Use of the Pesticide Toxicity Index to Determine Potential Ecological Risk in the Santiago-Guadalajara River Basin, Mexico
Abstract
:1. Introduction
Santiago-Guadalajara River Basin (SGRB)
2. Materials and Methods
2.1. Sampling Sites
2.2. Analytical Methods
2.3. Statistical Methods
2.4. Criteria for Fish Toxicity Assessment Due to Pesticides
2.5. Pesticide Toxicity Index (PTI)
2.6. Results Representation
3. Results and Discussion
3.1. Hydrological Regime
3.2. Identified Pesticides
3.3. Correlation Analysis
3.4. Estimation of the Pesticide Toxicity Index
3.5. Suggested Measures to Reduce Ecological Risks
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Station | Sampling Station (Official Name) | Name of the Monitored Stream | Longitude | Latitude |
---|---|---|---|---|
1 | Arandas | Arroyo La Madrastra | −102.33959 | 20.69607 |
2 | Atotonilco el Alto | Arroyo El Taretán | −102.50246 | 20.54540 |
3 | La Ladera | Arroyo Los Morales | −102.73044 | 20.59711 |
4 | Gaviotas | Río Calderón | −102.85156 | 20.70156 |
5 | San José de Gracia | Río Calderón | −102.70205 | 20.78619 |
6 | San Miguel | Arroyo Tierras Coloradas | −102.78823 | 20.53503 |
7 | Ocotlán Centro | Río Zula | −102.77800 | 20.34467 |
8 | Los Cerritos | Arroyo Chico | −102.74937 | 20.44643 |
9 | La Laja | Arroyo Grande | −103.12778 | 20.57804 |
10 | Río Zapotlanejo | Río Zapotlanejo | −103.09545 | 20.62301 |
11 | La Azucena | Arroyo El Ahogado | −103.22780 | 20.49743 |
12 | La Noria | Río Santiago | −103.22635 | 20.46763 |
13 | Río Santiago (before El Ahogado WWTP discharges) | Río Santiago | −103.18452 | 20.45462 |
14 | Carretera Guadalajara—Chapala | Arroyo Las Pintas | −103.26535 | 20.47816 |
15 | Presa Corona | Río Santiago | −103.09304 | 20.40014 |
16 | Paso a Guadalupe | Río Santiago | −103.32881 | 20.83900 |
17 | Rancho La Soledad | Río La Soledad | −103.37082 | 20.89438 |
18 | Plan de Oriente | Arroyo El Ahogado | −103.28403 | 20.58856 |
19 | Villa Fontana | Arroyo Las Pintas | −103.36321 | 20.56268 |
20 | San José del Quince | Arroyo El Ahogado | −103.29677 | 20.53781 |
21 | El Arenal | Río Arenal | −103.63856 | 20.72332 |
22 | San Isidro | Río Blanco | −103.45939 | 20.79633 |
23 | San Cristóbal de la Barranca | Río La Calera | −103.43309 | 21.04759 |
24 | Tequila | Río Amatitán | −103.83174 | 20.89847 |
25 | Hostotipaquillo | Río Los Sabinos | −104.01113 | 21.03211 |
Sub-Basin Official SPANISH Name | Sampling Stations | Cluster | Dominant Land Use (1) |
---|---|---|---|
Río Zula | E1, E2, E3, E6, E7, E8 | 1 | Rainfed and irrigation agriculture |
Lago de Chapala-Río Corona | None | Irrigated agriculture | |
Río La Laja | E9, E10 | 2 | Rainfed agriculture and urban and industrial areas |
Río Calderón | E4, E5 | 2 | Rainfed agriculture |
Río Corona-Río Verde | E11, E12, E13, E14, E15, E18, E19, E20 | 3 | Urban and industrial areas, and irrigated agriculture |
Río Gigantes | E16 | 4 | Urban and forest areas |
Río Verde-Presa Santa Rosa | E17, E21, E22, | 4 | Forest |
Río Cuixtla | E23 | 4 | Forest |
Río Chico | None | Forest | |
Presa de Santa Rosa-Río Bolaños | E24, E25 | 5 | Urban and industrial areas, agriculture, and forest |
Nr. | Pesticide | Chemical Formula | Analytical Method Applied (1) |
---|---|---|---|
1 | α-BHC | C6H6Cl6 | Modified EPA Method 8081 |
2 | β-BHC | C6H6Cl6 | Modified EPA Method 8081 |
3 | γ-BHC (Lindane) | C6H6Cl6 | Modified EPA Method 8081 |
4 | γ-Chlordane | C10H6Cl8 | Modified EPA Method 8081 |
5 | Hexachlorobenzene | C6Cl6 | Modified EPA Method 8081 |
6 | Heptachlor | C10H5Cl7 | Modified EPA Method 8081 |
7 | Aldrin | C12H8Cl6 | Modified EPA Method 8081 |
8 | α-Endosulfan | C9H6Cl6O3S | Modified EPA Method 8081 |
9 | β-Endosulfan | C9H6Cl6O3S | Modified EPA Method 8081 |
10 | 4,4′- DDE | C14H8Cl4 | Modified EPA Method 8081 |
11 | Dieldrin | C12H8Cl6O | Modified EPA Method 8081 |
12 | Endrin | C12H8Cl6O | Modified EPA Method 8081 |
13 | DDD-4,4′ | C14H10Cl4 | Modified EPA Method 8081 |
14 | Methoxychlor | C16H15Cl3O2 | Modified AOAC Official Method 970.52 |
15 | Heptachlor epoxide | C10H5Cl7O | Modified EPA Method 8081 |
16 | DDT-2,4′ | C14H9Cl5 | Modified EPA Method 8081 |
17 | DDT-4,4′ | (ClC6H4)2CHCCl3 | Modified EPA Method 8081 |
18 | Chlorpyrifos-methyl | C7H7Cl3NO3PS | Modified AOAC Official Method 970.52 |
