Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,577)

Search Parameters:
Keywords = design for reuse

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2670 KB  
Article
Circular Urban Metabolism in Action: The Design of the Promenade Nardal, Paris
by Claire Doussard, Vanessa Stassi, Pauline Detavernier and Yoeun Chung
Urban Sci. 2025, 9(10), 394; https://doi.org/10.3390/urbansci9100394 - 30 Sep 2025
Abstract
As urban areas exert profound pressures on the natural environment, driving significant resource consumption and waste production, designers need to rethink the way urban projects are being developed. Therefore, this article advances the operationalization of the Circular Urban Metabolism (CUM) framework by analyzing [...] Read more.
As urban areas exert profound pressures on the natural environment, driving significant resource consumption and waste production, designers need to rethink the way urban projects are being developed. Therefore, this article advances the operationalization of the Circular Urban Metabolism (CUM) framework by analyzing a design case study: the Promenade Nardal in Paris. While CUM integrates the systemic material flow analysis of Urban Metabolism with the restorative strategies of the Circular Economy, it remains limited in its spatial articulation and applicability at the scale of urban design. Through a mixed-methods approach combining Life Cycle Assessment, spatial analysis, and qualitative inquiry, the article compares two circular design strategies, associated with the reuse of paving stones and the recycling of glass to produce Misapor, with conventional alternatives. Results demonstrate that stone reuse reduced CO2 emissions, energy demand, and water use, while Misapor showed energy and water advantages but slightly higher CO2 emissions due to production and transport. Beyond quantitative metrics, the study reveals the distinct design efforts and institutional frictions induced by circular practices, especially reuse, which requires adaptive aesthetics, labor-intensive design, and negotiation with technical norms. By spatializing material flows and foregrounding design agency, the article refines CUM as a situated and scalable framework, highlighting the need for context-sensitive, materially differentiated strategies in circular urban design. Full article
Show Figures

Figure 1

20 pages, 1964 KB  
Article
Hydrocracking of Algae Oil and Model Alkane into Jet Fuel Using a Catalyst Containing Pt and Solid Acid
by Yanyong Liu
Processes 2025, 13(10), 3129; https://doi.org/10.3390/pr13103129 - 29 Sep 2025
Abstract
Aluminum polyoxocations were introduced into a lamellar zirconium phosphate (α-ZrP) via ion exchange. The Al polyoxocation pillars transformed into Al2O3 particles within the interlayer zone after calcination at 673 K. The resulting Al2O3-α-ZrP exhibited a large [...] Read more.
Aluminum polyoxocations were introduced into a lamellar zirconium phosphate (α-ZrP) via ion exchange. The Al polyoxocation pillars transformed into Al2O3 particles within the interlayer zone after calcination at 673 K. The resulting Al2O3-α-ZrP exhibited a large BET surface area and medium-strength acidity. Pt-supported Al2O3-α-ZrP was used as a catalyst for hydrocracking squalene and Botryococcus braunii oil in an autoclave batch system. In a one-step squalene hydrocracking process, the yield of jet-fuel-range hydrocarbons was 52.8% on 1 wt.% Pt/Al2O3-α-ZrP under 2 MPa H2 at 623 K for 3 h. A two-step process was designed with the first step at 523 K for 1 h and the second at 623 K for 3 h. During the first step, the squalene was hydrogenated to squalane without cracking, and in the second step, the squalane was hydrocracked. This two-step catalytic process increased the yield of jet-fuel-range hydrocarbons to 65% in squalene hydrocracking. For algae oil hydrocracking, the jet-fuel-range hydrocarbons occupied 66% of the total products in the two-step reaction. Impurities in algae oil, mainly fatty acids, did not affect the yield of jet-fuel-range hydrocarbons because they were deoxygenated into hydrocarbons during the reaction. The activity of Pt/Al2O3-α-ZrP remained unchanged after four reuses through simple filtration. Full article
(This article belongs to the Special Issue Biomass to Renewable Energy Processes, 2nd Edition)
Show Figures

