Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (14,888)

Search Parameters:
Keywords = designated verifier

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1985 KB  
Article
A Novel Transfer Kernel Enabled Kernel Extreme Learning Machine Model for Cross-Domain Condition Monitoring and Fault Diagnosis of Bearings
by Haobo Yang, Hui Wang, Jing Meng, Wenhui Sun and Chao Chen
Machines 2025, 13(9), 793; https://doi.org/10.3390/machines13090793 (registering DOI) - 1 Sep 2025
Abstract
Kernel transfer learning (KTL), as a kind of statistical transfer learning (STL), has provided significant solutions for cross-domain condition monitoring and fault diagnosis of bearings due to its ability to capture relationships and reduce the gap between source and target domains. However, most [...] Read more.
Kernel transfer learning (KTL), as a kind of statistical transfer learning (STL), has provided significant solutions for cross-domain condition monitoring and fault diagnosis of bearings due to its ability to capture relationships and reduce the gap between source and target domains. However, most conventional kernel transfer methods only set a weighting parameter ranging from 0 to 1 for those functions measuring cross-domain differences, while the intra-domain differences are ignored, which fails to completely characterize the distributional differences to some extent. To overcome these challenges, a novel transfer kernel enabled kernel extreme learning machine (TK-KELM) model is proposed. For model pre-training, a parallel structure is designed to represent the state and change of vibration signals more comprehensively. Subsequently, intra-domain correlation is introduced into the kernel function, which aims to release the weight parameters that describe the inter-domain correlation and break the range limit of 0–1. Consequently, intra-domain as well as inter-domain correlations can boost the authenticity of the transfer kernel jointly. Furthermore, a similarity-guided feature-directed transfer kernel optimization strategy (SFTKOS) is proposed to refine model parameters by calculating domain similarity across different feature scales. Subsequently, the kernels extracted from different scales are fused as the core functions of TK-KELM. In addition, an integration framework via function principal component analysis with maximum mean difference (FPCA-MMD) is designed to extract the multi-scale domain-invariant degradation indicator for boosting the performance of TK-KELM. Finally, related experiments verify the effectiveness and superiority of the proposed TK-KELM model, improving the accuracy of condition monitoring and fault diagnosis. Full article
25 pages, 2413 KB  
Article
Design of Coordinated EV Traffic Control Strategies for Expressway System with Wireless Charging Lanes
by Yingying Zhang, Yifeng Hong and Zhen Tan
World Electr. Veh. J. 2025, 16(9), 496; https://doi.org/10.3390/wevj16090496 (registering DOI) - 1 Sep 2025
Abstract
With the development of dynamic wireless power transfer (DWPT) technology, the introduction of wireless charging lanes (WCLs) in traffic systems is seen as a promising trend for electrified transportation. Though there has been extensive discussion about the planning and allocation of WCLs in [...] Read more.
With the development of dynamic wireless power transfer (DWPT) technology, the introduction of wireless charging lanes (WCLs) in traffic systems is seen as a promising trend for electrified transportation. Though there has been extensive discussion about the planning and allocation of WCLs in different situations, studies on traffic control models for WCLs are relatively lacking. Thus, this paper aims to design a coordinated optimization strategy for managing electric vehicle (EV) traffic on an expressway network, which integrates a corridor traffic flow model with a wireless power transmission model. Two components are considered in the control objective: the total energy increased for the EVs and the total number of EVs served by the expressway, over the problem horizon. By setting the trade-off coefficients for these two objectives, our model can be used to achieve mixed optimization of WCL traffic management. The decisions include metering of different on-ramps as well as routing plans for different groups of EVs defined by origin/destination pairs and initial SOC levels. The control problem is formulated as a novel linear programming model, rendering an efficient solution. Numerical examples are used to verify the effectiveness of the proposed traffic control model. The results show that with the properly designed traffic management strategy, a notable increase in charging performance can be achieved by compromising slightly the traffic performance while maintaining overall smooth operation throughout the expressway system. Full article
24 pages, 5250 KB  
Article
Intelligent Vehicle Driving Decisions and Longitudinal–Lateral Trajectory Planning Considering Road Surface State Mutation
by Yongjun Yan, Chao Du, Yan Wang and Dawei Pi
Actuators 2025, 14(9), 431; https://doi.org/10.3390/act14090431 (registering DOI) - 1 Sep 2025
Abstract
In an intelligent driving system, the rationality of driving decisions and the trajectory planning scheme directly determines the safety and stability of the system. Existing research mostly relies on high-definition maps and empirical parameters to estimate road adhesion conditions, ignoring the direct impact [...] Read more.
In an intelligent driving system, the rationality of driving decisions and the trajectory planning scheme directly determines the safety and stability of the system. Existing research mostly relies on high-definition maps and empirical parameters to estimate road adhesion conditions, ignoring the direct impact of real-time road status changes on the dynamic feasible domain of vehicles. This paper proposes an intelligent driving decision-making and trajectory planning method that comprehensively considers the influence factors of vehicle–road interaction. Firstly, real-time estimation of road adhesion coefficients was achieved based on the recursive least squares method, and a dynamic adhesion perception mechanism was constructed to guide the decision-making module to restrict lateral maneuvering behavior under low-adhesion conditions. A multi-objective lane evaluation function was designed for adaptive lane decision-making. Secondly, a longitudinal and lateral coupled trajectory planning framework was constructed based on the traditional lattice method to achieve smooth switching between lateral trajectory planning and longitudinal speed planning. The planned path is tracked based on a model predictive control algorithm and dual PID algorithm. Finally, the proposed method was verified on a co-simulation platform. The results show that this method has good safety, adaptability, and control stability in complex environments and dynamic adhesion conditions. Full article