19 | Diazinon | C12H21N2O3PS | Modified AOAC Official Method 970.52 |
20 | Ethion | C9H22O4P2S4 | Modified AOAC Official Method 970.52 |
21 | Malathion | C10H19O6PS2 | Modified AOAC Official Method 970.52 |
22 | Methamidophos | C2H8NO2PS | Modified EPA Method 8081 |
23 | Endosulfan sulfate | C9H6Cl6O4S | Modified EPA Method 8081 |
24 | Dicofol | C14H9Cl5O | Modified EPA Method 8081 |
Pesticide | Working Solution Concentration (ng/L) | % Recovery (1) | Coefficient of Variation (2) (%) | LOD (3) (ng/L) | LOQ (4)(ng/L) |
---|---|---|---|---|---|
α-BHC | 250 | 90.40–103.20 | 24 | 2.5 | 5 |
β-BHC | 250 | 89.70–116.10 | 28 | 2.5 | 5 |
γ-BHC (Lindane) | 250 | 95.20–116.90 | 10 | 2.5 | 5 |
γ-Chlordane | 250 | 97.50–107.30 | 15 | 2.5 | 5 |
Hexachlorobenzene | 250 | 97.10–113.60 | 19 | 2.5 | 5 |
Heptachlor | 250 | 97.80–111.40 | 12 | 2.5 | 5 |
Aldrin | 250 | 97.40–103.30 | 12 | 2.5 | 5 |
α-Endosulfan | 250 | 97.10–109.20 | 25 | 2.5 | 5 |
β-Endosulfan | 250 | 97.50–113.30 | 19 | 2.5 | 5 |
4,4′-DDE | 250 | 98.30–106.90 | 10 | 2.5 | 5 |
Dieldrin | 250 | 93.70–115.60 | 34 | 2.5 | 5 |
Endrin | 250 | 78.50–108.70 | 10 | 2.5 | 5 |
DDD-4,4′ | 250 | 98.70–100.70 | 15 | 2.5 | 5 |
Methoxychlor | 250 | 95.60–104.30 | 34 | 2.5 | 5 |
Heptachlor epoxide | 250 | 96.00–103.40 | 15 | 2.5 | 5 |
DDT-2,4′ | 250 | 94.80–101.20 | 14 | 2.5 | 5 |
DDT-4,4′ | 250 | 85.80–100.8 | 26 | 2.5 | 5 |
Chlorpyrifos-methyl | 250 | 88.50–111.70 | 30 | 2.5 | 5 |
Diazinon | 250 | 88.70–115.20 | 25 | 2.5 | 5 |
Ethion | 250 | 98.70–113.40 | 19 | 2.5 | 5 |
Malathion | 250 | 95.70–103.90 | 23 | 2.5 | 5 |
Methamidophos | 250 | 98.40–106.20 | 28 | 2.5 | 5 |
Endosulfan sulfate | 250 | 90.50–102.90 | 18 | 2.5 | 5 |
Dicofol | 250 | 95.40–113.50 | 32 | 2.5 | 5 |
Nr | Pesticide | LFD (µg/L) 1 | U.S. EPA (µg/L) 2 | CWQG (µg/L) 3 | ANZECC (µg/L) 4 | TCAvg (µg/L) | ||||
---|---|---|---|---|---|---|---|---|---|---|
Protection of Freshwater Organisms | Freshwater Vertebrate | Freshwater Invertebrate | Protection of Freshwater Organisms | Protection of Freshwater Organisms | Average Toxicity Values | |||||
Acute | Chronic | Acute | Chronic | Acute | Chronic | |||||
1 | α-BHC | 1.000 | ND | ND | ND | ND | ND | ND | ND | 1.0000 |
2 | β-BHC | 1.000 | ND | ND | ND | ND | ND | ND | ND | 1.0000 |
3 | γ-BHC (Lindane) | 2.000 | 0.8500 | 2.9000 | 0.5000 | 54.0000 | ND | 0.0100 | 0.2000 | 8.6371 |
4 | Heptachlor | 0.500 | 0.5200 | 0.0038 | 0.3000 | 0.0100 | ND | 0.0100 | 0.0100 | 0.1934 |
5 | Aldrin | 0.300 | 3.0000 | ND | ND | ND | ND | ND | 0.001 | 1.1003 |
6 | α-Endosulfan | 0.200 | 0.0500 | 0.0230 | 0.3000 | 0.0100 | 0.0600 | 0.0030 | 0.0002 | 0.0923 |
7 | Chlorpyrifos-methyl | ND | 7.0000 | ND | 0.0850 | ND | ND | ND | ND | 3.5425 |
8 | Dicofol | ND | 26.5000 | 4.4000 | 70.0000 | 19.0000 | ND | ND | 0.500 | 24.0800 |
References
- Pathak, V.M.; Verma, V.K.; Rawat, B.S.; Kaur, B.; Babu, N.; Sharma, A.; Dewali, S.; Yadav, M.; Kumari, R.; Singh, S.; et al. Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review. Front. Microbiol. 2022, 13, 962619. [Google Scholar] [CrossRef] [PubMed]
- Rajmohan, K.S.; Chandrasekaran, R.; Varjani, S.A. Review on Occurrence of Pesticides in Environment and Current Technologies for Their Remediation and Management. Indian J. Microbiol. 2020, 60, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Meftaul, I.M.; Venkateswarlu, K.; Dharmarajan, R.; Annamalai, P.; Megharaj, M. Pesticides in the urban environment: A potential threat that knocks at the door. Sci. Total Environ. 2020, 711, 134612. [Google Scholar] [CrossRef]
- Rad, S.M.; Ray, A.K.; Barghi, S. Water Pollution and Agriculture Pesticide. Clean Technol. 2022, 4, 66. [Google Scholar] [CrossRef]
- Carvalho, F.P. Pesticides, environment, and food safety. Food Energy Secur. 2017, 6, 48–60. [Google Scholar] [CrossRef]
- Gold-Bouchot, G.; Silva-Herrera, T.; Zapata-Pérez, O. Organochlorine pesticide residue concentrations in biota and sediments from Río Palizada, Mexico. Bull. Environ. Contam. Toxicol. 1995, 54, 554–561. [Google Scholar] [CrossRef]
- Albert, L.A. Persistent Pesticides in Mexico. In Reviews of Environmental Contamination and Toxicology; Ware, G.W., Ed.; Springer: New York, NY, USA, 1996; p. 147. Available online: https://link.springer.com/chapter/10.1007/978-1-4612-4058-7_1 (accessed on 12 July 2024).
