg/mL, irreversible permeabilization was observed within two hours of treatment, accompanied by a decrease in membrane lipid order, indicating altered membrane integrity and permeability. Conversely, at lower concentrations (7.5–15 µg/mL), dendrimers induced only temporary membrane permeabilization, with membranes remaining intact, suggesting a reversible interaction with the lipid bilayer. Conducting thorough and systematic research to fully explore their biological activities could provide valuable insight for future applications. Full article
(This article belongs to the Section Nanotechnology and Applied Nanosciences)
Show Figures

Figure 1

24 pages, 1920 KB  
Review
Advances in Doxorubicin Chemotherapy: Emerging Polymeric Nanocarriers for Drug Loading and Delivery
by Abhi Bhadran, Himanshu Polara, Godwin K. Babanyinah, Sruthy Baburaj and Mihaela C. Stefan
Cancers 2025, 17(14), 2303; https://doi.org/10.3390/cancers17142303 - 10 Jul 2025
Cited by 2 | Viewed by 1854
Abstract
Background/Objectives: Effective and targeted delivery of doxorubicin (DOX) remains a significant challenge due to its dose-limiting cardiotoxicity and systemic side effects. Liposomal formulations like Doxil® have improved tumor targeting and reduced toxicity, but issues such as limited stability, poor release control, and [...] Read more.
Background/Objectives: Effective and targeted delivery of doxorubicin (DOX) remains a significant challenge due to its dose-limiting cardiotoxicity and systemic side effects. Liposomal formulations like Doxil® have improved tumor targeting and reduced toxicity, but issues such as limited stability, poor release control, and insufficient site-specific delivery persist. As a result, there is a growing interest in advanced drug delivery systems, particularly polymeric nanocarriers, which offer biocompatibility, tunable properties, and ease of fabrication. Methods: This review is organized into two key sections. The first section provides a comprehensive overview of DOX, including its mechanism of action, clinical challenges, and the limitations of current chemotherapy approaches. The second section highlights recent advances in polymeric nanocarriers for DOX delivery, focusing on polymeric micelles as well as other promising systems like hydrogels, dendrimers, polymersomes, and polymer–drug conjugates. Results: Initial discussions explore current strategies enhancing DOX’s clinical translation, including methods to address cardiotoxicity and multidrug resistance. The latter part presents recent studies that report improved drug loading efficiency in polymeric nanocarriers through techniques such as core/shell modifications, enhanced hydrophobic interactions, and polymer–drug conjugation. Conclusions: Despite notable progress in polymeric nanocarrier-based DOX delivery, challenges like limited circulation time, immunogenicity, and manufacturing scalability continue to hinder clinical application. Continued innovation in this field is crucial for the development of safe, effective, and clinically translatable polymeric nanocarriers for cancer therapy. Full article
(This article belongs to the Section Cancer Drug Development)
Show Figures

Figure 1

Back to TopTop