Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = dicofol

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 18460 KB  
Article
Use of the Pesticide Toxicity Index to Determine Potential Ecological Risk in the Santiago-Guadalajara River Basin, Mexico
by José de Anda, Harvey Shear, Ofelia Yadira Lugo-Melchor, Luis Eduardo Padilla-Tovar, Sandra Daniela Bravo and Luis Alberto Olvera-Vargas
Water 2024, 16(20), 3008; https://doi.org/10.3390/w16203008 - 21 Oct 2024
Cited by 2 | Viewed by 2795
Abstract
The Santiago-Guadalajara River Basin (SGRB), located in western Mexico, is one of the most polluted rivers in the country. A pesticide monitoring program was carried out from January 2022 to September 2022, during which time water samples collected at 25 sites in the [...] Read more.
The Santiago-Guadalajara River Basin (SGRB), located in western Mexico, is one of the most polluted rivers in the country. A pesticide monitoring program was carried out from January 2022 to September 2022, during which time water samples collected at 25 sites in the main stem and tributaries revealed the presence of 13 of the 24 pesticides analyzed, including α-BHC, β-BHC, γ-BHC (Lindane), γ-Chlordane, Hexachlorobenzene, Heptachlor, Aldrin, α-Endosulfan, DDT, -4,4, Methoxychlor, Chlorpyrifos-methyl, Endosulfan sulfate, and Dicofol. A high level of correlation was found between the identified pesticides, which could mean that several of these pesticides reached a stable level within the monitored water bodies. Most of the identified pesticides are classified as high environmental risk according to the Stockholm Convention because of their persistence and high degree of toxicity to the environment and human health. A Pesticide Toxicity Index (PTI) was applied to identify the streams considered to be of concern due to the presence of pesticides exceeding the threshold limits established by national and international guidelines. Performing a calculation for the entire Santiago-Guadalajara River Basin, the PTI reached a value of 0.833, which, according to the criteria of this method, classifies it as a “Moderate” level of risk for aquatic life. Increased regulatory and surveillance measures by state and federal authorities are required to prevent the use of these pesticides, which have been restricted globally. Full article
(This article belongs to the Special Issue Aquatic Environmental Pollution and Ecotoxicological Studies)
Show Figures

Figure 1

22 pages, 24990 KB  
Article
Functional Validation of Endogenous Redox Partner Cytochrome P450 Reductase Reveals the Key P450s CYP6P9a/-b as Broad Substrate Metabolizers Conferring Cross-Resistance to Different Insecticide Classes in Anopheles funestus
by Sulaiman S. Ibrahim, Mersimine F. M. Kouamo, Abdullahi Muhammad, Helen Irving, Jacob M. Riveron, Magellan Tchouakui and Charles S. Wondji
Int. J. Mol. Sci. 2024, 25(15), 8092; https://doi.org/10.3390/ijms25158092 - 25 Jul 2024
Cited by 3 | Viewed by 1740
Abstract
The versatility of cytochrome P450 reductase (CPR) in transferring electrons to P450s from other closely related species has been extensively exploited, e.g., by using An. gambiae CPR (AgCPR), as a homologous surrogate, to validate the role of An. funestus [...] Read more.
The versatility of cytochrome P450 reductase (CPR) in transferring electrons to P450s from other closely related species has been extensively exploited, e.g., by using An. gambiae CPR (AgCPR), as a homologous surrogate, to validate the role of An. funestus P450s in insecticide resistance. However, genomic variation between the AgCPR and An. funestus CPR (AfCPR) suggests that the full metabolism spectrum of An. funestus P450s might be missed when using AgCPR. To test this hypothesis, we expressed AgCPR and AfCPR side-by-side with CYP6P9a and CYP6P9b and functionally validated their role in the detoxification of insecticides from five different classes. Major variations were observed within the FAD- and NADP-binding domains of AgCPR and AfCPR, e.g., the coordinates of the second FAD stacking residue AfCPR-Y456 differ from that of AgCPR-His456. While no significant differences were observed in the cytochrome c reductase activities, when co-expressed with their endogenous AfCPR, the P450s significantly metabolized higher amounts of permethrin and deltamethrin, with CYP6P9b-AfCPR membrane metabolizing α-cypermethrin as well. Only the CYP6P9a-AfCPR membrane significantly metabolized DDT (producing dicofol), bendiocarb, clothianidin, and chlorfenapyr (bioactivation into tralopyril). This demonstrates the broad substrate specificity of An. funestus CYP6P9a/-b, capturing their role in conferring cross-resistance towards unrelated insecticide classes, which can complicate resistance management. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