- Salas, B.V.; Duran, E.G.; Wiener, M.S. Impact of pesticides use on human health in Mexico: A review. Rev. Environ. Health 2000, 15, 399–412. [Google Scholar] [CrossRef]
- Robledo-Marenco, M.L.; Botello, A.V.; Romero-Bañuelos, C.A.; Díaz-González, G. Presence of persistent organochlorine pesticides in estuaries of the subtropical Mexican Pacific. Int. J. Environ. Pollut. 2006, 26, 284–294. [Google Scholar] [CrossRef]
- Carvalho, F.P.; Villeneuve, J.P.; Cattini, C.; Rendón, J.; de Oliveira, J.M. Pesticide and PCB residues in the aquatic ecosystems of Laguna de Terminos, a protected area of the coast of Campeche, Mexico. Chemosphere 2009, 74, 988–995. [Google Scholar] [CrossRef]
- Cantu-Soto, E.U.; Meza-Montenegro, M.M.; Valenzuela-Quintanar, A.I.; Félix-Fuentes, A.; Grajeda-Cota, P.; Balderas-Cortes, J.J.; Osorio-Rosas, C.L.; Acuña-García, G.; Aguilar-Apodaca, M.G. Residues of organochlorine pesticides in soils from the southern Sonora, Mexico. Bull. Environ. Contam. Toxicol. 2011, 87, 556–560. Available online: https://link.springer.com/article/10.1007/s00128-011-0353-5 (accessed on 20 July 2024). [CrossRef]
- Sánchez-Guerra, M.; Pérez-Herrera, N.; Quintanilla-Vega, B. Organophosphorous pesticides research in Mexico: Epidemiological and experimental approaches. Toxicol. Mech. Methods 2011, 21, 681–691. [Google Scholar] [CrossRef] [PubMed]
- Leyva-Morales, J.E.; Valdez-Torres, J.B.; de Jesús Bastidas Bastidas, P.; Angulo-Escalante, M.A.; Sarmiento-Sánchez, J.I.; Barraza-Lobo, A.L.; Olmeda-Rubio, C.; Chaidez-Quiroz, C. Monitoring of pesticides residues in northwestern Mexico rivers. Acta Univ. 2017, 27, 45–54. [Google Scholar] [CrossRef]
- Montes, A.M.; González-Farias, F.A.; Botello, A.V. Pollution by organochlorine pesticides in Navachiste-Macapule, Sinaloa, Mexico. Environ. Monit. Assess. 2012, 184, 1359–1369. [Google Scholar] [CrossRef]
- Zaragoza-Bastida, A.; Valladares-Carranza, B.; Ortega-Santana, C.; Zamora-Espinosa, J.; Velázquez-Ordoñez, V.; Aparicio-Burgos, J. Repercusiones del uso de los organoclorados sobre el ambiente y salud pública. Abanico Vet. 2016, 6, 43–55. Available online: http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2448-61322016000100043 (accessed on 28 June 2024).
- Rodríguez-Aguilar, B.A.; Martínez-Rivera, L.M.; Muñiz-Valencia, R.; Mercado-Silva, N.; Iñiguez-Dávalos, L.I.; Peregrina-Lucano, A.A. Occurrence, spatio-temporal distribution, and human health risk assessment of pesticides in fish along the Ayuquila-Armería River, Mexico. J. Environ. Sci. Health 2022, 57, 970–979. [Google Scholar] [CrossRef] [PubMed]
- Guillette, E.A.; Meza, M.M.; Aquilar, M.G.; Soto, A.D.; Garcia, I.E. An anthropological approach to the evaluation of preschool children exposed to pesticides in Mexico. Environ. Health Perspect. 1998, 106, 347–353. [Google Scholar] [CrossRef]
- OECD. OECD Environmental Performance Reviews: Mexico 2013; OECD Publishing: Paris, France, 2013; Available online: https://www.oecd-ilibrary.org/environment/oecd-environmental-performance-reviews-mexico-2013_9789264180109-en (accessed on 16 June 2024).