38 pages, 8151 KB  
Article
Experimental and Numerical Investigations on Shear Performance of Large-Scale Stirrup-Free I-Shaped UHPC Beams
by Shengze Wu, Chengan Zhou, Fan Mo, Lifeng Zhang, Haibo Jiang, Yueqiang Tian and Junfa Fang
Buildings 2025, 15(17), 3129; https://doi.org/10.3390/buildings15173129 - 1 Sep 2025
Abstract
Ultra-High-Performance Concrete (UHPC) is a game-changing, innovative material with the merits of exceptional tensile strength, making it suitable for stirrup-free UHPC beams. In this study, two 4.0 m-long large-scale stirrup-free I-shaped UHPC beams were experimentally explored in bending tests and shear tests. Cracking [...] Read more.
Ultra-High-Performance Concrete (UHPC) is a game-changing, innovative material with the merits of exceptional tensile strength, making it suitable for stirrup-free UHPC beams. In this study, two 4.0 m-long large-scale stirrup-free I-shaped UHPC beams were experimentally explored in bending tests and shear tests. Cracking patterns, failure modes, and ultimate load-bearing capacity were obtained. Experimental findings revealed that the shear capacity of the stirrup-free I-shaped UHPC beams with a web thickness of merely 50.0 mm reached more than 20.0 MPa and demonstrated excellent post-cracking shear behavior. Finite element models were established and verified with experimental results to investigate the shear behaviors of stirrup-free I-shaped UHPC beams, considering the parameters of shear span-depth ratio and longitudinal reinforcement strength. The results demonstrated that as the shear span-depth ratio increases, the shear capacity of UHPC beams exhibits a declining trend, accompanied by increased mid-span deflection and a degradation in stiffness. French code and PCI report were suggested for design purposes, due to rationally conservative prediction and explicit physical indication. Full article
(This article belongs to the Section Building Structures)
26 pages, 2257 KB  
Article
Design and Control of a Wheeled Bipedal Robot Based on Hybrid Linear Quadratic Regulator and Proportional-Derivative Control
by Yu Xu, Zhaoqiang Wang and Chenhui Lu
Sensors 2025, 25(17), 5398; https://doi.org/10.3390/s25175398 (registering DOI) - 1 Sep 2025
Abstract
Wheeled bipedal robots (WBRS) combine the terrain adaptability potential of legged robots with the motion efficiency of wheeled robots, but the terrain adaptability is affected by the control system. Aiming at the defect that the traditional modeling ignores the dynamic changes in head [...] Read more.
Wheeled bipedal robots (WBRS) combine the terrain adaptability potential of legged robots with the motion efficiency of wheeled robots, but the terrain adaptability is affected by the control system. Aiming at the defect that the traditional modeling ignores the dynamic changes in head angle and center of mass height, this paper proposes a method of integrated dynamic modeling and hierarchical control. The posture balance optimizes the system performance index through the linear quadratic regulator (LQR) to control the in-wheel motor, and the state feedback matrix is designed to suppress the tipping caused by external interference. At the same time, the changes in head angle and center of mass height are included in the balance control variables. The center of mass height changes are fed back through the proportional differential (PD) control and virtual model control (VMC) algorithm to control the joint motor. Simulation experiments are carried out on multiple platforms to verify that the proposed method effectively improves the control robustness of the traditional wheeled bipedal robot through geometric-dynamic coupling modeling and LQR-PD hybrid control, providing a new method of complex terrain adaptive control. Full article
(This article belongs to the Section Sensors and Robotics)
28 pages, 5782 KB  
Article
Design of a Shipping Container-Based Home: Structural, Thermal, and Acoustic Conditioning
by Javier Pinilla-Melo, Jose Ramón Aira-Zunzunegui, Giuseppe La Ferla, Daniel de la Prida and María Ángeles Navacerrada
Buildings 2025, 15(17), 3127; https://doi.org/10.3390/buildings15173127 - 1 Sep 2025
Abstract
The construction of buildings using shipping containers (SCs) is a way to extend their useful life. They are constructed by modifying the structure, thermal, and acoustic conditioning by improving the envelope and creating openings for lighting and ventilation purposes. This study explores the [...] Read more.
The construction of buildings using shipping containers (SCs) is a way to extend their useful life. They are constructed by modifying the structure, thermal, and acoustic conditioning by improving the envelope and creating openings for lighting and ventilation purposes. This study explores the architectural adaptation of SCs to sustainable residential housing, focusing on structural, thermal, and acoustic performance. The project centers on a case study in Madrid, Spain, transforming four containers into a semi-detached, multilevel dwelling. The design emphasizes modular coordination, spatial flexibility, and structural reinforcement. The retrofit process includes the integration of thermal insulation systems in the ventilated façades and sandwich roof panels to counteract steel’s high thermal conductivity, enhancing energy efficiency. The acoustic performance of the container-based dwelling was assessed through in situ measurements of façade airborne sound insulation and floor impact noisedemonstrating compliance with building code requirements by means of laminated glazing, sealed joints, and floating floors. This represents a novel contribution, given the scarcity of experimental acoustic data for residential buildings made from shipping containers. Results confirm that despite the structure’s low surface mass, appropriate design strategies can achieve the required sound insulation levels, supporting the viability of this lightweight modular construction system. Structural calculations verify the building’s load-bearing capacity post-modification. Overall, the findings support container architecture as a viable and eco-efficient alternative to conventional construction, while highlighting critical design considerations such as thermal performance, sound attenuation, and load redistribution. The results offer valuable data for designers working with container-based systems and contribute to a strategic methodology for the sustainable refurbishment of modular housing. Full article
Show Figures