Figure 1

29 pages, 618 KB  
Review
End-of-Life Strategies for Wind Turbines: Blade Recycling, Second-Life Applications, and Circular Economy Integration
by Natalia Cieślewicz, Krzysztof Pilarski and Agnieszka A. Pilarska
Energies 2025, 18(19), 5182; https://doi.org/10.3390/en18195182 - 29 Sep 2025
Abstract
Wind power is integral to the transformation of energy systems towards sustainability. However, the increasing number of wind turbines approaching the end of their service life presents significant challenges in terms of waste management and environmental sustainability. Rotor blades, typically composed of thermoset [...] Read more.
Wind power is integral to the transformation of energy systems towards sustainability. However, the increasing number of wind turbines approaching the end of their service life presents significant challenges in terms of waste management and environmental sustainability. Rotor blades, typically composed of thermoset polymer composites reinforced with glass or carbon fibres, are particularly problematic due to their low recyclability and complex material structure. The aim of this article is to provide a system-level review of current end-of-life strategies for wind turbine components, with particular emphasis on blade recycling and decision-oriented comparison, and its integration into circular economy frameworks. The paper explores three main pathways: operational life extension through predictive maintenance and design optimisation; upcycling and second-life applications; and advanced recycling techniques, including mechanical, thermal, and chemical methods, and reports qualitative/quantitative indicators together with an indicative Technology Readiness Level (TRL). Recent innovations, such as solvolysis, microwave-assisted pyrolysis, and supercritical fluid treatment, offer promising recovery rates but face technological and economic as well as environmental compliance limitations. In parallel, the review considers deployment maturity and economics, including an indicative mapping of cost and deployment status to support decision-making. Simultaneously, reuse applications in the construction and infrastructure sectors—such as concrete additives or repurposed structural elements—demonstrate viable low-energy alternatives to full material recovery, although regulatory barriers remain. The study also highlights the importance of systemic approaches, including Extended Producer Responsibility (EPR), Digital Product Passports and EU-aligned policy/finance instruments, and cross-sectoral collaboration. These instruments are essential for enhancing material traceability and fostering industrial symbiosis. In conclusion, there is no universal solution for wind turbine blade recycling. Effective integration of circular principles will require tailored strategies, interdisciplinary research, and bankable policy support. Addressing these challenges is crucial for minimising the environmental footprint of the wind energy sector. Full article
(This article belongs to the Collection Feature Papers in Energy, Environment and Well-Being)
Show Figures

Figure 1

20 pages, 1282 KB  
Systematic Review
Identifying Circularity in Nature-Based Solutions: A Systematic Review
by Héctor Guadalupe Ramírez-Escamilla, María Concepción Martínez-Rodríguez, Diego Domínguez-Solís, Ana Laura Cervantes-Nájera and Lorena Elizabeth Campos-Villegas
Sustainability 2025, 17(19), 8722; https://doi.org/10.3390/su17198722 - 28 Sep 2025
Abstract
Nature-Based Solutions (NBS) represent an alternative for achieving environmental and resilience goals in diverse global contexts with varying needs. As such, NBS can be understood as processes involving actions that promote circular economy (CE) strategies within their function. Therefore, this research aims to [...] Read more.
Nature-Based Solutions (NBS) represent an alternative for achieving environmental and resilience goals in diverse global contexts with varying needs. As such, NBS can be understood as processes involving actions that promote circular economy (CE) strategies within their function. Therefore, this research aims to conduct a systematic literature review to identify and analyze the main NBS applied and explore how they are associated with CE strategies. This study performs a systematic literature review of NBS and their relationship with the CE using the PRISMA methodology, analyzing a total of 32 articles retrieved from the SCOPUS database. The main NBS include constructed wetlands, green infrastructure, and soil restoration and enrichment solutions. Constructed wetlands are linked to strategies such as recycling and reuse due to their role in treating urban and domestic wastewater for reuse, thereby increasing water availability. Green infrastructure is associated with strategies like redesign and reduction, as it involves the use of lower-impact materials and designs for rainwater harvesting and thermal comfort improvement. Soil enrichment and remediation solutions are connected to reuse and recycling strategies, as most derive from organic waste composting or microorganisms. NBS and CE strategies highlight how these solutions not only provide direct environmental benefits but also, when analyzed from a sustainability perspective, can offer social and economic benefits. Furthermore, understanding their relationship will facilitate their integration into regulations for transitioning toward circularity in industries and cities. The contribution of this article lies in synthesizing and systematizing the evidence on how NBS operationalizes CE strategies, identifying the main mechanisms and gaps, and proposing a conceptual model that can guide future research and policy design. Full article
(This article belongs to the Special Issue Green Innovation, Circular Economy and Sustainability Transition)
Show Figures

