Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (261)

Search Parameters:
Keywords = dew point

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5453 KB  
Article
Heritage at Altitude: Navigating Moisture Challenges in Alpine Architectural Conservation
by Elisabetta Rosina, Megi Zala, Antonio Ammendola and Hoda Esmaeilian Toussi
Appl. Sci. 2025, 15(17), 9480; https://doi.org/10.3390/app15179480 - 29 Aug 2025
Viewed by 111
Abstract
This study presents the diagnostics and microclimate analysis of four case studies located in the Alps region in Valtellina and Valposchiavo. The primary focus is on evaluating and comparing microclimatic conditions, encompassing temperature (T°C), relative humidity (RH%), mixing ratio (MR), and dew point [...] Read more.
This study presents the diagnostics and microclimate analysis of four case studies located in the Alps region in Valtellina and Valposchiavo. The primary focus is on evaluating and comparing microclimatic conditions, encompassing temperature (T°C), relative humidity (RH%), mixing ratio (MR), and dew point depression (DPD). The choice of the variables and statistic metrics depends substantially on the aim to identify the risk factor for the preservation of the historical materials of historical buildings, and the procedures for identifying the anomalies in the trends useful to study how to prevent these anomalies in the future. The paper has the target to support the activities of restorers and building managers for improving the restoration process. While various moisture detection methodologies have been studied, no single approach is preferred for analyzing moisture via microclimate monitoring in built heritage. Therefore, this research delves into the influence of various factors, including altitude, location, building type, structure, materials, orientation, and use, on the microclimatic parameters. Altitude and building use significantly influence indoor microclimates: unoccupied structures exhibit greater stability, whereas seasonal use increases condensation risks. Key risks included high RH% and critical T-RH zones (T > 25 °C + RH > 65%), exacerbating material stress. Probability density function (PDF) analysis reveals temperature and RH% distributions, highlighting bimodal T°C patterns and prolonged RH% in high-elevation exposed sites. The findings underscore the need for tailored conservation strategies and targeted interventions to mitigate microclimate-induced deterioration in Alpine heritage. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

16 pages, 2337 KB  
Article
Lake-Effect Snowfall Climatology over Lake Champlain: A Comparative Analysis of the 2015–2024 and 1997–2006 Periods
by Kazimir D. Nyzio and Ping Liu
Atmosphere 2025, 16(9), 1011; https://doi.org/10.3390/atmos16091011 - 28 Aug 2025
Viewed by 235
Abstract
This study updates the climatology of lake-effect (LE) snowfall over Lake Champlain by analyzing radar and surface data from nine winter seasons spanning 2015 to 2024. A filtering approach was applied to isolate periods with favorable LE conditions, and events were manually classified [...] Read more.
This study updates the climatology of lake-effect (LE) snowfall over Lake Champlain by analyzing radar and surface data from nine winter seasons spanning 2015 to 2024. A filtering approach was applied to isolate periods with favorable LE conditions, and events were manually classified using criteria consistent with a previous climatology from 1997 to 2006. A total of 64 LE events were identified and compared across the two periods to evaluate potential changes associated with regional warming. Despite a substantial reduction in lake ice cover during the recent decades, no increase in LE frequency or duration was observed. Instead, warming has shifted the seasonal distribution of events, with fewer early-season cases and more late-season occurrences. LE events also exhibited shorter durations and higher minimum temperatures and dew points. These findings suggest that warming may constrain LE snowfall development over small lakes such as Champlain, in contrast to intensification trends reported for larger lake systems. The analysis also highlights a rarely documented transitional band type that migrated along the lake axis during synoptic shifts. Results underscore the value of observational climatologies for detecting emerging snowfall behaviors in response to climate variability. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