16 pages, 5711 KB  
Article
Distribution, Transfer, and Health Risk of Organochlorine Pesticides in Soil and Water of the Huangshui River Basin
by Ruyue Yu, Yang Zhou, Shengxian Xu, Jing Jing, Hongyan Zhang and Yuanfang Huang
Toxics 2023, 11(12), 1024; https://doi.org/10.3390/toxics11121024 - 15 Dec 2023
Cited by 4 | Viewed by 2555
Abstract
The potential negative impacts of organochlorine pesticides on the environment and human health continue to receive attention. In order to study the spatial distribution characteristics of organochlorine pesticides in the inland alpine region, researchers collected soil and water samples in the Huangshui River [...] Read more.
The potential negative impacts of organochlorine pesticides on the environment and human health continue to receive attention. In order to study the spatial distribution characteristics of organochlorine pesticides in the inland alpine region, researchers collected soil and water samples in the Huangshui River Basin of the Qinghai–Tibetan Plateau and tested them for organochlorine pesticide residues represented by dichlorodiphenyltrichloroethane (DDT) and hexachlorohexane (HCH). The study identified the sources of OCPs by component analysis. We also constructed the LEVEL III model, applicable to the Huangshui River Basin, and used it to study the migration patterns of OCPs in various environmental media. OCPs were detected at low levels in the study area environment. The results of the OCPs source analysis show that there are both historical residuals and new sources in the region. Residual DDTs may originate from the mixture of technical DDTs and dicofol, and HCHs may originate from lindane or technical HCH. DDTs are mainly stored in soil, the input and output pathways are mainly atmospheric advection input and output, and its transport behavior in the environment is mainly air–soil exchange. Carcinogens in the study area pose little threat to people exposed to contaminated soil and contaminated water, but the cancer risk to children is greater than to adults. This study is helpful to managers of regional pesticide management and control. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Figure 1

17 pages, 3925 KB  
Article
Occurrences, Possible Sources, and Risk Impacts of Organochlorine Pesticides in Soil of Changchun Central Urban Area, Northeast China
by Wei Zhao, Jilong Lu, Yawen Lai, Yaru Hou, Xinyun Zhao, Qiaoqiao Wei, Xiaoxiao Zou and Zhiyi Gou
Sustainability 2023, 15(24), 16801; https://doi.org/10.3390/su152416801 - 13 Dec 2023
Cited by 5 | Viewed by 1662
Abstract
Eighteen organochlorine pesticides (OCPs) in soil samples from the Changchun central urban area, Northeast China were analyzed using accelerated solvent extraction combined with gas chromatography/mass spectrometry (ASE-GC/MS) for the purpose of elucidating their contamination status, distribution characteristics, influencing factors, and feasible dangers in [...] Read more.
Eighteen organochlorine pesticides (OCPs) in soil samples from the Changchun central urban area, Northeast China were analyzed using accelerated solvent extraction combined with gas chromatography/mass spectrometry (ASE-GC/MS) for the purpose of elucidating their contamination status, distribution characteristics, influencing factors, and feasible dangers in this city region. The complete concentrations of OCPs ranged from 15.63 to 92.79 ng/g, with a geomean of 36.46 ng/g. Hexachlorocyclohexane(HCHs), dichlorodiphenyltrichoroethane (DDTs), and chlordanes were the most dominant OCPs, with γ-HCH and p,p′-DDT being the predominant isomers. Higher concentrations of OCPs often centered to the northeast and southwest of the Changchun metropolis, and these artificial influences contributed to the destiny of OCPs in the soils. The residues of OCPs were derived from the historic utility of the technological DDT, dicofol, and lindane. A Pearson’s correlation evaluation indicated that TOC was once a key factor controlling OCP accumulation. The ecological risk evaluation based on the soil quality guidelines (SQGs) advises that the presence of DDTs, lindane, and heptachlor may additionally pose a poisonous ecological danger to soil organisms. The contrast outcomes of the incremental lifetime cancer risk (ILCR) confirmed that the highest cancer risk of OCPs to the posed populace was once low, whilst some unique areas with excessive OCP residues ought to be given attention. The research results provide basic information for evaluating the extent of OCP pollution in the soil of major cities in Northeast China and can help authorities establish environmental protection regulations and soil remediation techniques. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