Figure 1

24 pages, 3158 KB  
Article
Does Tourism Gentrification in Urban Areas Affect Tourists’ Value Co-Creation Behavior?
by Yumei Xu, Zhipeng Yao, Yechen Zhang, Shanting Zheng, Ruxing Wang and Naiju Wang
Land 2025, 14(9), 1778; https://doi.org/10.3390/land14091778 - 1 Sep 2025
Abstract
Tourism gentrification refers to the urban transformation process whereby middle-class neighborhoods evolve into affluent enclaves through leisure and tourism development, significantly impacting urban regeneration and spatial planning. This empirical study adopted Hefei’s Lei Street as an exploratory case to construct a hypothetical model [...] Read more.
Tourism gentrification refers to the urban transformation process whereby middle-class neighborhoods evolve into affluent enclaves through leisure and tourism development, significantly impacting urban regeneration and spatial planning. This empirical study adopted Hefei’s Lei Street as an exploratory case to construct a hypothetical model involving tourists’ perception of tourism gentrification, tourist satisfaction, and tourists’ value co-creation behavior. A model was designed to examine the impact of urban tourism gentrification on tourists’ value co-creation behaviors, with its validity subsequently verified through SPSS 20.0 and Amos 23.0 software. The findings revealed that tourists’ perception of tourism gentrification positively affected tourist satisfaction and tourists’ value co-creation behavior and tourist satisfaction positively affected tourist participation behavior. From a practical perspective, this study endeavored to provide urban planners and destination managers with actionable insights to enhance visitor experiences while addressing the challenges posed by gentrification. It further sought to facilitate advancements in urban tourism, urban renewal, and land-use planning, thereby contributing to the sustainable development of Hefei. Methodologically, it also advances the application of structural equation modeling in tourism geography studies and provides replicable protocols for similar urban transformation research. Full article
Show Figures