- Bejarano-González, F. Highly Hazardous Pesticides in Mexico. Pesticide Action Network in Mexico, Texcoco, Mexico. 2018. Available online: https://ipen.org/sites/default/files/documents/HHHP%20in%20Mexico%202018REV.pdf (accessed on 10 July 2024).
- Ochoa-Noriega, C.A.; Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Mesa-Vázquez, E. Overview of Research on Sustainable Agriculture in Developing Countries. The Case of Mexico. Sustainability 2021, 13, 8563. [Google Scholar] [CrossRef]
- García, S.O.; Santillan, V.S.; Vivier, V.B.; Anglés-Hernández, M.; Pérez, M.E.; Prado, B. Soil governance and sustainable agriculture in Mexico. Soil Secur. 2022, 7, 100059. [Google Scholar] [CrossRef]
- DOF. Plan Nacional de Desarrollo 2019–2024; Diario Oficial de la Federación: Ciudad de México, México, 2019; Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5565599&fecha=12/07/2019#gsc.tab=0 (accessed on 22 June 2024).
- DOF. Relación de Plaguicidas Prohibidos para su Importación, Fabricación, Formulación, Comercialización y Uso en México. Diario Oficial de la Federación. Secretaría de Gobernación. México. 1991. Available online: http://dof.gob.mx/nota_detalle.php?codigo=4697687&fecha=03/01/1991#gsc.tab=0 (accessed on 22 June 2024).
- DOF. Norma Oficial Mexicana NOM-082-SAG-FITO/SSA1-2017. Límites Máximos de Residuos. Lineamientos Técnicos y Procedimiento de Autorización y Revisión. Diario Oficial de la Federación, México. 2017. Available online: https://dof.gob.mx/nota_detalle.php?codigo=5499806&fecha=04/10/2017#gsc.tab=0 (accessed on 22 June 2024).
- Munn, M.D.; Gilliom, R.J. Pesticide Toxicity Index for Freshwater Aquatic Organisms; US Department of the Interior, US Geological Survey: Washington, DC, USA, 2001. Available online: https://pubs.usgs.gov/wri/wri014077/wri014077.pdf (accessed on 30 May 2024).
- Munn, M.D.; Gilliom, R.J.; Moran, P.W.; Nowell, L.H. Pesticide Toxicity Index for Freshwater Aquatic Organisms, 2nd ed.; US Department of the Interior, US Geological Survey: Washington, DC, USA, 2006. Available online: https://pubs.usgs.gov/sir/2006/5148/sir_2006-5148.pdf (accessed on 30 May 2024).
- IIEG. Guadalajara-Diagnóstico Municipal; Instituto de Información Estadística y Geográfica de Jalisco: Zapopan, México, 2022; Available online: https://iieg.gob.mx/ns/wp-content/uploads/2023/08/Guadalajara-1.pdf (accessed on 21 May 2024).
- Bollo-Manent, M.; Montaño-Salazar, R.; Hernndez-Santana, J.R. (Coordinadores) Situación Ambiental de la Cuenca Santiago-Guadalajara; Centro de Investigaciones en geografía Ambiental, Universidad Nacional Autónoma de México. Secretaría de Medio Ambiente y recursos Naturales (SEMARNAT), Secretaría de Medio Ambiente y Desarrollo Territorial (SEMADET): Guadalajara, Jalisco, México, 2017; 164p, ISBN 978-607-97786-5-1. Available online: https://semadet.jalisco.gob.mx/sites/semadet.jalisco.gob.mx/files/apendice-pmicsg/Libro%20%22Situación%20Ambiental%20de%20la%20Cuenca%20del%20Río%20Santiago%20-%20Guadalajara%22/Libro%20SACRSG_vf.pdf (accessed on 21 May 2024).
- IIEG. Análisis General del Área Metropolitana de Guadalajara. Instituto de Información Estadística y Geográfica de Jalisco. México. 2020. Available online: https://iieg.gob.mx/ns/wp-content/uploads/2022/03/An%C3%A1lisis-General-del-%C3%81rea-Metropolitana-de-Guadalajara-2020.pdf (accessed on 20 May 2024).
- INEGI. Uso de Suelo y Vegetación. Conjunto de Datos Vectoriales Versión VII de la Carta de Uso de Suelo; Instituto Nacional de Estadística y Geografía: Aguascalientes, México, 2018; Available online: https://www.inegi.org.mx/temas/usosuelo/ (accessed on 20 May 2024).
- McCulligh, C. Wastewater and wishful thinking: Treatment plants to “revive” the Santiago River in Mexico. Environ. Plan. ENat. Space 2023, 6, 1966–1986. [Google Scholar] [CrossRef]
- Rizo-Decelis, L.D.; Andreo, B. Water Quality Assessment of the Santiago River and Attenuation Capacity of Pollutants Downstream Guadalajara City, Mexico. River Res. Appl. 2016, 32, 1505–1516. [Google Scholar] [CrossRef]
- Martínez-González, P.; Hernández, E. Impactos de la contaminación del Río Santiago en el bienestar de los habitantes de El Salto, Jalisco. Espac. Abierto 2009, 18, 709–729. Available online: https://www.redalyc.org/pdf/122/12211871006.pdf (accessed on 22 May 2024).