17 pages, 1289 KB  
Article
Live Yeast Supplementation Attenuates the Effects of Heat Stress in Dairy Cows
by Ana R. J. Cabrita, Júlio Carvalheira and António J. M. Fonseca
Vet. Sci. 2025, 12(9), 791; https://doi.org/10.3390/vetsci12090791 - 22 Aug 2025
Viewed by 352
Abstract
High temperature typically decreases feed intake, milk production, and efficiency and increases metabolic disorders and health problems, greatly impacting farm economics. Supplements based on Saccharomyces cerevisiae have been suggested to benefit cows under heat stress, but effects on dairy cow performance are contradictory. [...] Read more.
High temperature typically decreases feed intake, milk production, and efficiency and increases metabolic disorders and health problems, greatly impacting farm economics. Supplements based on Saccharomyces cerevisiae have been suggested to benefit cows under heat stress, but effects on dairy cow performance are contradictory. This study aimed to evaluate the influence of heat stress on the effects of live yeast supplementation on the performance of dairy cows. Environmental temperature parameters were compared to two thermal humidity indices (THI1 and THI2) using wet bulb or dew point temperatures, as explanatory variables of dairy cow performance during the hot season. The experiment followed a randomized complete block design with 12 Holstein cows blocked by lactation number, days in milk, and milk production (two cows per block) and within each block, each cow was randomly assigned to a maize silage-based TMR with a concentrate mixture containing no yeast culture (Control) or 1 g/kg concentrate dry matter of a live yeast culture based on S. cerevisiae (Yeast) for 35 days. The experiment lasted for 35 d. Dry matter intake (DMI) was significantly higher for Yeast than it was for Control for all classes of temperature and THIs studied with an average increase of 2 kg DM per day, except for mean THI1 (from 54 to 60), for which the DMI was similar between treatments. Yeast promoted significantly higher milk yield than Control for all classes of daily maximum and mean temperature, averaging an increase of 4 kg of milk per day. Results suggest a more marked effect of temperature and indicate that yeast supplementation improved lactation performance of dairy cows exposed to hot weather. Full article
Show Figures

Figure 1

26 pages, 7962 KB  
Article
Preparation of Ni-P Composite Coatings and Study on the Corrosion Resistance and Antifouling Properties in Low-Temperature Flue Gas Environment
by Changqi Lv, Shengxian Cao, Bo Zhao and Xingdong Yu
Materials 2025, 18(17), 3939; https://doi.org/10.3390/ma18173939 - 22 Aug 2025
Viewed by 387
Abstract
In industrial production, flue gas heat exchangers are often affected by the low-temperature condensation of industrial flue gas due to the influence of the working environment, resulting in serious ash deposition and corrosion. In order to solve this problem, in this study, we [...] Read more.
In industrial production, flue gas heat exchangers are often affected by the low-temperature condensation of industrial flue gas due to the influence of the working environment, resulting in serious ash deposition and corrosion. In order to solve this problem, in this study, we developed an ash deposition and corrosion monitoring system to compare the ash deposition prevention performance and corrosion resistance of different materials, as well as its influence on the heat transfer performance of different materials in the same environment. The following coatings were selected for the experiment (values in parentheses are the concentrations of the added compounds): ND, Q235, 316L, Ni-Cu (0.4 g/L)-P, Ni-P-SiO2 (40 g/L), Ni-Cu (0.4 g/L)-P-SiO2 (20 g/L), Ni-Cu (0.4 g/L)-P-SiO2 (40 g/L), and Ni-Cu (0.4 g/L)-P-SiO2 (60 g/L). The results show that the Ni-Cu (0.4 g/L)-P-SiO2 (40 g/L) coating has excellent corrosion resistance, while the Ni-Cu (0.4 g/L)-P-SiO2 (60 g/L) coating shows excellent antifouling performance. Through the comparative analysis of polarization curves, impedance spectra, and coupled corrosion experiments, the test materials were ranked as follows based on their corrosion resistance: 316L > Ni-Cu-P-SiO2 (40 g/L) > Ni-Cu-P-SiO2 (20 g/L) > Ni-P-SiO2 > Ni-Cu-P-SiO2 (60 g/L) > Ni-Cu-P > ND > Q235. It was also demonstrated that the new coated pipes were able to reduce the exhaust temperature below the dew point and maximize the recovery of energy from the exhaust gas. The acid–ash coupling mechanism of the coating in the flue gas environment was further analyzed, and an acid–ash coupling model based on Cu and SiO2 is proposed. This model analyzes the effect of the coating under the acid–ash coupling mechanism. Using coated tubes in heat exchangers helps to recover waste heat from coal-fired boilers, enhance heat exchange efficiency, extend the service life of heat exchangers, and reduce costs. Full article
(This article belongs to the Section Corrosion)
Show Figures