Figure 1

19 pages, 649 KB  
Article
Governing AI Output in Autonomous Driving: Scalable Privacy Infrastructure for Societal Acceptance
by Yusaku Fujii
Future Transp. 2025, 5(3), 116; https://doi.org/10.3390/futuretransp5030116 - 1 Sep 2025
Abstract
As the realization of fully autonomous driving becomes increasingly plausible, its rapid development raises serious privacy concerns. At present, while personal information of passengers and pedestrians is routinely collected, its purpose and usage history are rarely disclosed, and pedestrians in particular are effectively [...] Read more.
As the realization of fully autonomous driving becomes increasingly plausible, its rapid development raises serious privacy concerns. At present, while personal information of passengers and pedestrians is routinely collected, its purpose and usage history are rarely disclosed, and pedestrians in particular are effectively deprived of any meaningful control over their privacy. Furthermore, no institutional framework exists to prevent the misuse or abuse of such data by authorized insiders. This study proposes the application of a novel privacy protection framework—Verifiable Record of AI Output (VRAIO)—to autonomous driving systems. VRAIO encloses the entire AI system behind an output firewall, and an independent entity, referred to as the Recorder, conducts purpose-compliance screening for all outputs. The reasoning behind each decision is recorded in an immutable and publicly auditable format. In addition, institutional deterrence is enhanced through penalties for violations and reward systems for whistleblowers. Focusing exclusively on outputs rather than input anonymization or interpretability of internal AI processes, VRAIO aims to reconcile privacy protection with technical efficiency. This study further introduces two complementary mechanisms to meet the real-time operational demands of autonomous driving: (1) pre-approval for designated outputs and (2) unrestricted approval of internal system communication. This framework presents a new institutional model that may serve as a foundation for ensuring democratic acceptance of fully autonomous driving systems. Full article
Show Figures

Figure 1

21 pages, 4570 KB  
Article
Design and Crushing Behaviors Investigations of Novel High-Performance Bi-Tubular Tubes with Mixed Multicellular Configurations
by Zhaoji Li, Zhiwen Wang, Dejian Ma, Qingliang Zeng and Dong Ruan
Biomimetics 2025, 10(9), 575; https://doi.org/10.3390/biomimetics10090575 (registering DOI) - 1 Sep 2025
Abstract
Thin-walled structures have been extensively adopted as energy absorbers in various engineering fields. The energy accumulated in the coal and rock is released instantly, resulting in varying degrees of damage and failure to support equipment. To improve the crushing performance of underground support [...] Read more.
Thin-walled structures have been extensively adopted as energy absorbers in various engineering fields. The energy accumulated in the coal and rock is released instantly, resulting in varying degrees of damage and failure to support equipment. To improve the crushing performance of underground support equipment, a metal thin-walled tube with high-bearing capacities is placed in the column as an energy-absorbing column. Based on the characteristics of non-dimensional parameters governing the crashworthiness of thin-walled tubes by the author’s team, a type of high-performance bi-tubular tube (HPBT) with mixed multicellular configurations is innovatively proposed. First, the finite element models of the HPBTs are established in LS-DYNA, and the accuracy of the FE model is verified by crushing tests. Second, the theoretical model of the mean crushing force (MCF) is derived. Moreover, the effects of the cross-sectional shapes and the wall thickness gradient distribution on the deformation modes and crashworthiness are investigated. The results show that the design strategies of the bi-tubular structures mixed multicellular configurations significantly improve the values of ω. The MCF of HPBT_C2 is 4458.0 kN, which is 28% and 56% higher than those of the conventional circular tube and square tube. The theoretical MCF is consistent with the simulated MCF, with a maximum discrepancy of 6.0%. The gradient distribution (k) of wall thickness significantly affects the crushing behaviors of the HPBT. Considering the energy absorption efficiency, the crushing stability, and the wall thickness gradient distribution, the HPBT_C2 with k = 0.6 has the best overall performance. The results can provide insights and guidelines for designing energy absorption devices with superior crashworthiness for support equipment. Full article
(This article belongs to the Special Issue Biomimetic Energy-Absorbing Materials or Structures)
Show Figures

