Processing math: 100%
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (350)

Search Parameters:
Keywords = design cooling capacity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4105 KiB  
Article
Evaluating Waste Heat Potential for Fifth Generation District Heating and Cooling (5GDHC): Analysis Across 26 Building Types and Recovery Strategies
by Stanislav Chicherin
Processes 2025, 13(6), 1730; https://doi.org/10.3390/pr13061730 - 31 May 2025
Viewed by 184
Abstract
Efficient cooling and heat recovery systems are becoming increasingly critical in large-scale commercial and industrial facilities, especially with the rising demand for sustainable energy solutions. Traditional air-conditioning and refrigeration systems often dissipate significant amounts of waste heat, which remains underutilized. This study addresses [...] Read more.
Efficient cooling and heat recovery systems are becoming increasingly critical in large-scale commercial and industrial facilities, especially with the rising demand for sustainable energy solutions. Traditional air-conditioning and refrigeration systems often dissipate significant amounts of waste heat, which remains underutilized. This study addresses the challenge of harnessing low-potential waste heat from such systems to support fifth-generation district heating and cooling (5GDHC) networks, particularly in moderate-temperate regions like Flanders, Belgium. To evaluate the technical and economic feasibility of waste heat recovery, a methodology is developed that integrates established performance metrics—such as the energy efficiency ratio (EER), power usage effectiveness (PUE), and specific cooling demand (kW/t)—with capital (CapEx) and operational expenditure (OpEx) assessments. Empirical correlations, including regression analysis based on manufacturer data and operational case studies, are used to estimate equipment sizing and system performance across three operational modes. The study includes detailed modeling of data centers, cold storage facilities, and large supermarkets, taking into account climatic conditions, load factors, and thermal capacities. Results indicate that average cooling loads typically reach 58% of peak demand, with seasonal coefficient of performance (SCOP) values ranging from 6.1 to a maximum of 10.3. Waste heat recovery potential varies significantly across building types, with conversion rates from 33% to 68%, averaging at 59%. In data centers using water-to-water heat pumps, energy production reaches 10.1 GWh/year in heat pump mode and 8.6 GWh/year in heat exchanger mode. Despite variations in system complexity and building characteristics, OpEx and CapEx values converge closely (within 2.5%), demonstrating a well-balanced configuration. Simulations also confirm that large buildings operating above a 55% capacity factor provide the most favorable conditions for integrating waste heat into 5GDHC systems. In conclusion, the proposed approach enables the scalable and efficient integration of low-grade waste heat into district energy networks. While climatic and technical constraints exist, especially concerning temperature thresholds and equipment design, the results show strong potential for energy savings up to 40% in well-optimized systems. This highlights the viability of retrofitting large-scale cooling systems for dual-purpose operation, offering both environmental and economic benefits. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

25 pages, 10258 KiB  
Article
Full-Scale Experimental Investigation of Temperature Distribution and Smoke Flow in a Road Tunnel with a Novel Water Mist Fire Fighting System
by Shouzhong Feng, Deyuan Kan and Chao Guo
Fire 2025, 8(6), 216; https://doi.org/10.3390/fire8060216 - 28 May 2025
Viewed by 129
Abstract
This study presents a novel water mist fire fighting system that integrates water mist sprays and water mist curtains, designed to achieve simultaneous fire suppression, thermal insulation, and smoke control. Three full-scale experiments were conducted under various fire scenarios, and the changes in [...] Read more.
This study presents a novel water mist fire fighting system that integrates water mist sprays and water mist curtains, designed to achieve simultaneous fire suppression, thermal insulation, and smoke control. Three full-scale experiments were conducted under various fire scenarios, and the changes in fire behavior and heat release rate were examined to evaluate the effectiveness of the water mist system in extinguishing fires. Additionally, the spatiotemporal changes in ceiling temperature were monitored to assess the cooling and protective effects of the water mist. The thermal insulation capability of the system was also investigated by detecting the temperature distribution inside the tunnel. Moreover, the smoke conditions upstream and downstream of the tunnel were analyzed to evaluate the smoke-blocking performance of the water mist system. The findings demonstrate that the water mist fire fighting system is highly efficient in attenuating the fire and restricting its progression. Within the water mist spray section, the average ceiling temperature decreased exponentially during both the initial and steady burning phases across all tested fire scenarios. Nonetheless, the smoke-carrying capacity of the water mist spray is limited. Fortunately, the dispersed smoke was diluted by water mist, markedly enhancing visibility and mitigating the impact of smoke on tunnel illumination. Full article
Show Figures