Figure 1

16 pages, 22913 KB  
Article
Study on the Adsorption Characteristics of Loess Influenced by Temperature Effects
by Yubo Zhu, Ruijun Jiang, Zhijie Jia, Qiangbing Huang, Zhenjiang Meng, Penghui Ma, Zhiyuan He, Bingyao Huo and Jianbing Peng
Water 2025, 17(16), 2441; https://doi.org/10.3390/w17162441 - 18 Aug 2025
Viewed by 481
Abstract
Loess, a typical unsaturated soil, is a Quaternary sedimentary deposit widely distributed across arid and semi-arid regions worldwide. In recent years, global climate change has led to significant temperature fluctuations in Northwest China, impacting loess properties and soil–water characteristic curves (SWCCs). This study [...] Read more.
Loess, a typical unsaturated soil, is a Quaternary sedimentary deposit widely distributed across arid and semi-arid regions worldwide. In recent years, global climate change has led to significant temperature fluctuations in Northwest China, impacting loess properties and soil–water characteristic curves (SWCCs). This study investigated typical loess deposits in Mizhi County, Shaanxi Province, systematically analyzing their basic physical properties and microstructure. The SWCCs of the loess were measured at three temperature gradients (15 °C, 20 °C, and 25 °C) using the dynamic dew-point isotherm method to investigate the impact of temperature on SWCC hysteresis. The results showed that with increasing temperature, the SWCC exhibited increasing divergence. The magnitude of the water content change and the corresponding suction forces along the wetting and drying paths increased, leading to an enlargement of the hysteresis loop area. These findings indicate that temperature significantly affects the hysteresis behavior of loess, providing a certain basis and ideas for the study of the soil–water characteristic curves of unsaturated soils such as loess under the influence of temperature. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

27 pages, 1684 KB  
Article
Comparative Study of Machine Learning-Based Rainfall Prediction in Tropical and Temperate Climates
by Ogochukwu Ejike, David Ndzi and Muhammad Zeeshan Shakir
Climate 2025, 13(8), 167; https://doi.org/10.3390/cli13080167 - 7 Aug 2025
Viewed by 861
Abstract
Reliable rainfall prediction is essential for effective climate adaptation yet remains challenging due to complex atmospheric interactions that vary across regions. This study investigates next-day rainfall predictability in tropical and temperate climates using daily atmospheric data—including pressure, temperature, dew point, relative humidity, wind [...] Read more.
Reliable rainfall prediction is essential for effective climate adaptation yet remains challenging due to complex atmospheric interactions that vary across regions. This study investigates next-day rainfall predictability in tropical and temperate climates using daily atmospheric data—including pressure, temperature, dew point, relative humidity, wind speed, and wind direction—collected from topographically similar sites in Alor Setar (tropical) and Vercelli, Williams, and Ashburton (temperate) between 2012 and 2015. Logistic regression and random forest models were used to predict rainfall occurrence as a binary outcome. Key variables were identified using Wald’s statistics and p-values in the logistic regression models, while the random forest models relied on mean decrease accuracy for ranking variable importance. The results reveal that rainfall in temperate climates is significantly more predictable than in tropical regions, with the Williams model demonstrating the highest accuracy. Atmospheric pressure consistently emerged as the dominant predictor in temperate regions but was not significant in the tropical model, reflecting the greater atmospheric variability and complexity in tropical rainfall mechanisms. Crucially, the study highlights that as global warming continues to alter temperate climate patterns—bringing increased variability and more convective rainfall—these regions may experience the same predictive uncertainties currently observed in tropical climates. These findings underscore the urgency of developing robust, climate-specific rainfall prediction models that account for changing atmospheric dynamics, with critical implications for weather forecasting, disaster preparedness, and climate resilience planning. Full article
(This article belongs to the Section Climate Dynamics and Modelling)
Show Figures