Figure 1

25 pages, 4822 KB  
Article
Handheld Dual-Point Docking Mechanism for Spacecraft On-Orbit Service of Large-Scale Payloads
by Runqi Han, Weisong Liu, Botao Lin, Bo Wang and Yushu Bian
Machines 2025, 13(9), 782; https://doi.org/10.3390/machines13090782 (registering DOI) - 1 Sep 2025
Abstract
The rapid development of spacecraft on-orbit services has increased the requirements for docking technology, especially for large-scale payloads that exceed the launch envelope. Docking technology based on astronaut extravehicular activities is one of the most promising directions for on-orbit services. In view of [...] Read more.
The rapid development of spacecraft on-orbit services has increased the requirements for docking technology, especially for large-scale payloads that exceed the launch envelope. Docking technology based on astronaut extravehicular activities is one of the most promising directions for on-orbit services. In view of this, this paper designs and characterizes a handheld double-point docking mechanism for assembling large-scale payloads that is suitable for extravehicular activity (EVA) in dual-astronaut collaborative operations. It achieves the functional decoupling of docking, locking, unlocking, and separation throughout the whole process. The mechanism also has excellent design for human factors engineering, allowing astronauts to change hands, operate with one hand, and apply limited force. The mechanism adopts a dual-point probe–drogue configuration, while the misalignment tolerance design guarantees the docking accuracy and the operating range, and forms a rigid structural connection through a force amplification mechanism. Theoretical analysis and numerical simulations are implemented to estimate the dynamics, statics, and kinematics of the docking process. Corresponding experiments of the prototype are also conducted, including high–low temperature dynamics, docking tests, and kinematic tolerance experiments. The experiments validate the finite element analysis and verify the actual performance of the mechanism. The designed handheld dual-point docking mechanism was successfully applied for the first time by the Shenzhou 15 crew on China’s Space Station in March 2023. This paves a new road for spacecraft on-orbit service of large-scale payloads by EVAs, providing guidance as well as a technical foundation for the on-orbit construction of large spacecraft in the future. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

24 pages, 7969 KB  
Article
Optimizing Acoustic Performance of Semi-Dense Asphalt Mixtures Through Energy Dissipation Characterization
by Huaqing Lv, Gongfeng Xin, Weiwei Lu, Haihui Duan, Jinping Wang, Yi Yang, Chaoyue Rao and Ruiyao Jiang
Materials 2025, 18(17), 4086; https://doi.org/10.3390/ma18174086 (registering DOI) - 1 Sep 2025
Abstract
Traffic-induced noise pollution is a significant environmental issue, driving the development of advanced noise-reducing pavement materials. Semi-dense graded asphalt mixtures (SDAMs) present a promising compromise, offering enhanced acoustic properties compared to conventional dense-graded asphalt mixtures while maintaining superior durability to porous asphalt mixtures. [...] Read more.
Traffic-induced noise pollution is a significant environmental issue, driving the development of advanced noise-reducing pavement materials. Semi-dense graded asphalt mixtures (SDAMs) present a promising compromise, offering enhanced acoustic properties compared to conventional dense-graded asphalt mixtures while maintaining superior durability to porous asphalt mixtures. However, the mechanism underlying the relationship between the energy dissipation characteristics and noise reduction effects of such mixtures remains unclear, which limits further optimization of their noise reduction performance. This study designed and prepared semi-dense graded noise-reducing asphalt mixtures SMA-6 TM, SMA-10 TM, and SMA-13 TM (SMA TM represents noise-reducing SMA mixture) based on traditional dense-graded asphalt mixtures SMA-6, SMA-10, and SMA-13, and conducted tests for water stability, high-temperature performance (60 °C), and low-temperature performance (−10 °C). Subsequently, energy loss parameters such as loss factor and damping ratio were calculated through dynamic modulus tests to characterize their energy dissipation properties. The mechanism linking the energy dissipation characteristics of semi-dense graded asphalt mixtures to noise reduction was investigated. Finally, the noise reduction effect was further verified through a tire free fall test and a close-proximity (CPX) method. The indoor test results indicate that the semi-dense mixtures exhibited a trade-off in performance: their dynamic stability was 11.1–11.3% lower and low-temperature performance decreased by 4.2% (SMA-13 TM) to 14.1% (SMA-6 TM), with moisture stability remaining comparable. Conversely, they demonstrated superior damping, with consistently higher loss factors and damping ratios. All mixtures reached peak damping at 20 °C, and the loss factor showed a strong positive correlation (R2 > 0.91) with energy dissipation. Field results from a test section showed that the optimized SMA-10 TM mixture yielded a significant tire–road noise reduction of 3–5 dB(A) relative to the SMA-13, while concurrently meeting key performance criteria for anti-water ability and durability. This study establishes a link between the energy dissipation in SDAM and their noise reduction efficacy. The findings provide a theoretical framework for optimizing mixture designs and support the wider application of SDAM as a practical noise mitigation solution. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