Figure 1

36 pages, 10035 KiB  
Article
Effects of Porous Filling and Nanofluids on Heat Transfer in Intel i9 CPU Minichannel Heat Sinks
by Lie Li and Jik Chang Leong
Electronics 2025, 14(10), 1922; https://doi.org/10.3390/electronics14101922 - 9 May 2025
Viewed by 315
Abstract
The miniaturization and high integration of modern electronic devices have intensified thermal management challenges. Therefore, developing efficient heat sinks has become crucial to ensuring the stability and performance of high-performance CPUs. Previous studies have not considered the thermally demanding Intel i9 CPU; the [...] Read more.
The miniaturization and high integration of modern electronic devices have intensified thermal management challenges. Therefore, developing efficient heat sinks has become crucial to ensuring the stability and performance of high-performance CPUs. Previous studies have not considered the thermally demanding Intel i9 CPU; the current study targets this processor and explores the advantages of more complex minichannel path designs. In addition, this work investigates the enhanced heat transfer performance by integrating metal foams into microchannels. Using a computational approach, this study evaluates the thermal performance of uni-path, dual-path, and staggered-path (SP) minichannel heat sinks with water, Al2O3, and CuO nanofluids at varying Reynolds numbers. The impact of aluminum foam filling has also been examined. Results confirm that higher Reynolds numbers enhance fluid flow, reduce heat sink temperature, and improve temperature uniformity. Among the configurations, the SP heat sink combined with Al2O3 nanofluid achieves the best trade-off between cooling efficiency and energy consumption. While lower porosity foam and higher nanofluid volume fractions enhance heat transfer, they also increase flow resistance, leading to higher energy consumption. Due to its high specific heat capacity, Al2O3 nanofluid outperforms CuO, with optimal cooling observed at a 3–4% volume fraction. The performance evaluation criterion (PEC) captures the trade-off between heat dissipation and energy efficiency. It shows that the SP model with high-porosity aluminum foam and Al2O3 nanofluid turns out to be the most effective design. This combination maximizes cooling efficiency while minimizing excessive energy costs, demonstrating superior thermal management for high-performance microelectronic devices. Full article
(This article belongs to the Section Microelectronics)
Show Figures

Figure 1

37 pages, 8477 KiB  
Review
Thermal Management for Unmanned Aerial Vehicle Payloads: Mechanisms, Systems, and Applications
by Ganapathi Pamula and Ashwin Ramachandran
Drones 2025, 9(5), 350; https://doi.org/10.3390/drones9050350 - 5 May 2025
Viewed by 875
Abstract
Unmanned aerial vehicles (UAVs) are emerging as powerful tools for transporting temperature-sensitive payloads, including medical supplies, biological samples, and research materials, to remote or hard-to-reach locations. Effective thermal management is essential for maintaining payload integrity, especially during extended flights or harsh environmental conditions. [...] Read more.
Unmanned aerial vehicles (UAVs) are emerging as powerful tools for transporting temperature-sensitive payloads, including medical supplies, biological samples, and research materials, to remote or hard-to-reach locations. Effective thermal management is essential for maintaining payload integrity, especially during extended flights or harsh environmental conditions. This review presents a comprehensive analysis of temperature control mechanisms for UAV payloads, covering both passive and active strategies. Passive systems, such as phase-change materials and high-performance insulation, provide energy-efficient solutions for short-duration flights. In contrast, active systems, including thermoelectric cooling modules and Joule heating elements, offer precise temperature regulation for more demanding applications. We examined case studies that highlight the integration of these technologies in real-world UAV applications, such as vaccine delivery, blood sample transport, and in-flight polymerase chain reaction diagnostics. Additionally, we discussed critical design considerations, including power efficiency, payload capacity, and the impact of thermal management on flight endurance. We then presented an outlook on emerging technologies, such as hybrid power systems and smart feedback control loops, which promise to enhance UAV-based thermal management. This work aimed to guide researchers and practitioners in advancing thermal control technologies, enabling reliable, efficient, and scalable solutions for temperature-sensitive deliveries using UAVs. Full article
Show Figures