16 pages, 3368 KB  
Article
Determination of Dicofol in Tea Using Surface-Enhanced Raman Spectroscopy Coupled Chemometrics
by Qian Ke, Limei Yin, Heera Jayan, Hesham R. El-Seedi, Paula L. Gómez, Stella M. Alzamora, Xiaobo Zou and Zhiming Guo
Molecules 2023, 28(14), 5291; https://doi.org/10.3390/molecules28145291 - 8 Jul 2023
Cited by 10 | Viewed by 2077
Abstract
Dicofol is a highly toxic residual pesticide in tea, which seriously endangers human health. A method for detecting dicofol in tea by combining stoichiometry with surface-enhanced Raman spectroscopy (SERS) technology was proposed in this study. AuNPs were prepared, and silver shells were grown [...] Read more.
Dicofol is a highly toxic residual pesticide in tea, which seriously endangers human health. A method for detecting dicofol in tea by combining stoichiometry with surface-enhanced Raman spectroscopy (SERS) technology was proposed in this study. AuNPs were prepared, and silver shells were grown on the surface of AuNPs to obtain core–shell Au@AgNPs. Then, the core–shell Au@AgNPs were attached to the surface of a PDMS membrane by physical deposition to obtain a Au@AgNPs/PDMS substrate. The limit of detection (LOD) of this substrate for 4-ATP is as low as 0.28 × 10−11 mol/L, and the LOD of dicofol in tea is 0.32 ng/kg, showing high sensitivity. By comparing the modeling effects of preprocessing and variable selection algorithms, it is concluded that the modeling effect of Savitzky–Golay combined with competitive adaptive reweighted sampling–partial least squares regression is the best (Rp = 0.9964, RPD = 10.6145). SERS technology combined with stoichiometry is expected to rapidly detect dicofol in tea without labels. Full article
(This article belongs to the Special Issue Advances in Application of Raman Spectroscopy in Food Safety)
Show Figures

Figure 1

14 pages, 4898 KB  
Article
Distribution, Sources, and Risk Assessment of Organochlorine Pesticides in Water from Beiluo River, Loess Plateau, China
by Jipu Guo, Wenwu Chen, Menglei Wu, Chengkai Qu, Haotian Sun and Jiahua Guo
Toxics 2023, 11(6), 496; https://doi.org/10.3390/toxics11060496 - 31 May 2023
Cited by 16 | Viewed by 2834
Abstract
The Loess Plateau has been a focus of public discussion and environmental concerns over the past three decades. In this study, in order to investigate the effect of OCP pollution in water of the Beiluo River, concentrations of 25 OCPs at 17 locations [...] Read more.
The Loess Plateau has been a focus of public discussion and environmental concerns over the past three decades. In this study, in order to investigate the effect of OCP pollution in water of the Beiluo River, concentrations of 25 OCPs at 17 locations in the water were examined. The results showed that the concentration of ∑OCPs in the water ranged from 1.76 to 32.57 ng L−1, with an average concentration of 7.23 ng L−1. Compared with other basins in China and abroad, the OCP content in the Beiluo River was at a medium level. Hexachlorocyclohexane (HCH) pollution in the Beiluo River was mainly from the mixed input of lindane and technical HCHs. Dichlorodiphenyltrichloroethane (DDT) pollution was mainly from the mixed input of technical DDTs and dicofol. Most of the OCP pollution came from historical residues. The risk assessment results showed that hexachlorobenzene (HCB) and endosulfan had high ecological risks in the middle and lower reaches of the Beiluo River. Most residual OCPs were not sufficient to pose carcinogenic and non-carcinogenic health risks to humans. The results of this study can provide a reference for OCP prevention and control and watershed environmental management. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Figure 1