- De Anda-Sánchez, J.; López-López, A.; Gallardo-Valdez, J.; Contreras Ramos, S.M.; León Becerril, E.; Villegas Garcia, E.; Hernández Mena, L.; de Jesús Díaz Torres, J.; Esquivel Solis, H.; del Real Olvera, J.; et al. Diagnóstico integral del polígono de fragilidad ambiental (POFA) y su entorno 2012. Juan Gallardo Valdez (Coordinador). Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. (CIATEJ). Consejo Estatal de Ciencia y Tecnología del Estado de Jalisco (COECYTJAL). Consejo Nacional de Ciencia y Tecnología (CONACyT): Guadalajara, Jalisco, México, 2012; 230p, Available online: https://ciatej.repositorioinstitucional.mx/jspui/handle/1023/674 (accessed on 15 May 2024).
- McCulligh, C. La no regulación ambiental: Contaminación industrial del río Santiago en Jalisco. Obs. Del Desarro. 2013, 2, 22–28. Available online: https://www.researchgate.net/profile/Cindy_Mcculligh2/publication/332470064_La_no_regulacion_ambiental_contaminacion_industrial_del_río_Santiago_en_Jalisco/links/5cb741e992851c8d22f24013/La-no-regulacion-ambiental-contaminacion-industrial-del-río-Santiago-en-Jalisco.pdf (accessed on 1 June 2024). [CrossRef]
- Montes-Rubio, P.Y.; Aguilar-Castro, N.; Ávila-Domínguez, R.; Macbani-Olvera, P.; Raygoza-Anaya, M.; Garnica-Guerrero, B.; Reynoso-Vázquez, J.; Ruvalcaba-Ledezma, J.C. Contaminación del Río Santiago: Un problema epidemiológico ambiental persistente de Salud Pública en Jalisco, México. Proeditio. 2021. Available online: https://revistas.proeditio.com/jonnpr/article/view/3951/5043 (accessed on 1 June 2024).
- McCulligh, C.; Vega-Fregoso, G. Defiance from Down River: Deflection and Dispute in the Urban-Industrial Metabolism of Pollution in Guadalajara. Sustainability 2019, 11, 6294. [Google Scholar] [CrossRef]
- McCulligh, C.; Arellano-García, L.; Casas-Beltrán, D. Unsafe waters: The hydrosocial cycle of drinking water in Western Mexico. Local Environment. Int. J. Justice Sustain. 2020, 25, 576–596. [Google Scholar] [CrossRef]
- IACHR. Inhabitants of the Areas near the Santiago River Regarding Mexico. Inter-American Commission on Human Rights. Resolution 7/2020. Precautionary Measure No. 708-19. 2020. Available online: https://www.oas.org/en/iachr/decisions/pdf/2020/7-20MC708-19-ME.pdf (accessed on 3 June 2024).
- Wang, D.; Singhasemanon, N.; Goh, K.S. A statistical assessment of pesticide pollution in surface waters using environmental monitoring data: Chlorpyrifos in Central Valley, California. Sci. Total Environ. 2016, 15, 332–341. Available online: https://pubmed.ncbi.nlm.nih.gov/27490449 (accessed on 19 June 2024). [CrossRef]
- Chow, R.; Scheidegger, R.; Doppler, T.; Dietzel, A.; Fenicia, F.; Stamm, C. A review of long-term pesticide monitoring studies to assess surface water quality trends. Water Res. X 2020, 9, 100064. Available online: https://www.sciencedirect.com/science/article/pii/S2589914720300244 (accessed on 26 June 2024). [CrossRef] [PubMed]
- Gilliom, R.J. Pesticides in US Streams and Groundwater. 2007. Available online: https://pubs.acs.org/doi/pdf/10.1021/es072531u (accessed on 18 June 2024).
- DOF. Norma Oficial Mexicana NOM-AA-71-1981, Análisis de Agua-Determinación de Plaguicidas Organoclorados-Método de Cromatografía de Gases, Así Como el Aviso de la Declaratoria de Vigencia. In Diario Oficial de la Federación; Secretaría de Gobernación: Ciudad de México, México, 1981; Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=4616916&fecha=17/02/1981#gsc.tab=0 (accessed on 2 July 2024).
- Hope, B.K. An examination of ecological risk assessment and management practices. Environ. Int. 2006, 32, 983–995. [Google Scholar] [CrossRef]
- USEPA. Aquatic Life Benchmarks and Ecological Risk Assessments for Registered Pesticides; U.S. Environmental Protection Agency: Washington, DC, USA, 2023. Available online: https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/aquatic-life-benchmarks-and-ecological-risk#ref_1 (accessed on 1 June 2024).
- USEPA. National Recommended Water Quality Criteria-Aquatic Life Criteria Table. U.S. Environmental Protection Agency. 2023. Available online: https://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table (accessed on 1 June 2024).