Figure 1

15 pages, 5183 KiB  
Article
Integrating Radiant Cooling Ceilings with Ternary PCM Thermal Storage: A Synergistic Approach for Enhanced Energy Efficiency in Photovoltaic-Powered Buildings
by Zhuoyi Ling, Tianhong Zheng, Qinghua Lv, Yuehong Su, Hui Lv and Saffa Riffat
Energies 2025, 18(9), 2237; https://doi.org/10.3390/en18092237 - 28 Apr 2025
Viewed by 310
Abstract
Traditional photovoltaic-powered forced air-cooling systems face significant challenges in balancing energy efficiency and thermal comfort due to temperature sensitivity, mechanical ventilation energy consumption, and spatial constraints. This study aims to enhance building energy efficiency by integrating a radiant cooling ceiling (RCC) with a [...] Read more.
Traditional photovoltaic-powered forced air-cooling systems face significant challenges in balancing energy efficiency and thermal comfort due to temperature sensitivity, mechanical ventilation energy consumption, and spatial constraints. This study aims to enhance building energy efficiency by integrating a radiant cooling ceiling (RCC) with a phase change material (PCM) thermal storage system, addressing the limitations of traditional photovoltaic-powered cooling systems through optimized material design and dynamic energy management. A ternary PCM mixture (glycerol–alcohol–water) was optimized using differential scanning calorimetry (DSC), demonstrating superior latent heat storage (361.66 J/g) and phase transition temperature (1.91 °C) in the selected “Slushy Ice” formulation. A 3D transient thermal model and experimental validation revealed that the RCC system achieved 57% energy savings under quasi-steady operation, with radiative heat transfer contributing 55% of total cooling capacity. The system dynamically stores cold energy during peak photovoltaic generation and releases it via RCC during low-power periods, resolving the “cooling energy consumption paradox”. Key challenges, including PCM cycling stability and thermal response time mismatches, were identified, with future research directions emphasizing multi-scale simulations and intelligent encapsulation. This work provides a viable pathway for improving building energy efficiency while maintaining thermal comfort and for improving building energy efficiency in temperate zones, with future extensions to arid and tropical climates requiring targeted material and system optimizations. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

18 pages, 5134 KiB  
Article
Sustainable Hybrid Cooling: Integrating Indirect Evaporative and Split Air Conditioning for Improved Indoor Air Quality in Tropical Climates
by Tassanu Ruangsuwan, Wantanee Phanprasit, Witaya Yoosook, Vorakamol Boonyayothin, Pajaree Konthonbut, John W. Cherrie and Noppanun Nankongnab
Buildings 2025, 15(8), 1313; https://doi.org/10.3390/buildings15081313 - 16 Apr 2025
Viewed by 417
Abstract
To address the limitations of conventional split air conditioners (SACs) that lack proper ventilation, resulting in indoor pollutant buildup and health risks, this study develops and evaluates the performance of a sustainable hybrid air conditioning system that integrates Indirect Evaporative Cooling (IEC) with [...] Read more.
To address the limitations of conventional split air conditioners (SACs) that lack proper ventilation, resulting in indoor pollutant buildup and health risks, this study develops and evaluates the performance of a sustainable hybrid air conditioning system that integrates Indirect Evaporative Cooling (IEC) with SAC to enhance indoor air quality (IAQ), thermal comfort, and energy efficiency in tropical climates, compared with a standalone SAC system. The hybrid SAC + IEC system is designed to meet stringent comfort criteria while reducing indoor formaldehyde and carbon dioxide concentrations. Experiments were conducted in a controlled classroom environment using a cross-flow tubular heat exchanger with optimized nozzle configurations. Temperature, humidity, and pollutant levels were continuously monitored under varying tropical conditions. The IEC achieved an average cooling capacity of 1430 W, substantially exceeding the target of 566 W, and reduced the fresh air dry-bulb temperature by up to 8.79 °C, maintaining primary air near 25.2 °C, with energy efficiency ratios varying between 30% and 100%. The hybrid SAC + IEC system outperforms the standalone SAC system in maintaining acceptable formaldehyde and CO2 levels while delivering comfortable thermal conditions within the indoor standards. These results demonstrate that the Hybrid SAC + IEC system optimizes energy efficiency and improves cooling performance and indoor air quality (IAQ) for tropical environments. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