12 pages, 1806 KB  
Article
Spontaneous In-Source Fragmentation Reaction Mechanism and Highly Sensitive Analysis of Dicofol by Electrospray Ionization Mass Spectrometry
by Jun Xie, Yage Guo, Yongqiang Ma, Hongyun Jiang, Lan Zhang, Liangang Mao, Lizhen Zhu, Yongquan Zheng and Xingang Liu
Molecules 2023, 28(9), 3765; https://doi.org/10.3390/molecules28093765 - 27 Apr 2023
Cited by 5 | Viewed by 4016
Abstract
Although dicofol has been widely banned all over the world as a kind of organochlorine contaminant, it still exists in the environment. This study developed a high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS/MS) detection technique for dicofol, an environmental pollutant, for the [...] Read more.
Although dicofol has been widely banned all over the world as a kind of organochlorine contaminant, it still exists in the environment. This study developed a high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS/MS) detection technique for dicofol, an environmental pollutant, for the first time using in-source fragmentation. The results confirmed that m/z 251 was the only precursor ion of dicofol after in-source fragmentation, and m/z 139 and m/z 111 were reasonable product ions. The main factors triggering the in-source fragmentation were the H+ content and solution conductivity when dicofol entered the mass spectrometer. Density functional theory can be used to analyze and interpret the mechanism of dicofol fragmentation reaction in ESI source. Dicofol reduced the molecular energy from 8.8 ± 0.05 kcal/mol to 1.0 ± 0.05 kcal/mol, indicating that the internal energy release from high to low was the key driving force of in-source fragmentation. A method based on HPLC-MS/MS was developed to analyze dicofol residues in environmental water. The LOQ was 0.1 μg/L, which was better than the previous GC or GC-MS methods. This study not only proposed an HPLC-MS/MS analysis method for dicofol for the first time but also explained the in-source fragmentation mechanism of compounds in ESI source, which has positive significance for the study of compounds with unconventional mass spectrometry behavior in the field of organic pollutant analysis and metabonomics. Full article
(This article belongs to the Special Issue Application of LC-MS/MS in Biochemistry II)
Show Figures