- Gao, J.; Wang, Y.; Gao, B.; Wu, L.; Chen, H. Environmental fate and transport of pesticides. In Pesticides: Evaluation of Environmental Pollution; Rathore, H.S., Nollet, L.M.L., Eds.; CRC Press. Taylor & Francis Group: Boca Raton, FL, USA, 2012; pp. 29–48. ISBN 9780429105951. [Google Scholar] [CrossRef]
- Kalyabina, V.P.; Esimbekova, E.N.; Kopylova, K.V.; Kratasyuk, V.A. Pesticides: Formulants, distribution pathways and effects on human health—A review. Toxicol. Rep. 2021, 8, 1179–1192. [Google Scholar] [CrossRef]
- Rajan, S.; Parween, M.; Raju, N.J. Pesticides in the hydrogeo-environment: A review of contaminant prevalence, source and mobilisation in India. Environ. Geochem. Health 2023, 45, 5481–5513. [Google Scholar] [CrossRef]
- Arias-Estévez, M.; López-Periago, E.; Martínez-Carballo, E.; Simal-Gándara, J.; Mejuto, J.C.; García-Río, L. The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric. Ecosyst. Environ. 2008, 123, 247–260. [Google Scholar] [CrossRef]
- NPIC. What Happens to Pesticides Released in the Environment? 2021. Available online: http://npic.orst.edu/envir/efate.html#:~:text=Pesticides%20may%20become%20airborne%2C%20get,well%20as%20the%20environmental%20conditions (accessed on 31 May 2024).
- LFD. Ley Federal de Derechos; Cámara de Diputados del H. Congreso de la Unión: Mexico City, México, 2023; Available online: https://www.diputados.gob.mx/LeyesBiblio/ref/lfd.htm (accessed on 15 June 2024).
- USEPA. Ambient Water Quality Criteria for Hexachlorobenzene (HCB); Environmental Protection Agency. Office of Water Regulations and Standards Criteria and Standards Division: Washington, DC, USA, 1994. Available online: https://nepis.epa.gov/Exe/ZyPDF.cgi/91005C7N.PDF?Dockey=91005C7N.PDF (accessed on 1 June 2024).
- CCME. Water Quality Guidelines for the Protection of Aquatic Life-Freshwater, Marine; Canadian Council of Ministers of the Environment: Ottawa, ON, Canada, 2024; Available online: https://ccme.ca/en/summary-table (accessed on 10 May 2024).
- ANZACC. Australian and New Zealand Guidelines for Freshwater and Marine Water Quality; Australian and New Zealand Environment and Conservation Council: Sydney, Australia, 2023. Available online: https://www.waterquality.gov.au/anz-guidelines/search?keys (accessed on 10 May 2024).
- Nowell, L.H.; Norman, J.E.; Moran, P.W.; Martin, J.D.; Stone, W.W. Pesticide toxicity index—A tool for assessing potential toxicity of pesticide mixtures to freshwater aquatic organisms. Sci. Total Environ. 2014, 476, 144–157. [Google Scholar] [CrossRef] [PubMed]
- Yadav, H.; Priyadarshini, P.S.; Singh, A.; Lal, B. Pesticide Toxicity Indices for Aquatic Pollution Impact Assessment: Limitations and Need. J. Sci. Res. 2018, 62, 85–90. [Google Scholar]
- Shoda, M.E.; Stone, W.W.; Nowell, L.H. Prediction of pesticide toxicity in Midwest streams. J. Environ. Qual. 2016, 45, 1856–1864. [Google Scholar] [CrossRef] [PubMed]
- Fatema, M.; Farenhorst, A.; Sheedy, C. Using the Pesticide Toxicity Index to show the potential ecosystem benefits of on-farm biobeds. J. Environ. Qual. 2022, 51, 1044–1053. [Google Scholar] [CrossRef]
- Li, Z.; Fantke, P. Toward harmonizing global pesticide regulations for surface freshwaters in support of protecting human health. J. Environ. Manag. 2022, 301, 113909. [Google Scholar] [CrossRef]
- Battaglin, W.; Fairchild, J. Potential toxicity of pesticides measured in midwestern streams to aquatic organisms. Water Sci. Technol. 2002, 45, 95–103. [Google Scholar] [CrossRef]
- Anderson, A.M.; Munn, M.D.; Gilliom, R.J. Development of an Aquatic Pesticide Toxicity Index for Use in Alberta; Alberta Environment, Environmental Assurance; Alberta Environment: Edmonton, AB, Canada, 2008; ISBN 978-0-7785-7362-3. Available online: https://open.alberta.ca/dataset/13ece0fa-aa79-4097-8dbd-4a2b2d419fff/resource/b8ae2a63-6627-4b28-82f3-554bdfe827b9/download/7973.pdf (accessed on 10 May 2024).
- Alvarez-Olguin, G.; Escalante-Sandoval, C. Modes of variability of annual and seasonal rainfall in Mexico. JAWRA J. Am. Water Resour. Assoc. 2017, 53, 144–157. [Google Scholar] [CrossRef]
- De Anda Sánchez, J. Precipitation in Mexico. In Water Resources of Mexico. World Water Resources; Raynal-Villasenor, J., Ed.; Springer: Cham, Switzerland, 2020; Volume 6. [Google Scholar] [CrossRef]
- UN. All POPs listed in the Stockholm Convention. 2019. Available online: http://chm.pops.int/TheConvention/ThePOPs/ListingofPOPs/tabid/2509/Default.aspx (accessed on 8 June 2024).
- Tripodi, N. Environmental Fate and Effects of the Non-Persistent Pesticide, Chlorpyrifos-Methyl, and the Implications for Its Risk Assessment in Aquatic Ecosystems. University of Queensland. 2004. Available online: https://www.researchgate.net/profile/Neil-Tripodi/publication/273134509_Environmental_Fate_and_Effects_of_the_Non-persistent_Pesticide_Chlorpyrifos-methyl_and_the_Implications_for_Risk_Assessment_in_Aquatic_Ecosystems/links/54f8e4550cf28d6deca2c25b/Environmental-Fate-and-Effects-of-the-Non-persistent-Pesticide-Chlorpyrifos-methyl-and-the-Implications-for-Risk-Assessment-in-Aquatic-Ecosystems.pdf (accessed on 10 June 2024).