Figure 1

22 pages, 4596 KB  
Article
Image Super-Resolution Reconstruction Network Based on Structural Reparameterization and Feature Reuse
by Tianyu Li, Xiaoshi Jin, Qiang Liu and Xi Liu
Sensors 2025, 25(19), 5989; https://doi.org/10.3390/s25195989 - 27 Sep 2025
Abstract
In the task of integrated circuit micrograph acquisition, image super-resolution reconstruction technology can significantly enhance acquisition efficiency. With the advancement of deep learning techniques, the performance of image super-resolution reconstruction networks has improved markedly, but their demand for inference device memory has also [...] Read more.
In the task of integrated circuit micrograph acquisition, image super-resolution reconstruction technology can significantly enhance acquisition efficiency. With the advancement of deep learning techniques, the performance of image super-resolution reconstruction networks has improved markedly, but their demand for inference device memory has also increased substantially, greatly limiting their practical application in engineering and deployment on resource-constrained devices. Against this backdrop, we designed image super-resolution reconstruction networks based on feature reuse and structural reparameterization techniques, ensuring that the networks maintain reconstruction performance while being more suitable for deployment in resource-limited environments. Traditional image super-resolution reconstruction networks often redundantly compute similar features through standard convolution operations, leading to significant computational resource wastage. By employing low-cost operations, we replaced some redundant features with those generated from the inherent characteristics of the image and designed a reparameterization layer using structural reparameterization techniques. Building upon local feature fusion and local residual learning, we developed two efficient deep feature extraction modules, and forming the image super-resolution reconstruction networks. Compared to performance-oriented image super-resolution reconstruction networks (e.g., DRCT), our network reduces algorithm parameters by 84.5% and shortens inference time by 49.8%. In comparison with lightweight image reconstruction algorithms, our method improves the mean structural similarity index by 3.24%. Experimental results demonstrate that the image super-resolution reconstruction network based on feature reuse and structural reparameterization achieves an excellent balance between network performance and complexity. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

22 pages, 2664 KB  
Article
The Potential and Usage of the Architectural Heritage of Mining Sites: Case Studies in the Locality of Rudňany, Slovakia
by Ján Ilkovič and Ľubica Ilkovičová
Buildings 2025, 15(19), 3468; https://doi.org/10.3390/buildings15193468 - 25 Sep 2025
Abstract
The aim of conversion is to reveal the potential of non-functioning buildings for transformation—i.e., to design a new life for them. A large number of original and presently non-functioning industrial production buildings are connected to mining activity. The subject of this study and [...] Read more.
The aim of conversion is to reveal the potential of non-functioning buildings for transformation—i.e., to design a new life for them. A large number of original and presently non-functioning industrial production buildings are connected to mining activity. The subject of this study and area of investigation are selected mining networks from the second half of the 20th century in the Rudňany settlement, which is located in the Spiš region. The aim of the research is to form a process algorithm for the reuse of areas and objects of mining activity and to highlight the cultural values, constructional substance, and preconditions for their further development. Part of the investigation comprises proposals for a new functional usage of the structures that will encompass the complex historical ground-points of the locality and include its historical roots and trends in the region’s social development and community. The quantitative and qualitative research is based on an analysis of the values of such structures based on traditional mining activity, accompanied by landscape research of the specific locality. The results are presented in the form of case studies oriented towards the identification and evaluation of the attributes of change for novel exploitation of the mining sites. The conclusion of the research is composed of an evaluation and interpretation feasibility study pointing out suitable solutions and preconditions for the sustainability of the converted mining structures as parts of open concepts for mining theme parks. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

