Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = dental artifact reduction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1740 KiB  
Article
The Impact of AI on Metal Artifacts in CBCT Oral Cavity Imaging
by Róża Wajer, Adrian Wajer, Natalia Kazimierczak, Justyna Wilamowska and Zbigniew Serafin
Diagnostics 2024, 14(12), 1280; https://doi.org/10.3390/diagnostics14121280 - 17 Jun 2024
Cited by 2 | Viewed by 1492
Abstract
Objective: This study aimed to assess the impact of artificial intelligence (AI)-driven noise reduction algorithms on metal artifacts and image quality parameters in cone-beam computed tomography (CBCT) images of the oral cavity. Materials and Methods: This retrospective study included 70 patients, 61 of [...] Read more.
Objective: This study aimed to assess the impact of artificial intelligence (AI)-driven noise reduction algorithms on metal artifacts and image quality parameters in cone-beam computed tomography (CBCT) images of the oral cavity. Materials and Methods: This retrospective study included 70 patients, 61 of whom were analyzed after excluding those with severe motion artifacts. CBCT scans, performed using a Hyperion X9 PRO 13 × 10 CBCT machine, included images with dental implants, amalgam fillings, orthodontic appliances, root canal fillings, and crowns. Images were processed with the ClariCT.AI deep learning model (DLM) for noise reduction. Objective image quality was assessed using metrics such as the differentiation between voxel values (ΔVVs), the artifact index (AIx), and the contrast-to-noise ratio (CNR). Subjective assessments were performed by two experienced readers, who rated overall image quality and artifact intensity on predefined scales. Results: Compared with native images, DLM reconstructions significantly reduced the AIx and increased the CNR (p < 0.001), indicating improved image clarity and artifact reduction. Subjective assessments also favored DLM images, with higher ratings for overall image quality and lower artifact intensity (p < 0.001). However, the ΔVV values were similar between the native and DLM images, indicating that while the DLM reduced noise, it maintained the overall density distribution. Orthodontic appliances produced the most pronounced artifacts, while implants generated the least. Conclusions: AI-based noise reduction using ClariCT.AI significantly enhances CBCT image quality by reducing noise and metal artifacts, thereby improving diagnostic accuracy and treatment planning. Further research with larger, multicenter cohorts is recommended to validate these findings. Full article
(This article belongs to the Special Issue Advances in Oral and Maxillofacial Radiology)
Show Figures

Figure 1

13 pages, 2379 KiB  
Review
Potential Benefits of Photon-Counting CT in Dental Imaging: A Narrative Review
by Chiara Zanon, Alessia Pepe, Filippo Cademartiri, Costanza Bini, Erica Maffei, Emilio Quaia, Edoardo Stellini and Adolfo Di Fiore
J. Clin. Med. 2024, 13(8), 2436; https://doi.org/10.3390/jcm13082436 - 22 Apr 2024
Viewed by 1606
Abstract
Background/Objectives: Advancements in oral imaging technology are continually shaping the landscape of dental diagnosis and treatment planning. Among these, photon-counting computed tomography (PCCT), introduced in 2021, has emerged as a promising, high-quality oral technology. Dental imaging typically requires a resolution beyond the standard [...] Read more.
Background/Objectives: Advancements in oral imaging technology are continually shaping the landscape of dental diagnosis and treatment planning. Among these, photon-counting computed tomography (PCCT), introduced in 2021, has emerged as a promising, high-quality oral technology. Dental imaging typically requires a resolution beyond the standard CT systems achievable with the specialized cone-beam CT. PCCT can offer up to 100 µm resolution, improve soft-tissue contrast, and provide faster scanning times, which are crucial for detailed dental diagnosis and treatment planning. Using semiconductor detectors, PCCT produces sharper images and can potentially reduce the number of scans required, thereby decreasing patient radiation exposure. This review aimed to explore the potential benefits of PCCT in dental imaging. Methods: This review analyzed the literature on PCCT in dental imaging from January 2010 to February 2024, sourced from PubMed, Scopus, and Web of Science databases, focusing on high-resolution, patient safety, and diagnostic efficiency in dental structure assessment. We included English-language articles, case studies, letters, observational studies, and randomized controlled trials while excluding duplicates and studies unrelated to PCCT’s application in dental imaging. Results: Studies have highlighted the superiority of PCCT in reducing artifacts, which are often problematic, compared to conventional CBCT and traditional CT scans, due to metallic dental implants, particularly when used with virtual monoenergetic imaging and iterative metal artifact reduction, thereby improving implant imaging. This review acknowledges limitations, such as the potential for overlooking other advanced imaging technologies, a narrow study timeframe, the lack of real-world clinical application data in this field, and costs. Conclusions: PCCT represents a promising advancement in dental imaging, offering high-resolution visuals, enhanced contrast, and rapid scanning with reduced radiation exposure. Full article
Show Figures