- Carriger, J.F.; Hoang, T.C.; Rand, G.M.; Gardinali, P.R.; Castro, J. Acute toxicity and effects analysis of endosulfan sulfate to freshwater fish species. Arch. Environ. Contam. Toxicol. 2011, 60, 281–289. [Google Scholar] [CrossRef]
- Allsopp, M.; Erry, B. POPs in Latin America; Department of Biological Sciences, University of Exeter, Prince of Wales Road: Exeter, UK, 2000; Available online: https://www.greenpeace.to/greenpeace/wp-content/uploads/2019/08/POPs-IN-LATIN-AMERICA_Allsopp-Erry_Oct-2000.pdf (accessed on 7 June 2024).
- Placencia, J.A.; Contreras, S. Organochlorine pesticides in surface waters from Reloncaví Fjord and the inner sea of Chiloé (~ 39.5°S–43°S), Chilean Patagonia. Mar. Pollut. Bull. 2018, 126, 389–395. [Google Scholar] [CrossRef]
- Souza, M.C.O.; Rocha, B.A.; Adeyemi, J.A.; Nadal, M.; Domingo, J.L.; Barbosa, F., Jr. Legacy and emerging pollutants in Latin America: A critical review of occurrence and levels in environmental and food samples. Sci. Total Environ. 2022, 848, 157774. [Google Scholar] [CrossRef]
- Brovini, E.M.; Quadra, G.R.; Paranaíba, J.R.; Carvalho, L.; de Oliveira Pereira, R.; de Aquino, S.F. Occurrence and environmental risk assessment of 22 pesticides in Brazilian freshwaters. Aquat. Toxicol. 2023, 260, 106566. [Google Scholar] [CrossRef] [PubMed]
- Castillo, L.E.; de la Cruz, E.; Ruepert, C. Ecotoxicology and pesticides in tropical aquatic ecosystems of Central America. Environ. Toxicol. Chem. Int. J. 1997, 16, 41–51. [Google Scholar] [CrossRef]
- Meyer, D.E. Presence of Pesticide Residues in Water, Sediment and Biological Samples Taken from Aquatic Environments in Honduras (No. IAEA-TECDOC–1116). 1999. Available online: https://inis.iaea.org/collection/NCLCollectionStore/_Public/30/045/30045334.pdf (accessed on 6 July 2024).
- Ruiz-Arias, M.A.; Medina-Díaz, I.M.; Bernal-Hernández, Y.Y.; Barrón-Vivanco, B.S.; González-Arias, C.A.; Romero-Bañuelos, C.A.; Verdín-Betancourt, F.A.; Herrera-Moreno, J.F.; Ponce-Vélez, G.; Gaspar-Ramírez, O.; et al. The situation of chlorpyrifos in Mexico: A case study in environmental samples and aquatic organisms. Environ. Geochem. Health 2023, 45, 6323–6351. [Google Scholar] [CrossRef] [PubMed]
- García-Nieto, E.; Juárez-Santacruz, L.; Ortiz-Ortiz, E.; Luna-Zendejas, H.S.; Frías-Márquez, D.M.; Muñoz-Nava, H.; Romo-Gómez, C. Ecotoxicological assessment of sediment from Texcalac River and agricultural soil of riverside area, in Tlaxcala, Mexico. Chem. Ecol. 2019, 35, 300–318. [Google Scholar] [CrossRef]
- Reichenberger, S.; Bach, M.; Skitschak, A.; Frede, H.G. Mitigation strategies to reduce pesticide inputs into ground-and surface water and their effectiveness; a review. Sci. Total Environ. 2007, 384, 1–35. Available online: https://www.sciencedirect.com/science/article/abs/pii/S004896970700513X (accessed on 16 July 2024). [CrossRef]
- Eyhorn, F.; Roner, T.; Specking, H. Reducing Pesticide Use and Risks-What Action Is Needed; Briefing paper; Helvetas, Swiss Intercooperation: Zurich, Switzerland, 2015. [Google Scholar] [CrossRef]
- OECD. Regulatory Governance in the Pesticide Sector in Mexico; OECD Publishing: Paris, France, 2021; Available online: https://www.oecd-ilibrary.org/governance/regulatory-governance-in-the-pesticide-sector-in-mexico_99adfd61-en (accessed on 16 July 2024).