22 pages, 10348 KiB  
Review
Research Progress on the Performance Enhancement Technology of Ice-on-Coil Energy Storage
by Xinxin Guo, Xiaoyu Xu, Zhixin Wang, Zheshao Chang and Chun Chang
Energies 2025, 18(7), 1734; https://doi.org/10.3390/en18071734 - 31 Mar 2025
Viewed by 345
Abstract
Ice-on-coil energy storage technology has been widely used in air conditioning systems and industrial refrigeration as an efficient energy storage technology. This paper reviews the research progress of ice-on-coil energy storage technology, including its working principle, system design, key parameter optimization, and practical [...] Read more.
Ice-on-coil energy storage technology has been widely used in air conditioning systems and industrial refrigeration as an efficient energy storage technology. This paper reviews the research progress of ice-on-coil energy storage technology, including its working principle, system design, key parameter optimization, and practical application challenges and solutions. Three kinds of ice melting systems are introduced. The internal ice melting system has the largest cold storage density and the slowest rate of ice melting. The external ice melting system has the lowest cold storage density and the fastest rate of ice melting. The combined ice melting system can have the highest density of cold storage density and a high rate of ice melting. By comparing the results of different studies, the influence of fin and thin ring application on the heat transfer enhancements of the ice-on-coil storage system is summarized. It is found that the ice storage time can be reduced by 21% and 34% when the annular fin and thin ring are set. Regarding system control, adopting the ice-melting priority strategy increases operating energy consumption, but the economy improves; using the unit priority strategy lowers operating energy consumption, but the economy suffers slightly. When the cooling demand exceeds the cooling capacity of the chiller, an ice melting priority control strategy is more economical. Some suggestions for future research are presented, such as optimizing the shape and arrangement of coil fins and ice storage systems integrated with renewable energy. It provides guidance for the further development of ice storage air conditioning technology. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

13 pages, 2161 KiB  
Proceeding Paper
Review of Electronic Cooling and Thermal Management in Space and Aerospace Applications
by Kivilcim Ersoy
Eng. Proc. 2025, 89(1), 42; https://doi.org/10.3390/engproc2025089042 - 26 Mar 2025
Viewed by 717
Abstract
The continuous miniaturization of electronics, high processing capacity, compact microelectronic devices, and high circuit density contribute to an increasing demand for the efficient cooling of electronics. For aerospace and space applications, where packaging and the optimal use of space, weight, and power are [...] Read more.
The continuous miniaturization of electronics, high processing capacity, compact microelectronic devices, and high circuit density contribute to an increasing demand for the efficient cooling of electronics. For aerospace and space applications, where packaging and the optimal use of space, weight, and power are important, adequate and efficient cooling is a limiting factor due to the increased heat flux rates from compact-design electronic units. As a technology enabler, thermal management applications become important with the increasing demand for longer component operation times. This study aims to review the literature and the analysis results of thermal engineering applications on cooling of electronics and thermal management approaches in space and aerospace applications. Many advanced cooling applications with interdisciplinary advancements and their benefits are discussed. Full article
Show Figures

Figure 1

17 pages, 13689 KiB  
Article
Optimization of Tesla Valve Cooling Channels for High-Efficiency Automotive PMSM
by Ning Zhou, Huawei Wu, Zhi Li, Yubo Ma and Shaokang Lu
World Electr. Veh. J. 2025, 16(3), 169; https://doi.org/10.3390/wevj16030169 - 14 Mar 2025
Viewed by 657
Abstract
Efficient heat dissipation remains a critical challenge in the research and development of automotive permanent magnet synchronous motors. In this study, a Tesla valve cooling channel is innovatively designed, and a corresponding flow model is established using computational fluid dynamics (CFD) simulations. The [...] Read more.
Efficient heat dissipation remains a critical challenge in the research and development of automotive permanent magnet synchronous motors. In this study, a Tesla valve cooling channel is innovatively designed, and a corresponding flow model is established using computational fluid dynamics (CFD) simulations. The effects of the spacing between adjacent Tesla valves, the number of stages, and inlet velocities on motor temperature rise and pressure drop within the channel are analyzed under varying flow directions. A comprehensive evaluation of 25 simulation samples reveals that the reverse flow Tesla valve-type channel, with an inlet velocity of 1 m/s, 90 mm spacing, and 16 stages, achieves an optimal balance between cooling performance and energy consumption. Compared to the conventional spiral waterway design, this configuration reduces the maximum temperature and temperature difference by 1.5% and 2.2%, respectively, while maintaining a relatively low pressure drop. Additionally, the structure enhances the coolant’s heat exchange capacity, effectively lowering the peak temperature of the motor. These findings provide valuable insights for advancing motor cooling technologies. Full article
Show Figures