Figure 1

25 pages, 14992 KB  
Article
Microclimate Monitoring Using Multivariate Analysis to Identify Surface Moisture in Historic Masonry in Northern Italy
by Elisabetta Rosina and Hoda Esmaeilian Toussi
Appl. Sci. 2025, 15(15), 8542; https://doi.org/10.3390/app15158542 - 31 Jul 2025
Viewed by 265
Abstract
Preserving historical porous materials requires careful monitoring of surface humidity to mitigate deterioration processes like salt crystallization, mold growth, and material decay. While microclimate monitoring is a recognized preventive conservation tool, its role in detecting surface-specific moisture risks remains underexplored. This study evaluates [...] Read more.
Preserving historical porous materials requires careful monitoring of surface humidity to mitigate deterioration processes like salt crystallization, mold growth, and material decay. While microclimate monitoring is a recognized preventive conservation tool, its role in detecting surface-specific moisture risks remains underexplored. This study evaluates the relationship between indoor microclimate fluctuations and surface moisture dynamics across 13 historical sites in Northern Italy (Lake Como, Valtellina, Valposchiavo), encompassing diverse masonry typologies and environmental conditions. High-resolution sensors recorded temperature and relative humidity for a minimum of 13 months, and eight indicators—including dew point depression, critical temperature–humidity zones, and damp effect indices—were analyzed to assess the moisture risks. The results demonstrate that multivariate microclimate data could effectively predict humidity accumulation. The key findings reveal the impact of seasonal ventilation, thermal inertia, and localized air stagnation on moisture distribution, with unheated alpine sites showing the highest condensation risk. The study highlights the need for integrated monitoring approaches, combining dew point analysis, mixing ratio stability, and buffering performance, to enable early risk detection and targeted conservation strategies. These insights bridge the gap between environmental monitoring and surface moisture diagnostics in porous heritage materials. Full article
(This article belongs to the Special Issue Advanced Study on Diagnostics for Surfaces of Historical Buildings)
Show Figures

Figure 1

14 pages, 3236 KB  
Article
Climate Change for Lakes in the Coterminous United States in Relation to Lake Warming from 1981 to 2023
by Roger W. Bachmann
Water 2025, 17(14), 2138; https://doi.org/10.3390/w17142138 - 18 Jul 2025
Viewed by 339
Abstract
The goal of this study was to look at changes in mean air temperatures, minimum air temperatures, maximum air temperatures, dew points, and precipitation over each of 1033 lakes in the coterminous United States over the summer months in the years 1981–2024. Near-surface [...] Read more.
The goal of this study was to look at changes in mean air temperatures, minimum air temperatures, maximum air temperatures, dew points, and precipitation over each of 1033 lakes in the coterminous United States over the summer months in the years 1981–2024. Near-surface water temperatures in the same lakes were calculated with equations using 8-day mean daily air temperatures, latitude, elevation, and the year of sampling. Over the past 43 years, there have been changes in air temperatures over many lakes of the United States with generally increasing trends for minimum air temperatures and mean air temperatures during the months of June through September. The greatest increases have been in daily minimum air temperatures followed by the mean daily air temperatures. Maximum daily air temperatures did not show a statistically significant increase for the summer season but did show a significant increase for the month of September. Along with the changes in the climate, the near-surface water temperatures of the lakes of the United States on average showed increases of 0.33 °C decade−1 for the four summer months and increases for each of the summer months. Full article
Show Figures

Figure 1

15 pages, 6694 KB  
Article
Influence of Annealing Atmosphere on the Phosphatability of Ultra-High-Strength Automotive Steels
by Joongchul Park and Joonho Lee
Materials 2025, 18(13), 3170; https://doi.org/10.3390/ma18133170 - 4 Jul 2025
Viewed by 590
Abstract
This study investigates the effect of surface oxide control on the phosphatability of ultra-high-strength steel (UHSS) for automotive applications. Surface oxides were manipulated by adjusting the dew point to −50 °C and 0 °C during the annealing process, and the corresponding changes in [...] Read more.
This study investigates the effect of surface oxide control on the phosphatability of ultra-high-strength steel (UHSS) for automotive applications. Surface oxides were manipulated by adjusting the dew point to −50 °C and 0 °C during the annealing process, and the corresponding changes in phosphating behavior were examined. The surface characteristics of the samples were analyzed using X-ray photoelectron spectroscopy (XPS) and field-emission transmission electron microscopy (FE-TEM), while the phosphatability of the samples was evaluated through electrochemical measurements. The sample annealed at a dew point of −50 °C formed continuous Si and Mn oxide films (~10 nm), which significantly suppressed the phosphatability. In contrast, when annealed at 0 °C, internal oxidation occurred along the grain boundaries to a depth of about 3 μm, resulting in the formation of discontinuous Si and Mn oxides on the surface, which greatly enhanced phosphatability. This difference was also supported by OCP measurements: the −50 °C specimen showed a gradual increase in potential, whereas the 0 °C specimen rapidly reached −0.59 V and then stabilized. The findings of this study demonstrate that optimizing the annealing atmosphere provides an effective approach to enhance the phosphating performance of UHSS without the need for additional surface treatments. Full article
Show Figures