8 pages, 921 KB  
Proceeding Paper
Design of Complementary Metal–Oxide–Semiconductor Encoder/Decoder with Compact Circuit Structure for Booth Multiplier
by Yu-Nsin Wang and Yu-Cherng Hung
Eng. Proc. 2025, 103(1), 21; https://doi.org/10.3390/engproc2025103021 (registering DOI) - 1 Sep 2025
Abstract
Multipliers are crucial components in digital processing and the arithmetic logic unit (ALU) of central processing unit (CPU) design. As the data bit length increases, the number of partial products in the multiplication process increases, resulting in an increased summation time for the [...] Read more.
Multipliers are crucial components in digital processing and the arithmetic logic unit (ALU) of central processing unit (CPU) design. As the data bit length increases, the number of partial products in the multiplication process increases, resulting in an increased summation time for the partial products. Consequently, the speed of the multiplier circuit is adversely affected by increased time delays. In this article, we present a combined radix-4 Booth encoding module that employs metal–oxide–semiconductor (MOS) transistors that share common control signals to reduce the transistor count. In HSPICE simulations, the functionality of the proposed circuit architecture was verified, and the number of transistors used was successfully reduced. Full article
Show Figures

Figure 1

20 pages, 3958 KB  
Article
Thermal Runaway Suppression Mechanism of Thermosensitive Microcapsules for Lithium-Ion Batteries
by Zujin Bai, Pei Zhang, Furu Kang, Zeyang Song and Yang Xiao
Polymers 2025, 17(17), 2374; https://doi.org/10.3390/polym17172374 - 31 Aug 2025
Abstract
Lithium-ion batteries (LIBs) have garnered extensive application across various domains. However, frequent safety incidents associated with these LIBs have emerged as a significant impediment to their further advancement. Consequently, there is an urgent necessity to develop a novel fire extinguishing agent that possesses [...] Read more.
Lithium-ion batteries (LIBs) have garnered extensive application across various domains. However, frequent safety incidents associated with these LIBs have emerged as a significant impediment to their further advancement. Consequently, there is an urgent necessity to develop a novel fire extinguishing agent that possesses both rapid fire suppression and efficient cooling capabilities, thereby effectively mitigating the occurrence and propagation of fires in LIBs. This study pioneers the development of an adaptive thermosensitive microcapsule (TM) fire extinguishing agent synthesized via in situ polymerization. The TM encapsulates a ternary composite core—perfluorohexanone (C6F12O), heptafluorocyclopentane (C5H3F7), and 2-bromo-3,3,3-trifluoropropene (2-BTP)—within a melamine–urea–formaldehyde (MUF) resin shell. The TM was prepared via in situ polymerization, combined with FE-SEM, FTIR, TG–DSC, and laser particle size analysis to verify that the TM had a uniform particle size and complete coating structure. The results demonstrate that the TM can effectively suppress the thermal runaway (TR) of LIBs through the synergistic effects of physical cooling, chemical suppression, and gas isolation. Specifically, the peak TR temperature of a single-cell LIB is reduced by 14.0 °C, and the heating rate is decreased by 0.17 °C/s. Additionally, TM successfully blocked the propagation of TR thereby preventing its spread in the dual-LIB module test. Limitations of single-component agents are overcome by this innovative system by leveraging the ternary core’s complementary functionalities, enabling autonomous TR suppression without external systems. Furthermore, the TM design integrates precise thermal responsiveness, environmental friendliness, and cost-effectiveness, offering a transformative safety solution for next-generation LIBs. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