17 pages, 2835 KB  
Article
Sustainable Soil Amendment: Effect of Reusing Saturated Dolomitic Calcareous Amendment (DCAS) on Chemical Properties of Two Types of Agricultural Soils
by Lisa Eliana Samudio Legal, Simeón Aguayo Trinidad, Pedro Gabriel Gamarra Alfonso, María Natalia Piol, Andrea Beatriz Saralegui, Jiam Pires Frigo and Andréia Cristina Furtado
Sustainability 2025, 17(19), 8557; https://doi.org/10.3390/su17198557 - 24 Sep 2025
Viewed by 111
Abstract
Replacing the linear process based on production, consumption, and disposal gives rise to the circular economy, in which materials are reincorporated into a new production process to create new amendments, following the model of sustainable agriculture. Through the circular economy approach, the aim [...] Read more.
Replacing the linear process based on production, consumption, and disposal gives rise to the circular economy, in which materials are reincorporated into a new production process to create new amendments, following the model of sustainable agriculture. Through the circular economy approach, the aim is to add value to the waste generated during the adsorption process by recovering and reusing it as sustainable soil amendments. The present study analyzes the effects of saturated dolomitic calcareous amendment (DCAS) on the chemical properties of sandy-textured and clayey-textured agricultural soils. For this purpose, the dolomitic calcareous amendment, saturated with nutrients from hydroponic effluent through an adsorption process, was reused, and its effects on the chemical properties of agricultural soils were evaluated during incubation periods of 30, 60, and 90 days and compared with other amendments. A completely randomized experimental design was used, applying 4 treatments with 5 replications, totaling 20 experimental units for each soil type (sandy and clayey): T1 (control), T2 (dolomitic calcareous amendment in natura—DCAN), T3 (saturated dolomitic calcareous amendment—DCAS), and T4 (granulated dolomitic calcareous amendment—DCAG). The chemical properties evaluated were: pH in water, exchangeable aluminum, exchangeable calcium and magnesium, and available phosphorus. An interaction test between treatments and incubation periods was performed for each soil type and analyzed through analysis of variance, with means compared using Tukey’s test (p < 0.05) in InfoStat software, version 2020I. Through statistical analysis, it was confirmed that there was both interaction and a time effect for the variables pH, exchangeable aluminum, and available phosphorus in both sandy and clayey soils. Furthermore, the results showed that the saturated dolomitic calcareous amendment—DCAS (T3)—had good compatibility with both soil types, highlighting its ability to improve soil chemical properties by increasing pH, and available phosphorus levels, as well as completely reducing exchangeable aluminum concentration. This indicates that the saturated dolomitic calcareous amendment (DCAS) derived from the adsorption of nutrients from hydroponic effluent, can be effectively used to amend soil chemical properties, thereby promoting more efficient and environmentally sustainable agriculture. Full article
Show Figures