Figure 1

10 pages, 3964 KiB  
Proceeding Paper
Thermal Interaction of Mobile Ground Systems with Boulders on the Lunar Surface
by Joel Guetzlaff, Philipp Reiss and Markus Czupalla
Eng. Proc. 2025, 90(1), 35; https://doi.org/10.3390/engproc2025090035 - 13 Mar 2025
Viewed by 161
Abstract
The paper at hand evaluates the necessity of depicting topographic features like boulders on the lunar environment in thermal analyses for a size of up to 6.5 m in diameter. The question regarding the thermal influence becomes relevant when analysing a technical system [...] Read more.
The paper at hand evaluates the necessity of depicting topographic features like boulders on the lunar environment in thermal analyses for a size of up to 6.5 m in diameter. The question regarding the thermal influence becomes relevant when analysing a technical system within the lunar environment. This influence on the thermal behaviour of a test object is investigated in sensitivity studies. It is shown that the local surroundings can significantly alter a system’s net heat flux and can lead to overheating or critically cooling down instead of theoretically surviving when not considering local topographic features. Especially for small and lightweight systems ≤20 kg, like micro rovers, the effect of the surrounding on the system’s temperature becomes critical due to the low thermal capacity. Thus, it is a substantial aspect to be accounted for during the design phase as well as in mission operation. Full article
Show Figures

Figure 1

35 pages, 9594 KiB  
Article
Effect of Protective Coatings on Post-Fire Performance and Behavior of Mild Steel-Based Cold-Formed Steel Back-to-Back Channel Columns with Bolted Connections
by Varun Sabu Sam, Anand Nammalvar, Andrainik Iswarary, Diana Andrushia, G. Beulah Gnana Ananthi and Krishanu Roy
Fire 2025, 8(3), 107; https://doi.org/10.3390/fire8030107 - 10 Mar 2025
Viewed by 663
Abstract
This study investigates the buckling performance of built-up cold-formed steel (CFS) columns, with a focus on how different thermal exposures and cooling strategies influence their susceptibility to various failure mechanisms. Addressing the gap in the literature on the fire behavior of mild steel [...] Read more.
This study investigates the buckling performance of built-up cold-formed steel (CFS) columns, with a focus on how different thermal exposures and cooling strategies influence their susceptibility to various failure mechanisms. Addressing the gap in the literature on the fire behavior of mild steel (MS)-based CFS columns, the research aims to provide new insights. Compression tests were conducted on MS-based CFS column specimens after they were exposed to fire, to assess their post-fire buckling strength. The columns were subjected to controlled fire conditions following standardized protocols and then allowed to cool to room temperature. The study examined axial load-bearing capacity and deformation characteristics under elevated temperatures. To improve fire resistance, protective coatings—gypsum, perlite, and vermiculite—were applied to certain specimens before testing, and their performance was compared to that of uncoated specimens. A comprehensive finite element analysis (FEA) was also performed to model the structural response under different thermal and cooling scenarios, providing a detailed comparison of the coating effectiveness, which was validated against experimental results. The findings revealed significant variations in axial strength and failure mechanisms based on the type of fire-resistant coating used, as well as the heating and cooling durations. Among the coated specimens, those treated with perlite showed the best performance. For example, the air-cooled perlite-coated column (MBC2AC) retained a load capacity of 277.9 kN after 60 min of heating, a reduction of only 6.0% compared to the unheated reference section (MBREF). This performance was superior to that of the gypsum-coated (MBC1AC) and vermiculite-coated (MBC3AC) specimens, which showed reductions of 3.6% and 7.9% more, respectively. These results highlight the potential of perlite coatings to enhance the fire resistance of CFS columns, offering valuable insights for structural fire design. Full article
Show Figures