Figure 1

13 pages, 725 KB  
Article
Environmental and Human Health Risks of Pesticide Presence in the Lake Tana Basin (Ethiopia)
by Bayeh Abera, Wout Van Echelpoel, Andrée De Cock, Bjorn Tytgat, Mulugeta Kibret, Pieter Spanoghe, Daniel Mengistu, Enyew Adgo, Jan Nyssen, Peter L. M. Goethals and Elie Verleyen
Sustainability 2022, 14(21), 14008; https://doi.org/10.3390/su142114008 - 27 Oct 2022
Cited by 12 | Viewed by 2662
Abstract
Pesticides are widely used for safeguarding agricultural yields and controlling malaria vectors, yet are simultaneously unintentionally introduced in aquatic environments. To assess the severity of this pressure in the Lake Tana Basin (Ethiopia), we evaluated the occurrence of 17 pesticide residues in the [...] Read more.
Pesticides are widely used for safeguarding agricultural yields and controlling malaria vectors, yet are simultaneously unintentionally introduced in aquatic environments. To assess the severity of this pressure in the Lake Tana Basin (Ethiopia), we evaluated the occurrence of 17 pesticide residues in the lake, tributary rivers, and associated wetlands during the wet and dry season, followed by a questionnaire. These questionnaires indicated that 35 different compounds were available in the districts surrounding the lake, including pesticides that are banned in Europe, i.e., endosulfan, dicofol, and malathion. Nevertheless, only 7 pesticide residues were detected in the assessed aquatic habitats. Of these, DDE and bifenthrin occurred most often (97.7% and 62.3%, respectively), while alachlor displayed the highest mean concentration (594 ± 468 ng/L). No significant differences were observed in residue concentrations between seasons nor between habitats. Based on an ecotoxicological risk assessment, the observed concentrations of DDE and cypermethrin pose a high risk to aquatic life, while alachlor and DDT-op residues were below the threshold values. Furthermore, a human risk assessment indicated a low risk for the population that directly consumes water from the Tana basin, while acknowledging the potential of indirect exposure through the consumption of fish and locally grown crops. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

14 pages, 1546 KB  
Article
Characteristics and Residual Health Risk of Organochlorine Pesticides in Fresh Vegetables in the Suburb of Changchun, Northeast China
by Nan Wang, Zhengwu Cui, Yang Wang and Jingjing Zhang
Int. J. Environ. Res. Public Health 2022, 19(19), 12547; https://doi.org/10.3390/ijerph191912547 - 1 Oct 2022
Cited by 12 | Viewed by 2468
Abstract
In this study, eleven organochlorine pesticides (OCPs) in fresh vegetables in the Changchun suburb were investigated, and their potential health risks were evaluated. The average concentrations of OCPs in edible parts of vegetables were found in the following descending order: Σhexachlorocyclohexanes (ΣHCHs) (6.60 [...] Read more.
In this study, eleven organochlorine pesticides (OCPs) in fresh vegetables in the Changchun suburb were investigated, and their potential health risks were evaluated. The average concentrations of OCPs in edible parts of vegetables were found in the following descending order: Σhexachlorocyclohexanes (ΣHCHs) (6.60 µg·kg−1) > Σdichlorodiphenyltrichloroethanes (ΣDDTs) (5.82 µg·kg−1) > ΣChlordanes (2.37 µg·kg−1) > heptachlor (0.29 µg·kg−1). Moreover, OCPs in different types of vegetables exceeded the maximum residue limits (MRLs), and the exceeding rates in various vegetables decreased in the following order: leafy vegetables (19.12%) > root vegetables (18.75%) > fruit vegetables (3.85%). The proportions of OCPs exceeding MRL in different vegetables were found in the following descending order: Welsh onion (22.50%) > radish (18.75%) > Chinese cabbage (14.29%) > pepper (6.90%) > cucumber (3.23%) > eggplant (2.94%) > tomato (2.78%). The sources’ identification results showed that DDTs in vegetables came mainly from newly imported technical DDTs and dicofol, while HCHs originated mainly from lindane. For both adults and children, the average target hazard quotients (avg. THQ) were all less than 1, and the average hazard index (avg. HI) values were 0.043 and 0.036, respectively. There were no significant health risks associated with OCP exposure for the inhabitants of the study area. Full article
(This article belongs to the Section Biosafety)
Show Figures