Figure 1

24 pages, 1430 KB  
Article
Upcycling Wheat-Rye Bread and Chokeberry Waste into Sustainable Fermented Beverages with Potential Probiotic Properties
by Daniela Gwiazdowska, Wiktoria Studenna, Krzysztof Juś, Paulina Gluzińska, Aleksandra Olejniczak, Katarzyna Marchwińska and Mateusz Adamczak
Sustainability 2025, 17(18), 8502; https://doi.org/10.3390/su17188502 - 22 Sep 2025
Viewed by 123
Abstract
Increasing food consumption and waste generation are today’s most difficult economic and environmental challenges. In line with the sustainable production and consumption concept, wasted food, as a source of valuable resources, can be reused to produce new products of higher value than the [...] Read more.
Increasing food consumption and waste generation are today’s most difficult economic and environmental challenges. In line with the sustainable production and consumption concept, wasted food, as a source of valuable resources, can be reused to produce new products of higher value than the raw materials from which they were made. This concept was used in this work to design products that are a plant-based alternative to fermented milk drinks, which arouse great interest among consumers due to their health-promoting properties. This study aimed to design potential probiotic beverages from food industry waste, including wheat-rye bread and chokeberry pomace, using lactic acid fermentation with different strains of lactic acid bacteria (LAB) and to evaluate selected quality features of the obtained beverages. In the first stage of the research, the group of LAB strains was tested for their efficiency in bakery waste fermentation, and then the potential probiotic properties of chosen LAB strains (Lactiplantibacillus plantarum A7, Lacticaseibacillus paracasei INV001, Lacticaseibacillus rhamnosus INV002, Lentilactobacillus buchneri P7, Loigolactobacillus coryniformis INV014) were characterized according to FAO/WHO requirements. For the prepared beverages, microbiological quality, antioxidant properties, and the content of polyphenolic compounds were determined. It was found that bakery and chokeberry waste may constitute a good base for obtaining fermented beverages with some beneficial properties, including a high number of potentially probiotic bacteria, reaching 108 CFU/mL, and antioxidant properties, which positively verified their functional properties. The research confirms the high potential of lactic acid fermentation in managing food waste to create innovative, sustainable food products with probiotic properties. Full article
Show Figures

Figure 1

28 pages, 1681 KB  
Article
Culinary Knowledge and Sustainability: Chef-Led Food Waste Management in Serbia’s Hospitality Sector
by Nikola Vuksanović, Dunja Demirović Bajrami, Goran Perić, Nataša Perović and Marija Bojić
Sustainability 2025, 17(18), 8497; https://doi.org/10.3390/su17188497 - 22 Sep 2025
Viewed by 140
Abstract
The challenge of food waste poses significant economic, environmental, and ethical concerns worldwide, with the hospitality sector being particularly affected. This study explores food waste prevention and management practices in five-star hotels in Serbia, focusing on the knowledge, attitudes, and resourcefulness of head [...] Read more.
The challenge of food waste poses significant economic, environmental, and ethical concerns worldwide, with the hospitality sector being particularly affected. This study explores food waste prevention and management practices in five-star hotels in Serbia, focusing on the knowledge, attitudes, and resourcefulness of head chefs as key actors in implementing sustainable solutions. A qualitative exploratory design was applied, combining semi-structured interviews with eight head chefs and hotel managers, in-kitchen field observations, and food waste audits conducted in eight luxury hotels in Belgrade. The food waste hierarchy framework was used to assess how head chefs understand and act upon food waste issues. Findings reveal that while food waste policies vary across hotels, head chefs demonstrate varying levels of awareness and resourcefulness, often shaped by corporate policies, training, and personal experience. Despite limitations in policy enforcement, many head chefs apply practical strategies such as FIFO stock rotation, local sourcing, and creative reuse of ingredients. This study advances the theoretical understanding of food waste management in hospitality by linking practice theory with culinary knowledge and corporate influence. It also provides practical implications for training, policy development, and sustainable hospitality operations in transitional economies. Full article
Show Figures

Figure 1

29 pages, 34222 KB  
Article
BFRDNet: A UAV Image Object Detection Method Based on a Backbone Feature Reuse Detection Network
by Liming Zhou, Jiakang Yang, Yuanfei Xie, Guochong Zhang, Cheng Liu and Yang Liu
ISPRS Int. J. Geo-Inf. 2025, 14(9), 365; https://doi.org/10.3390/ijgi14090365 - 21 Sep 2025
Viewed by 398
Abstract
Unmanned aerial vehicle (UAV) image object detection has become an increasingly important research area in computer vision. However, the variable target shapes and complex environments make it difficult for the model to fully exploit its features. In order to solve this problem, we [...] Read more.
Unmanned aerial vehicle (UAV) image object detection has become an increasingly important research area in computer vision. However, the variable target shapes and complex environments make it difficult for the model to fully exploit its features. In order to solve this problem, we propose a UAV image object detection method based on a backbone feature reuse detection network, named BFRDNet. First, we design a backbone feature reuse pyramid network (BFRPN), which takes the model characteristics as the starting point and more fully utilizes the multi-scale features of backbone network to improve the model’s performance in complex environments. Second, we propose a feature extraction module based on multiple kernels convolution (MKConv), to deeply mine features under different receptive fields, helping the model accurately recognize targets of different sizes and shapes. Finally, we design a detection head preprocessing module (PDetect) to enhance the feature representation fed to the detection head and effectively suppress the interference of background information. In this study, we validate the performance of BFRDNet primarily on the VisDrone dataset. The experimental results demonstrate that BFRDNet achieves a significant improvement in detection performance, with the mAP increasing by 7.5%. To additionally evaluate the model’s generalization capacity, we extend the experiments to the UAVDT and COCO datasets. Full article
Show Figures