Nr. | Pesticide | Latin America [68] | Chilean Patagonia [69] | Argentina [70] | Brazil [71] | Central America [72] | Honduras [73] | Southern Mexico [74] | Northern Mexico [14] | North-Western Mexico [13] | Mexico [74,75] |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | α-BHC | X | X | X | X | X | |||||
2 | β-BHC | X | X | ||||||||
3 | γ-BHC (Lindane) | X | X | X | X | X | X | X | X | ||
4 | γ-Chlordane | X | X | X | |||||||
5 | Hexachlorobenzene | X | |||||||||
6 | Heptachlor | X | X | X | X | X | X | ||||
7 | Aldrin | X | X | X | X | X | X | ||||
8 | α-Endosulfan | X | X | X | X | X | X | X | |||
9 | DDT, -4,4 | X | X | X | X | X | X | ||||
10 | Methoxychlor | X | X | ||||||||
11 | Chlorpyrifos-methyl | X | X | ||||||||
12 | Endosulfan sulfate | X | X | X | |||||||
13 | Dicofol | X |
Nr | Pesticide | Formula | Nr of Analyzed Samples | Nr of Positive Samples | Positive Samples (%) | Annex A * (Elimination) | Annex B * (Restriction) |
---|---|---|---|---|---|---|---|
1 | α-BHC | C6H6Cl6 | 213 | 68 | 31.92 | X | - |
2 | β-BHC | C6H6Cl6 | 213 | 34 | 15.96 | X | - |
3 | γ-BHC (Lindane) | C6H6Cl6 | 213 | 60 | 28.17 | X | - |
4 | γ-Chlordane | C10H6Cl8 | 213 | 7 | 3.29 | X | - |
5 | Hexachlorobenzene | C6Cl6 | 213 | 2 | 0.94 | X | - |
6 | Heptachlor | C10H5Cl7 | 213 | 100 | 46.95 | X | - |
7 | Aldrin | C12H8Cl6 | 213 | 79 | 37.09 | X | - |
8 | α-Endosulfan | C9H6Cl6O3S | 213 | 24 | 11.27 | X | - |
9 | DDT, -4,4 | (ClC6H4)2CHCCl3 | 213 | 2 | 0.94 | - | X |
10 | Methoxychlor | C16H15Cl3O2 | 213 | 1 | 0.47 | X | - |
11 | Chlorpyrifos-methyl | C7H7Cl3NO3PS | 213 | 43 | 20.19 | - | - |
12 | Endosulfan sulfate | C9H6Cl6O4S | 213 | 9 | 4.23 | - | - |
13 | Dicofol | C14H9Cl5O | 213 | 44 | 20.66 | X | - |
Cluster | α-BHC | β-BHC | γ-BHC (Lindane) | Heptachlor | Aldrin | α-Endosulfan | Chlorpyrifos-methyl | Dicofol |
---|---|---|---|---|---|---|---|---|
Cluster 1 | 28.15 | 5.06 | 21.86 | 79.19 | 53.82 | 14.58 | 102.63 | 2364.97 |
Cluster 2 | 44.45 | 39.65 | 27.25 | 24.03 | 80.27 | 3.08 | 149.09 | 781.71 |
Cluster 3 | 30.17 | 10.88 | 51.56 | 114.07 | 35.35 | 5.43 | 7.85 | 2897.01 |
Cluster 4 | 56.31 | 17.59 | 27.12 | 37.31 | 71.91 | 29.76 | 22.87 | 1944.62 |
Cluster 5 | 24.39 | 6.36 | 71.98 | 63.80 | 14.47 | 11.33 | 17.08 | 256.14 |
Entire Basin | 36.78 | 15.34 | 37.53 | 71.44 | 52.63 | 12.43 | 57.26 | 2006.13 |
α-BHC | β-BHC | γ-BHC (Lindane) | Heptachlor | Aldrin | α-Endosulfan | Chlorpyrifos-Methyl | Dicofol | |
---|---|---|---|---|---|---|---|---|
α-BHC | 1.000 | |||||||
β-BHC | 0.058 | 1.000 | ||||||
γ-BHC (Lindane) | 0.693 | 0.834 | 1.000 | |||||
Heptachlor | 0.076 | 0.447 | 0.451 | 1.000 | ||||
Aldrin | 0.253 | 0.453 | 0.520 | 0.567 | 1.000 | |||
α-Endosulfan | −0.298 | 0.959 | 0.088 | −1.000 | 0.450 | 1.000 | ||
Chlorpyrifos-methyl | 0.832 | 0.229 | 0.246 | 0.579 | 0.150 | 0.921 | 1.000 | |
Dicofol | 0.928 | 0.892 | 0.600 | 0.191 | 0.708 | 0.564 | 0.688 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Anda, J.; Shear, H.; Lugo-Melchor, O.Y.; Padilla-Tovar, L.E.; Bravo, S.D.; Olvera-Vargas, L.A. Use of the Pesticide Toxicity Index to Determine Potential Ecological Risk in the Santiago-Guadalajara River Basin, Mexico. Water 2024, 16, 3008. https://doi.org/10.3390/w16203008
de Anda J, Shear H, Lugo-Melchor OY, Padilla-Tovar LE, Bravo SD, Olvera-Vargas LA. Use of the Pesticide Toxicity Index to Determine Potential Ecological Risk in the Santiago-Guadalajara River Basin, Mexico. Water. 2024; 16(20):3008. https://doi.org/10.3390/w16203008
Chicago/Turabian Stylede Anda, José, Harvey Shear, Ofelia Yadira Lugo-Melchor, Luis Eduardo Padilla-Tovar, Sandra Daniela Bravo, and Luis Alberto Olvera-Vargas. 2024. "Use of the Pesticide Toxicity Index to Determine Potential Ecological Risk in the Santiago-Guadalajara River Basin, Mexico" Water 16, no. 20: 3008. https://doi.org/10.3390/w16203008
APA Stylede Anda, J., Shear, H., Lugo-Melchor, O. Y., Padilla-Tovar, L. E., Bravo, S. D., & Olvera-Vargas, L. A. (2024). Use of the Pesticide Toxicity Index to Determine Potential Ecological Risk in the Santiago-Guadalajara River Basin, Mexico. Water, 16(20), 3008. https://doi.org/10.3390/w16203008