Figure 1

28 pages, 12877 KiB  
Article
How to Plan Climate-Adaptive Cities: An Experimental Approach to Address Ecosystem Service Loss in Ordinary Planning Processes
by Beatrice Mosso, Andrea Nino and Stefano Salata
Land 2025, 14(3), 532; https://doi.org/10.3390/land14030532 - 4 Mar 2025
Cited by 1 | Viewed by 813
Abstract
Global climate change, combined with socio-economic issues such as conflicts, inflation, energy crises, and inequality, is reshaping urban governance. Cities, which host most of the global population, are highly exposed to climate-related risks, especially those associated with the degradation of ecosystem services. These [...] Read more.
Global climate change, combined with socio-economic issues such as conflicts, inflation, energy crises, and inequality, is reshaping urban governance. Cities, which host most of the global population, are highly exposed to climate-related risks, especially those associated with the degradation of ecosystem services. These risks are manifested, among other factors, as the alteration and degradation of the habitat quality, heightened hydraulic vulnerability, and intensified urban heat islands phenomena. Addressing these challenges requires innovative planning tools to integrate ecosystem-based strategies to enhance urban resilience and support sustainable transformation processes. This paper attempts to do this by introducing ecosystem zoning, an experimental tool designed to integrate ecosystem services into urban planning and its regulatory framework. Applied to the city of Torino, this approach offers a biophysical classification of municipal territory through a mapping of habitat quality, cooling capacity, carbon sequestration, and stormwater retention. The resulting classification provides an overview of the different ecosystem characterizations of the urban fabric and informs site-specific interventions to maintain or enhance ecosystem services and guide urban regeneration processes. By embedding ecosystem services into planning regulations, the project supports sustainable urban development while mitigating climate impacts. The proposed tool contributes to the broader discourse on creating resilient, ecologically sustainable cities and demonstrates the potential of integrating scientific research into urban decision-making processes. Full article
Show Figures

Figure 1

27 pages, 12001 KiB  
Article
Numerical Simulation of Convective Heat Transfer in Gyroid, Diamond, and Primitive Microstructures Using Water as the Working Fluid
by Jie Zhang and Xiaoqing Yang
Energies 2025, 18(5), 1230; https://doi.org/10.3390/en18051230 - 3 Mar 2025
Viewed by 651
Abstract
With the continuous increase in the thermal power of electronic devices, air cooling is becoming increasingly challenging in terms of meeting heat dissipation requirements. Liquid cooling media have a higher specific heat capacity and better heat dissipation effect, making it a more efficient [...] Read more.
With the continuous increase in the thermal power of electronic devices, air cooling is becoming increasingly challenging in terms of meeting heat dissipation requirements. Liquid cooling media have a higher specific heat capacity and better heat dissipation effect, making it a more efficient cooling method. In order to improve the heat dissipation effect of liquid cooling, a TPMS structure with a larger specific surface area, which implicit function parameters can control, can be arranged in a shape manner and it is easy to expand the structural design. It has excellent potential for application in the field of heat dissipation. At present, research is still in its initial stage and lacks comparative studies on liquid cooled convective heat transfer of TPMS structures G (Gyroid), D (Diamond), and P (Primitive). This paper investigates the heat transfer performance and pressure drop characteristics of a sheet-like microstructure composed of classic TPMS structures, G (Gyroid), D (Diamond), and P (Primitive), with a single crystal cell length of 2π (mm), a cell number of 1 × 1 × 5, and a microstructure size of 2π (mm) × 2π (mm) × 22π (mm) using a constant temperature surface model. By analyzing the outlet temperature tout, structural pressure p, average convective heat transfer coefficient h0, Nusselt number Nu, and average wall friction factor f of the microstructure within the speed range of 0.01–0.11 m/s and constant temperature surface temperature is 100 °C, the heat transfer capacity D > G > P and pressure drop D > G > P were obtained (the difference in pressure drop between G and P is very small, less than 20 Pa, which can be considered consistent). When flow velocity is 0.01 m/s, the maximum temperature difference at the outlet of the four structures reached 17.14 °C, and the maximum difference in wall friction factor f reached 103.264, with a relative change of 646%. When flow velocity is 0.11 m/s, the maximum pressure difference among the four structures reached 8461.84 Pa, and the maximum difference in h0 reached 7513 W/(m2·K), with a relative change of 63.36%; the maximum difference between Nu reached 76.32, with a relative change of 62.09%. This paper explains the reasons for the above conclusions by analyzing the proportion of solid area on the constant temperature surface of the structure, the porosity of the structure, and the characteristics of streamlines in the microstructure. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