Figure 1

14 pages, 2652 KB  
Article
Design and Study of a New Rotary Jet Wellbore Washing Device
by Shupei Li, Zhongrui Ji, Qi Feng, Shuangchun Yang and Xiuli Sun
Processes 2025, 13(9), 3015; https://doi.org/10.3390/pr13093015 - 21 Sep 2025
Viewed by 151
Abstract
Wellbore washing technology is a basic operation in wellbore maintenance. Problems such as low automation levels, long processing times, the fact that it is easy to cause downhole falling, and cleaning blind areas greatly affect the use and maintenance of traditional cleaning equipment. [...] Read more.
Wellbore washing technology is a basic operation in wellbore maintenance. Problems such as low automation levels, long processing times, the fact that it is easy to cause downhole falling, and cleaning blind areas greatly affect the use and maintenance of traditional cleaning equipment. These problems usually come from design defects such as a complicated installation process, a lack of an anti-impact structure, and a fixed jet direction. To address the aforementioned issues, this paper proposes an efficient and integrated rapid-disassembly and -assembly automatic filtration rotary jet cleaning device. The device is divided into two main units and further subdivided into four modules. The quick-assembly unit comprises an elastic connection module and a downstroke quick-assembly module, which can automatically compensate for deviations in equipment position during the installation process, ensuring the reliability of the installation process and the sealing of the equipment and facilitating the rapid connection and separation of the tool string. The wellbore cleaning unit includes a hydraulic rotary washing module and a rotary filtration storage module. The wellbore is jet-flushed by hydraulic drive, and the solid particles are separated and filtered during the cleaning fluid circulation process to realize the purification and reuse of the cleaning fluid. The device reduces the installation operation time and labor cost, improves the reliability of equipment in the well, improves the flushing coverage area and the cleaning efficiency, realizes the reuse of the cleaning liquid in the wellbore, reduces the energy consumption of the flowback treatment, and comprehensively improves the cleaning efficiency and the energy utilization efficiency. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

18 pages, 1356 KB  
Article
A Behavior-Aware Caching Architecture for Web Applications Using Static, Dynamic, and Burst Segmentation
by Carlos Gómez-Pantoja, Daniela Baeza-Rocha and Alonso Inostrosa-Psijas
Future Internet 2025, 17(9), 429; https://doi.org/10.3390/fi17090429 - 20 Sep 2025
Viewed by 216
Abstract
This work proposes a behavior-aware caching architecture that improves cache hit rates by up to 10.8% over LRU and 36% over LFU in large-scale web applications, reducing redundant traffic and alleviating backend server load. The architecture partitions the cache into three sections—static, dynamic, [...] Read more.
This work proposes a behavior-aware caching architecture that improves cache hit rates by up to 10.8% over LRU and 36% over LFU in large-scale web applications, reducing redundant traffic and alleviating backend server load. The architecture partitions the cache into three sections—static, dynamic, and burst—according to query reuse patterns derived from user behavior. Static queries remain permanently stored, dynamic queries have time-bound validity, and burst queries are detected in real time using a statistical monitoring mechanism to prioritize sudden, high-demand requests. The proposed architecture was evaluated through simulation experiments using real-world query logs (a one-month trace of 1.5 billion queries from a commercial search engine) under multiple cache capacity configurations ranging from 1000 to 100,000 entries and in combination with the Least Recently Used (LRU) and Least Frequently Used (LFU) replacement policies. The results show that the proposed architecture consistently achieves higher performance than the baselines, with the largest relative gains in smaller cache configurations and applicability to distributed and hybrid caching environments without fundamental design changes. The integration of user-behavior modeling and burst-aware segmentation delivers a practical and reproducible framework that optimizes cache allocation policies in high-traffic and distributed environments. Full article
Show Figures