Figure 1

15 pages, 9738 KiB  
Article
Metal Artifact Reduction in Dental CBCT Images Using Direct Sinogram Correction Combined with Metal Path-Length Weighting
by Mohamed A. A. Hegazy, Myung Hye Cho, Min Hyoung Cho and Soo Yeol Lee
Sensors 2023, 23(3), 1288; https://doi.org/10.3390/s23031288 - 23 Jan 2023
Cited by 9 | Viewed by 4091
Abstract
Metal artifacts in dental computed tomography (CT) images, caused by highly X-ray absorbing objects, such as dental implants or crowns, often more severely compromise image readability than in medical CT images. Since lower tube voltages are used for dental CTs in spite of [...] Read more.
Metal artifacts in dental computed tomography (CT) images, caused by highly X-ray absorbing objects, such as dental implants or crowns, often more severely compromise image readability than in medical CT images. Since lower tube voltages are used for dental CTs in spite of the more frequent presence of metallic objects in the patient, metal artifacts appear more severely in dental CT images, and the artifacts often persist even after metal artifact correction. The direct sinogram correction (DSC) method, which directly corrects the sinogram using the mapping function derived by minimizing the sinogram inconsistency, works well in the case of mild metal artifacts, but it often fails to correct severe metal artifacts. We propose a modified DSC method to reduce severe metal artifacts, and we have tested it on human dental images. We first segment the metallic objects in the CT image, and then we forward-project the segmented metal mask to identify the metal traces in the projection data with computing the metal path length for the rays penetrating the metal mask. In the sinogram correction with the DSC mapping function, we apply the weighting proportional to the metal path length. We have applied the proposed method to the phantom and patient images taken at the X-ray tube voltage of 90 kVp. We observed that the proposed method outperforms the original DSC method when metal artifacts were severe. However, we need further extensive studies to verify the proposed method for various CT scan conditions with many more patient images. Full article
(This article belongs to the Section Biosensors)
Show Figures

Figure 1

895 KiB  
Review
Multiparametric Evaluation of Head and Neck Squamous Cell Carcinoma Using a Single-Source Dual-Energy CT with Fast kVp Switching: State of the Art
by Stephanie Lam, Rajiv Gupta, Hillary Kelly, Hugh D. Curtin and Reza Forghani
Cancers 2015, 7(4), 2201-2216; https://doi.org/10.3390/cancers7040886 - 6 Nov 2015
Cited by 47 | Viewed by 7917
Abstract
There is an increasing body of evidence establishing the advantages of dual-energy CT (DECT) for evaluation of head and neck squamous cell carcinoma (HNSCC). Focusing on a single-source DECT system with fast kVp switching, we will review the principles behind DECT and associated [...] Read more.
There is an increasing body of evidence establishing the advantages of dual-energy CT (DECT) for evaluation of head and neck squamous cell carcinoma (HNSCC). Focusing on a single-source DECT system with fast kVp switching, we will review the principles behind DECT and associated post-processing steps that make this technology especially suitable for HNSCC evaluation and staging. The article will review current applications of DECT for evaluation of HNSCC including use of different reconstructions to improve tumor conspicuity, tumor-normal soft tissue interface, accuracy of invasion of critical structures such as thyroid cartilage, and reduce dental artifact. We will provide a practical approach for DECT implementation into routine clinical use and a multi-parametric approach for scan interpretation based on the experience at our institution. The article will conclude with a brief overview of potential future applications of the technique. Full article
Show Figures

Figure 1

Back to TopTop