21 pages, 4689 KiB  
Article
Human Comfort and Environmental Sustainability Through Wetland Management: A Case Study of the Nawabganj Wetland, India
by Kirti Avishek, Pranav Dev Singh, Abhrankash Kanungo, Pankaj Kumar, Shamik Chakraborty, Suraj Kumar Singh, Shruti Kanga, Gowhar Meraj, Bhartendu Sajan and Saurabh Kumar Gupta
Earth 2025, 6(1), 14; https://doi.org/10.3390/earth6010014 - 27 Feb 2025
Cited by 1 | Viewed by 785
Abstract
Wetlands play a vital role in ecosystem sustainability by regulating atmospheric temperature and enhancing human comfort levels. This study aims to evaluate the temperature regulation function of the Nawabganj Wetland, Uttar Pradesh (India), a Ramsar site designated in January 2020, located in a [...] Read more.
Wetlands play a vital role in ecosystem sustainability by regulating atmospheric temperature and enhancing human comfort levels. This study aims to evaluate the temperature regulation function of the Nawabganj Wetland, Uttar Pradesh (India), a Ramsar site designated in January 2020, located in a semi-arid region vulnerable to increasing heat waves. The primary objective is to assess the wetland’s influence on microclimatic conditions and human thermal comfort across different seasons. Field surveys were conducted to collect temperature, humidity, wind speed, and vegetation data over three consecutive days in each season: 15–17 May 2019 (pre-monsoon), 12–14 August 2019 (monsoon), and 5–7 October 2019 (post-monsoon). The human comfort index was calculated using field data, while vegetation density and frequency were analyzed based on seasonal variations using the quadrant method. The results indicate that the wetland significantly contributes to local temperature reduction and improved comfort levels. Vegetation plays a crucial role in amplifying this cooling effect, particularly during summer when temperatures range from an average low of 23 °C to a high of 40 °C. In winter, temperatures vary between an average low of 6 °C and a high of 22 °C, with a consistently high humidity level of approximately 94%, further influencing microclimatic conditions. The extent of weed cover varied between 10% and 60% from December to May, reflecting seasonal fluctuations in water levels and wetland health. The study highlights the necessity of effective water and vegetation management, especially during summer, to sustain the wetland’s cooling capacity. Integrating wetland-based strategies into urban planning can enhance environmental sustainability, mitigate climate extremes, and improve human well-being in rapidly urbanizing regions. Full article
Show Figures

Figure 1

23 pages, 6683 KiB  
Article
Optimization Study of Air-Based Cooling Photovoltaic Roofs: Experimental and Numerical Analysis
by Yi He, Yibing Xue and Yingge Zhang
Energies 2025, 18(5), 1168; https://doi.org/10.3390/en18051168 - 27 Feb 2025
Viewed by 526
Abstract
The rapid growth of photovoltaic (PV) installed capacity has driven advancements in photovoltaic technology, such as integrating PV panels into building envelopes. Temperature increases are known to negatively impact PV panel performance. This study investigates and optimizes the design of air-based cooling systems [...] Read more.
The rapid growth of photovoltaic (PV) installed capacity has driven advancements in photovoltaic technology, such as integrating PV panels into building envelopes. Temperature increases are known to negatively impact PV panel performance. This study investigates and optimizes the design of air-based cooling systems for PV roofs using experimental and numerical analyses, leveraging free natural convection for cooling. Experimental measurements included air inlet/outlet, PV panel, and roof surface temperatures. The primary parameters examined in Computational Fluid Dynamics (CFD) for the numerical study were the heights and widths of the air channels between the panels and the rooftop, with heights ranging from 25 mm to 75 mm and widths varying from 200 mm to 400 mm. There are good agreements between the numerical results and experimental measurements after model validation. The results reveal significant temperature non-uniformity across the surface of the PV panels, with a maximum temperature difference of 16.50 °C. The shading effect of the PV panels resulted in an average reduction in roof surface temperature by 12.90 °C. Parametric studies showed that changes in height had a more pronounced effect on cooling than in width. The optimal design was identified with a channel size of 75 mm × 400 mm, resulting in the lowest average PV panel temperature of 65.21 °C and enhanced temperature uniformity, with maximum efficiency reaching 11.54%. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

Back to TopTop