Figure 1

26 pages, 622 KB  
Article
Efficient Topology Design for LEO Mega-Constellation Using Topological Structure Units with Heterogeneous ISLs
by Wei Zhang, Tao Wu, Xucun Yan, Guixin Li and Hongbin Ma
Sensors 2025, 25(18), 5840; https://doi.org/10.3390/s25185840 - 18 Sep 2025
Viewed by 319
Abstract
With the maturation of reusable launch vehicle technology and satellite mass-production capabilities, global mega-constellation projects have entered a phase of rapid expansion. Inter-satellite networking is a key approach for enhancing constellation performance, as it crucially impacts overall constellation effectiveness. However, existing studies mostly [...] Read more.
With the maturation of reusable launch vehicle technology and satellite mass-production capabilities, global mega-constellation projects have entered a phase of rapid expansion. Inter-satellite networking is a key approach for enhancing constellation performance, as it crucially impacts overall constellation effectiveness. However, existing studies mostly focus on the network layer protocol optimization, with insufficient attention to topological structure design, and fail to fully consider the engineering challenges associated with inter-orbit Inter-Satellite Links (ISLs). To address these issues, this paper proposes a heterogeneous ISL topology architecture for mega-constellations, centered on “stable high-speed laser backbone connection within intra-orbit planes + dynamic and flexible radio network between inter-orbit planes”. First, we clarify the optimization objectives for mega-constellation topological design under this architecture and theoretically prove that the optimization problem is NP-hard. Building on this, we introduce Topological Structure Units (TSUs) and employ a unit reuse strategy to simplify topological design. Furthermore, we propose a TSU-based heterogeneous ISL topological design algorithm. Considering the uneven satellite distribution across latitude zones within the constellation, we further propose a regional TSU-based topological design algorithm. Finally, through simulation experiments in Starlink and GW constellation scenarios, we conduct multi-dimensional verification to demonstrate the effectiveness of the proposed algorithms in reducing end-to-end delay and decreasing ISL hops. Full article
Show Figures

Figure 1

18 pages, 2073 KB  
Article
Comparative Efficacy of Reused Medium Cut-Off Dialyzers on Uremic Toxin and Cytokine Clearance: A Randomized Controlled Trial
by Eakalak Lukkanalikitkul, Nichnan Jirayuphat and Sirirat Anutrakulchai
Life 2025, 15(9), 1468; https://doi.org/10.3390/life15091468 - 18 Sep 2025
Viewed by 292
Abstract
Introduction: Expanded hemodialysis using medium cut-off (MCO) dialyzers effectively removes middle-molecule uremic toxins, comparable to hemodiafiltration, but their single-use designation increases the dialysis costs. This study evaluated the efficacy and safety of reusing two MCO dialyzers available in Thailand. Methods: In this randomized [...] Read more.
Introduction: Expanded hemodialysis using medium cut-off (MCO) dialyzers effectively removes middle-molecule uremic toxins, comparable to hemodiafiltration, but their single-use designation increases the dialysis costs. This study evaluated the efficacy and safety of reusing two MCO dialyzers available in Thailand. Methods: In this randomized controlled trial, hemodialysis patients were assigned to receive treatment with either Theranova® 500 or Elisio® 21HX dialyzers. Each dialyzer was reprocessed using peracetic acid and reused for up to 15 sessions. Dialyzer performance was assessed by the reduction ratios (RRs) of solutes, including β2-microglobulin (β2-MG), kappa and lambda free light chains (κ-FLC, λ-FLC), and interleukin-6 (IL-6), at baseline and the 2nd, 5th, 10th, and 15th sessions. Results: Forty-eight patients were enrolled (mean age 63.6 ± 13.7 years; 62.5% male) and randomized into 2 groups with comparable baseline characteristics. RRs for β2-MG, κ-FLC, and λ-FLC were similar between the groups and declined modestly over time after dialyzer reused (β2-MG: 78.2% to 72.5% vs. 77.2% to 74.5%, κ-FLC: 64.6% to 51.3% vs. 58.9% to 49.5%, and λ-FLC: 51.2% to 46.4% vs. 49.4% to 39.2% in the Theranova® 500 and Elisio® 21HX groups, respectively). Theranova® 500 demonstrated significantly higher IL-6 clearance in the 2nd (29.9% vs. 16.0%; p = 0.018) and 5th (23.8% vs. 7.7%, p = 0.031) sessions. It also showed a non-significant trend toward lower dialyzer survival (HR 3.98; p = 0.085) and higher, though clinically acceptable, albumin loss (mean difference 0.56 g/session; p < 0.001), which decreased with reuse. Conclusions: Both MCO dialyzers demonstrated comparable overall performance during reuse. Theranova® 500 provided better IL-6 clearance with manageable albumin loss. Implementation of high-quality dialyzer reuse protocols may optimize clinical efficacy and patient outcomes while balancing cost, accessibility, and environmental considerations. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