Graphical abstract

26 pages, 2757 KB  
Article
Comparative Life Cycle Analysis for Duct Air Conditioning Systems Based on Evaporative and Vapor Compression Technologies
by Andrzej Marcinkowski and Dmytro Levchenko
Energies 2025, 18(13), 3475; https://doi.org/10.3390/en18133475 - 1 Jul 2025
Viewed by 449
Abstract
The environmental impact of innovative indirect regenerative evaporative cooling (IREC) technology is analyzed using the life cycle assessment. This study compared typical equipment using this technology from Innovative Ideas LLC with available-on-the-market traditional vapor compression ducted air conditioning systems as the closest analogous [...] Read more.
The environmental impact of innovative indirect regenerative evaporative cooling (IREC) technology is analyzed using the life cycle assessment. This study compared typical equipment using this technology from Innovative Ideas LLC with available-on-the-market traditional vapor compression ducted air conditioning systems as the closest analogous representatives of the vapor compression technology. For comparison, units with the same cooling capacity (5 kW) were selected. The endpoint indicators demonstrated that the air conditioning systems using IREC technology had lower environmental load compared to the vapor compression system by 29–70%, depending on the scenario and damage category. This advantage resulted from the significantly higher coefficient of performance of the IREC system. The amounts of cooling energy generated and electricity consumption were determined based on temperature and relative humidity data recorded at hourly intervals in the summer seasons of 2023 and 2024. The operation turned out to be a life cycle stage with dominating environmental load. The uncertainty analysis carried out with Monte Carlo simulations indicated significant deviation, particularly for the ecosystem category. The sensitivity analysis showed that the assumed electricity mix did not significantly affect the general conclusions. Full article
Show Figures

Figure 1

17 pages, 3372 KB  
Article
Combustion Air Humidifier for a Biomass Boiler with Flue Gas Condensation
by Jan Havlík and Tomáš Dlouhý
ChemEngineering 2025, 9(4), 68; https://doi.org/10.3390/chemengineering9040068 - 25 Jun 2025
Viewed by 365
Abstract
This paper deals with combustion air humidification for application with a biomass boiler and a spray flue gas condenser. The use of a combustion air humidifier increases the dew point temperature of the flue gas, thereby increasing the potential for heat recovery in [...] Read more.
This paper deals with combustion air humidification for application with a biomass boiler and a spray flue gas condenser. The use of a combustion air humidifier increases the dew point temperature of the flue gas, thereby increasing the potential for heat recovery in the flue gas condenser and increasing the amount of heat supplied to the thermal system. The air humidification process in a counter current spray humidifier was experimentally analysed under conditions corresponding to the use before a biomass boiler with a flue gas condenser. For air heating and humidification, temperature factor values of up to 0.90 can be obtained; this value is mainly influenced by the ratio of the spray water and humidified air flow rates. The volumetric heat transfer coefficient is significantly affected by the humidified air velocity, although this velocity is negligible compared to the counter current spray water velocity. The volumetric heat transfer coefficient reaches higher values at higher spray water temperatures and therefore higher air heating. The whole process is also affected by the saturation of the incoming air, where the dew point temperature of the air drawn in from the surroundings is lower than its temperature. These results can be used as basic information for the design of combustion air humidifiers, for the selection of their operating parameters, and for a basic balancing of the energy contribution of the combustion air humidifier before a more detailed design of the whole system. Full article
Show Figures