Figure 1

16 pages, 1197 KB  
Article
Differential Bioaccumulation Patterns of α, β-Hexachlorobenzene and Dicofol in Adipose Tissue from the GraMo Cohort (Southern Spain)
by Inmaculada Salcedo-Bellido, Esperanza Amaya, Celia Pérez-Díaz, Anabel Soler, Fernando Vela-Soria, Pilar Requena, Rocío Barrios-Rodríguez, Ruth Echeverría, Francisco M. Pérez-Carrascosa, Raquel Quesada-Jiménez, Piedad Martín-Olmedo and Juan Pedro Arrebola
Int. J. Environ. Res. Public Health 2022, 19(6), 3344; https://doi.org/10.3390/ijerph19063344 - 11 Mar 2022
Cited by 5 | Viewed by 3321
Abstract
To identify bioaccumulation patterns of α-, β- hexachlorocyclohexane (HCH) and dicofol in relation to sociodemographic, dietary, and lifestyle factors, adipose tissue samples of 387 subjects from GraMo cohort in Southern Spain were analyzed. Potential predictors of these organochlorine pesticides (OCP) levels were collected [...] Read more.
To identify bioaccumulation patterns of α-, β- hexachlorocyclohexane (HCH) and dicofol in relation to sociodemographic, dietary, and lifestyle factors, adipose tissue samples of 387 subjects from GraMo cohort in Southern Spain were analyzed. Potential predictors of these organochlorine pesticides (OCP) levels were collected by face-to-face interviews and assessed by multivariable linear and logistic regression. OCPs were detected in 84.2% (β-HCH), 21.7% (α-HCH), and 19.6% (dicofol) of the population. β-HCH levels were positively related to age, body mass index (BMI), mother’s occupation in agriculture during pregnancy, living in Poniente and Alpujarras, white fish, milk and water consumption, and negatively related to being male, living near to an agricultural area, working ≥10 years in agriculture, and beer consumption. Detectable α-HCH levels were positively related to age, BMI, milk consumption, mother’s occupation in agriculture during pregnancy, and negatively with residence in Poniente and Alpujarras, Granada city, and Granada Metropolitan Area. Residence near to an agricultural area, smoking habit, white fish and water consumption, and living in Poniente and Alpujarras, Granada city and Granada Metropolitan Area were negatively associated with detectable dicofol levels. Our study revealed different bioaccumulation patterns of α, β-HCH and dicofol, probably due to their dissimilar period of use, and emphasize the need for assessing the exposure to frequently overlooked pollutants. Full article
(This article belongs to the Special Issue New Threads in Environmental Toxicology)
Show Figures

Figure 1

32 pages, 292 KB  
Article
The First Order Transfer Function in the Analysis of Agrochemical Data in Honey Bees (Apis Mellifera L.): Proboscis Extension Reflex (PER) Studies
by Lisa A. De Stefano, Igor I. Stepanov and Charles I. Abramson
Insects 2014, 5(1), 167-198; https://doi.org/10.3390/insects5010167 - 7 Jan 2014
Cited by 13 | Viewed by 6357
Abstract
This paper describes a mathematical model of the learning process suitable for studies of conditioning using the proboscis extension reflex (PER) in honey bees when bees are exposed to agrochemicals. Although procedural variations exist in the way laboratories use the PER paradigm, proboscis [...] Read more.
This paper describes a mathematical model of the learning process suitable for studies of conditioning using the proboscis extension reflex (PER) in honey bees when bees are exposed to agrochemicals. Although procedural variations exist in the way laboratories use the PER paradigm, proboscis conditioning is widely used to investigate the influence of pesticides and repellents on honey bee learning. Despite the availability of several mathematical models of the learning process, no attempts have been made to apply a mathematical model to the learning curve in honey bees exposed to agrochemicals. Our model is based on the standard transfer function in the form Y=B3 e-B2 (X-1) +B4(1-e-B2 (X-1)) where X is the trial number, Y is the proportion of correct responses, B2 is the learning rate, B3 is readiness to learn, and B4 is ability to learn. We reanalyze previously published data on the effect of several classes of agrochemicals including: (1) those that are considered harmless to bees (e.g., pymetrozine, essential oils, dicofol); (2) sublethal exposure to pesticides known to harm honey bees (e.g., coumaphos, cyfluthrin, fluvalinate, permethrin); and (3) putative repellents of honey bees (e.g., butyric acid, citronella). The model revealed additional effects not detected with standard statistical tests of significance. Full article
(This article belongs to the Special Issue Honey Bee Behavior)
Back to TopTop