18 pages, 3597 KB  
Article
Continuous Flow-Mode Synthesis of Aromatic Amines in a 3D-Printed Fixed Bed Reactor Loaded with Amino Sugar-Stabilized Re Apparent Nanoparticles
by Patrick Niyirora, Joanna Wolska, Mateusz M. Marzec, Krystian Sokolowski, Anna Leśniewicz, Piotr Jamróz, Anna Dzimitrowicz, Andrzej Bernasik and Piotr Cyganowski
Molecules 2025, 30(18), 3782; https://doi.org/10.3390/molecules30183782 - 17 Sep 2025
Viewed by 313
Abstract
In industrial processes, catalysts—materials that speed up chemical reactions without being consumed—are essential. The goal of this research was to create two new rhenium-based nanocomposite catalysts that can effectively and sustainably reduce nitroaromatic compounds to aromatic amines in continuous-flow systems. Nitroaromatic hydrocarbons (NACs), [...] Read more.
In industrial processes, catalysts—materials that speed up chemical reactions without being consumed—are essential. The goal of this research was to create two new rhenium-based nanocomposite catalysts that can effectively and sustainably reduce nitroaromatic compounds to aromatic amines in continuous-flow systems. Nitroaromatic hydrocarbons (NACs), widely used in manufacturing pharmaceuticals, insecticides, and herbicides, often contaminate soil and water, posing significant environmental and health risks. However, their reduction to aromatic amines enables potential industrial reuse. In this study, we synthesized two nanocomposite catalysts based on a copolymer functionalized with N-methyl-D-glucamine, embedded with rhenium (Re)-based apparent nanoparticles, and used them to reduce the NACs in continuous-flow mode to their aromatic amines using newly designed and stereolithographic (SLA) 3D-printed reactors. Advanced characterization techniques were employed to evaluate their structure, morphology, and catalytical performance. Catalyst 1, prepared from a self-modified Purolite D4869 resin and characterized by higher Re loading, exhibited superior conversion rates in batch mode (k1 up to 1.406 s−1). In contrast, Catalyst 2, based on a commercial NMDG-functionalized Dowex resin with a mesoporous structure, demonstrated remarkable stability and catalytic capacity under continuous flow (up to 1.383 mmolNAC mLcat−1). Overall, Catalyst 1 was found to be better suited for rapid batch reactions, whereas Catalyst 2 was found to be more appropriate for long-term flow applications, offering a sustainable route for the efficient conversion of nitroaromatic compounds into valuable aromatic amines. The reactors enabled the efficient conversion of NACs into aromatic amines while enhancing process sustainability and efficiency. Full article
Show Figures

Graphical abstract

Back to TopTop