Figure 1

35 pages, 9804 KB  
Article
LAI-Derived Atmospheric Moisture Condensation Potential for Forest Health and Land Use Management
by Jung-Jun Lin and Ali Nadir Arslan
Remote Sens. 2025, 17(12), 2104; https://doi.org/10.3390/rs17122104 - 19 Jun 2025
Viewed by 576
Abstract
The interaction between atmospheric moisture condensation (AMC) on leaf surfaces and vegetation health is an emerging area of research, particularly relevant for advancing our understanding of water–vegetation dynamics in the contexts of remote sensing and hydrology. AMC, particularly in the form of dew, [...] Read more.
The interaction between atmospheric moisture condensation (AMC) on leaf surfaces and vegetation health is an emerging area of research, particularly relevant for advancing our understanding of water–vegetation dynamics in the contexts of remote sensing and hydrology. AMC, particularly in the form of dew, plays a vital role in both hydrological and ecological processes. The presence of AMC on leaf surfaces serves as an indicator of leaf water potential and overall ecosystem health. However, the large-scale assessment of AMC on leaf surfaces remains limited. To address this gap, we propose a leaf area index (LAI)-derived condensation potential (LCP) index to estimate potential dew yield, thereby supporting more effective land management and resource allocation. Based on psychrometric principles, we apply the nocturnal condensation potential index (NCPI), using dew point depression (ΔT = Ta − Td) and vapor pressure deficit derived from field meteorological data. Kriging interpolation is used to estimate the spatial and temporal variations in the AMC. For management applications, we develop a management suitability score (MSS) and prioritization (MSP) framework by integrating the NCPI and the LAI. The MSS values are classified into four MSP levels—High, Moderate–High, Moderate, and Low—using the Jenks natural breaks method, with thresholds of 0.15, 0.27, and 0.37. This classification reveals cases where favorable weather conditions coincide with low ecological potential (i.e., low MSS but high MSP), indicating areas that may require active management. Additionally, a pairwise correlation analysis shows that the MSS varies significantly across different LULC types but remains relatively stable across groundwater potential zones. This suggests that the MSS is more responsive to the vegetation and micrometeorological variability inherent in LULC, underscoring its unique value for informed land use management. Overall, this study demonstrates the added value of the LAI-derived AMC modeling for monitoring spatiotemporal micrometeorological and vegetation dynamics. The MSS and MSP framework provides a scalable, data-driven approach to adaptive land use prioritization, offering valuable insights into forest health improvement and ecological water management in the face of climate change. Full article
Show Figures

Figure 1

19 pages, 2000 KB  
Article
Window Frame Design Optimization Analysis Based on Hygrothermal Performance and the Level(s) Framework
by Konstantin Verichev, Carmen Díaz-López, Andrés García-Ruíz and Francisca Valdenegro
Buildings 2025, 15(12), 2126; https://doi.org/10.3390/buildings15122126 - 19 Jun 2025
Viewed by 475
Abstract
This study investigates the hygrothermal performance of window frames to assess their capacity to prevent surface condensation—a critical factor for indoor air quality and building durability, particularly in humid climates. Driven by the practical need to replace existing aluminum frames with more sustainable [...] Read more.
This study investigates the hygrothermal performance of window frames to assess their capacity to prevent surface condensation—a critical factor for indoor air quality and building durability, particularly in humid climates. Driven by the practical need to replace existing aluminum frames with more sustainable alternatives, the research evaluates standard aluminum frames against modified timber frames designed to replicate the aluminum geometry. Using daily temperature and humidity data from Valdivia, Chile (2023)—a city with a temperate oceanic and humid climate—interior surface temperatures were simulated with HTflux software and compared against dew point values over a relative humidity (RH) range from 40% to 80%. A novel methodology is proposed for verifying the hygrothermal behavior of window frames based on annual performance analysis and highlighting the need to optimize window design according to specific local climate conditions. The results indicate that modified timber frames exhibited consistently lower average interior surface temperatures (by 1.2 °C) and a significantly higher risk of surface condensation compared to aluminum frames, particularly at typical comfort-level indoor humidity conditions (e.g., 167 vs. 100 condensation days at 50% RH). While both materials presented a high risk of condensation under extreme humidity conditions (80% RH), timber frames showed potentially greater severity of condensation. These findings underscore that the proposed timber frame modification is not hygrothermally adequate without strict control of indoor humidity. Anchored in the Level(s) framework, the study emphasizes the critical influence of geometric design on material performance and advocates for holistic, sustainable construction practices that balance energy efficiency, environmental impact, and occupant comfort. It highlights the need for integrated design solutions and effective moisture management to ensure building resilience in humid environments. Full article
(This article belongs to the Special Issue Trends and Prospects in Indoor Environment of Buildings)
Show Figures