14 pages, 3931 KB  
Article
Design and Fabrication of Air-Coupled CMUT for Non-Contact Temperature Measurement Applications
by Xiaobo Rui, Yongshuai Ma, Chenghao He, Chi Zhang, Zhuochen Wang and Hui Zhang
Micromachines 2025, 16(9), 1008; https://doi.org/10.3390/mi16091008 - 31 Aug 2025
Abstract
Compared with traditional piezoelectric transducers, Capacitive Micromachined Ultrasonic Transducers (CMUTs) have advantages such as better impedance matching with air, smaller size, lighter weight, higher sensitivity, and ease of array formation. Acoustic temperature measurement is a technology that utilizes the relationship between sound velocity [...] Read more.
Compared with traditional piezoelectric transducers, Capacitive Micromachined Ultrasonic Transducers (CMUTs) have advantages such as better impedance matching with air, smaller size, lighter weight, higher sensitivity, and ease of array formation. Acoustic temperature measurement is a technology that utilizes the relationship between sound velocity and temperature to achieve non-contact temperature detection, with advantages such as fast response and non-invasiveness. CMUT-based acoustic temperature field measurement can achieve temperature detection in situations with narrow spaces, portability, and high measurement accuracy. This paper investigates an air-coupled CMUT device for acoustic temperature measurement, featuring a resonant frequency of 220 kHz, and composed of 16 × 8 cells. The design and fabrication of the CMUT array were completed, and the device characteristics were tested and characterized. A temperature field measurement method using mechanical scanning was proposed. A temperature measurement experimental system based on CMUT devices was constructed, achieving preliminary measurement of acoustic transmission time in both uniform and non-uniform temperature fields. Using a temperature field reconstruction algorithm, the measurement and imaging of the temperature field above an electric heating wire were accomplished and compared with the thermocouple-based temperature measurement experiment. The experimental results verified the feasibility of CMUT devices for non-contact temperature field measurement. Full article
(This article belongs to the Special Issue MEMS Ultrasonic Transducers, 2nd Edition)
Show Figures

Figure 1

24 pages, 5245 KB  
Article
Analysis of Mechanical Properties and Energy Evolution of Through-Double-Joint Sandy Slate Under Three-Axis Loading and Unloading Conditions
by Yang Wang, Chuanxin Rong, Hao Shi, Zhensen Wang, Yanzhe Li and Runze Zhang
Appl. Sci. 2025, 15(17), 9570; https://doi.org/10.3390/app15179570 (registering DOI) - 30 Aug 2025
Viewed by 39
Abstract
In the mining of deep mineral resources and tunnel engineering, the degradation of mechanical properties and the evolution of energy of through-double-joint sandy slate under triaxial loading and unloading conditions are key scientific issues affecting the stability design of the project. The existing [...] Read more.
In the mining of deep mineral resources and tunnel engineering, the degradation of mechanical properties and the evolution of energy of through-double-joint sandy slate under triaxial loading and unloading conditions are key scientific issues affecting the stability design of the project. The existing research has insufficiently explored the joint inclination angle effect, damage evolution mechanism, and energy distribution characteristics of this type of rock mass under the path of increasing axial pressure and removing confining pressure. Based on this, in this study, uniaxial compression, conventional triaxial compression and increasing axial pressure, and removing confining pressure tests were conducted on four types of rock-like materials with prefabricated 0°, 30°, 60°, and 90° through-double-joint inclinations under different confining pressures. The axial stress/strain curve, failure characteristics, and energy evolution law were comprehensively analyzed, and damage variables based on dissipated energy were proposed. The test results show that the joint inclination angle significantly affects the bearing capacity of the specimen, and the peak strength shows a trend of first increasing and then decreasing with the increase in the inclination angle. In terms of failure modes, the specimens under conventional triaxial compression exhibit progressive compression/shear failure (accompanied by rock bridge fracture zones), while under increased axial compression and relief of confining pressure, a combined tensioning and shear failure is induced. Moreover, brittleness is more pronounced under high confining pressure, and the joint inclination angle also has a significant control effect on the failure path. In terms of energy, under the same confining pressure, as the joint inclination angle increases, the dissipated energy and total energy of the cemented filling body at the end of triaxial compression first decrease and then increase. The triaxial compression damage constitutive model of jointed rock mass established based on dissipated energy can divide the damage evolution into three stages: initial damage, damage development, and accelerated damage growth. Verified by experimental data, this model can well describe the damage evolution characteristics of rock masses with different joint inclination angles. Moreover, an increase in the joint inclination angle will lead to varying degrees of damage during the loading process of the rock mass. The research results can provide key theoretical support and design basis for the stability assessment of surrounding rock in deep and high-stress plateau tunnels, the optimization of support parameters for jointed rock masses, and early warning of rockburst disasters. Full article
Show Figures

Figure 1

Back to TopTop