Figure 1

29 pages, 12629 KB  
Article
Forecast-Aided Converter-Based Control for Optimal Microgrid Operation in Industrial Energy Management System (EMS): A Case Study in Vietnam
by Yeong-Nam Jeon and Jae-ha Ko
Energies 2025, 18(12), 3202; https://doi.org/10.3390/en18123202 - 18 Jun 2025
Cited by 1 | Viewed by 463
Abstract
This study proposes a forecast-aided energy management strategy tailored for industrial microgrids operating in Vietnam’s tropical climate. The core novelty lies in the implementation of a converter-based EMS that enables bidirectional DC power exchange between multiple subsystems. To improve forecast accuracy, an artificial [...] Read more.
This study proposes a forecast-aided energy management strategy tailored for industrial microgrids operating in Vietnam’s tropical climate. The core novelty lies in the implementation of a converter-based EMS that enables bidirectional DC power exchange between multiple subsystems. To improve forecast accuracy, an artificial neural network (ANN) is used to model the relationship between electric load and localized meteorological features, including temperature, dew point, humidity, and wind speed. The forecasted load data is then used to optimize charge/discharge schedules for energy storage systems (ESS) using a Particle Swarm Optimization (PSO) algorithm. The strategy is validated using real-site data from a Vietnamese industrial complex, where the proposed method demonstrates enhanced load prediction accuracy, cost-effective ESS operation, and multi-microgrid flexibility under weather variability. This integrated forecasting and control approach offers a scalable and climate-adaptive solution for EMS in emerging industrial regions. Full article
Show Figures

Figure 1

21 pages, 5567 KB  
Article
Experimental Testing of a Heat Exchanger with Composite Material for Deep Dehumidification
by Valeria Palomba, Antonio Fotia, Fabio Costa, Davide La Rosa and Vincenza Brancato
Energies 2025, 18(10), 2418; https://doi.org/10.3390/en18102418 - 8 May 2025
Viewed by 635
Abstract
Deep dehumidification is crucial for industrial applications requiring ultra-low humidity levels. Traditional cooling-based dehumidification struggles to achieve low dew points efficiently due to excessive energy consumption and frost formation risks. As an alternative, desiccant-based methods, particularly solid desiccant systems, offer improved performance with [...] Read more.
Deep dehumidification is crucial for industrial applications requiring ultra-low humidity levels. Traditional cooling-based dehumidification struggles to achieve low dew points efficiently due to excessive energy consumption and frost formation risks. As an alternative, desiccant-based methods, particularly solid desiccant systems, offer improved performance with lower energy demands. This study experimentally investigates a fixed-bed dehumidification system utilizing a plate-fin heat exchanger filled with a silica gel/calcium chloride composite material. The performance evaluation focuses on the influence of ambient conditions and operating parameters, including air velocity and cooling fluid temperature. Among these, the most influential parameter was the velocity of air. For the tested heat exchanger, an optimum value in the range of 0.4–0.6 m/s was identified. Under optimal conditions, the tested HEX was able to reduce the dew point of air down to −2 °C, achieving a reduction in the humidity ratio up to 13 g/kg. The results indicate that air velocity significantly impacts also heat and mass transfer, with coefficients ranging from 80 to 140 W/(m2 K) and 0.015 to 0.060 kg/(m2 s), respectively. The findings highlight the potential of composite desiccant fixed-bed systems for efficient deep dehumidification, outperforming conventional lab-scale components in heat and mass transfer effectiveness. A comparison with other works in the literature indicated that up to 30% increased mass transfer coefficient was achieved and up to seven times higher heat transfer coefficient was measured. Full article
Show Figures

Figure 1

Back to TopTop