Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (303)

Search Parameters:
Keywords = diffraction-limited imaging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2559 KB  
Article
Generation of an Electromagnetic Jet Using a PTFE-Loaded WR90 Waveguide: Design and Characterization
by Antoine Deubaibe, M. Podda Abouna, Mathis Granger, Bernard Bayard and Bruno Sauviac
Photonics 2025, 12(9), 895; https://doi.org/10.3390/photonics12090895 - 5 Sep 2025
Viewed by 140
Abstract
We present a compact dielectric lens integrated at the aperture of a WR90 rectangular waveguide, achieved using polytetrafluoroethylene (PTFE). This innovative configuration enables, for the first time in the X- and Ku-bands, the direct generation of a subwavelength electromagnetic jet from a guided [...] Read more.
We present a compact dielectric lens integrated at the aperture of a WR90 rectangular waveguide, achieved using polytetrafluoroethylene (PTFE). This innovative configuration enables, for the first time in the X- and Ku-bands, the direct generation of a subwavelength electromagnetic jet from a guided structure. The beam exhibits the hallmark features of an electromagnetic jet: strong near-field focusing, a subwavelength beam width surpassing the diffraction limit, and a quasi-planar wavefront sustained over a propagation distance of about 2λ. The lens design was systematically optimized, and its performance was assessed through full-wave finite element simulations and experimentally validated on a fabricated prototype. Excellent agreement between the simulation and measurement confirms the robustness of the approach. Beyond its simplicity and low cost, this solution achieves state-of-the-art focusing performance compared to free-space and guided-wave alternatives. It offers strong potential for applications in high-resolution imaging, precision sensing, and material characterization, particularly in opaque or highly lossy environments. Full article
Show Figures

Figure 1

11 pages, 720 KB  
Article
Super-Resolution Parameter Estimation Using Machine Learning-Assisted Spatial Mode Demultiplexing
by David R. Gozzard, John S. Wallis, Alex M. Frost, Joshua J. Collier, Nicolas Maron, Benjamin P. Dix-Matthews and Kevin Vinsen
Sensors 2025, 25(17), 5395; https://doi.org/10.3390/s25175395 - 1 Sep 2025
Viewed by 359
Abstract
We present the use of a light-weight machine learning (ML) model to estimate the separation and relative brightness of two incoherent light sources below the diffraction limit. We use a multi-planar light converter (MPLC) to implement spatial mode demultiplexing (SPADE) imaging. The ML [...] Read more.
We present the use of a light-weight machine learning (ML) model to estimate the separation and relative brightness of two incoherent light sources below the diffraction limit. We use a multi-planar light converter (MPLC) to implement spatial mode demultiplexing (SPADE) imaging. The ML model is trained, validated, and tested on data generated experimentally in the laboratory. The ML model accurately estimates the separation of the sources to up to two orders of magnitude below the diffraction limit when the sources are of comparable brightness, and provides accurate sub-diffraction separation resolution even when the sources differ in brightness by four orders of magnitude. The present results are limited by cross talk in the MPLC and support the potential use of ML-assisted SPADE for astronomical imaging below the diffraction limit. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

20 pages, 9209 KB  
Article
Weighted Sparse Image Quality Restoration Algorithm for Small-Pixel High-Resolution Remote Sensing Data
by Chenglong Yang, Chunyu Liu, Menghan Bai, Yingming Zhao, Yunhan Ma and Shuai Liu
Remote Sens. 2025, 17(17), 2979; https://doi.org/10.3390/rs17172979 - 27 Aug 2025
Viewed by 393
Abstract
The demand for high-spatial-resolution optical remote sensing applications is increasing, while conventional high-resolution optical payloads face limitations in widespread application due to their large size and high manufacturing costs. With the rapid development of image processing technology, we adopt a method combining small-pixel [...] Read more.
The demand for high-spatial-resolution optical remote sensing applications is increasing, while conventional high-resolution optical payloads face limitations in widespread application due to their large size and high manufacturing costs. With the rapid development of image processing technology, we adopt a method combining small-pixel detector sampling with image deblurring algorithms to obtain high-spatial-resolution remote sensing images. In this work, we use Zernike polynomials to simulate diffraction-blurred small-pixel images under various aberration modulations, ensuring the simulation data follow solid physical principles. Furthermore, we propose a new weighted sparse model ℓwe that combines the Welsch-weighted ℓ1-norm with ℓ0-norm constraints, and further applies ℓwe regularization to both gradient fidelity terms and image gradient terms to enhance fidelity constraints and improve latent structure preservation. Compared with other sparse models, our model produces results with fewer residual structures and stronger sparsity. Comprehensive evaluations on both simulated small-pixel remote sensing datasets and real-world remote sensing images demonstrate that the proposed weighted sparse image quality restoration algorithm achieves more desirable results with excellent robustness. Compared to other methods, the proposed approach improves PSNR by an average of 2.5% and SSIM by 2.2%, while reducing ER by 20.7%. This provides an effective technical solution for image quality restoration of small-pixel remote sensing data. Full article
Show Figures

Figure 1

13 pages, 9069 KB  
Article
Computational Theory and Experimental Research on Coherent Optical Imaging
by Junchang Li, Zhenbo Zhang, Yichen Li, Jinbin Gui and Qinghe Song
Appl. Sci. 2025, 15(17), 9257; https://doi.org/10.3390/app15179257 - 22 Aug 2025
Viewed by 329
Abstract
Since the advent of lasers, coherent optical imaging has found significant applications in optical precision measurement. Among these, digital holography is a key research area. In detection studies, accurately obtaining the amplitude and phase of the object being measured through digital holographic image [...] Read more.
Since the advent of lasers, coherent optical imaging has found significant applications in optical precision measurement. Among these, digital holography is a key research area. In detection studies, accurately obtaining the amplitude and phase of the object being measured through digital holographic image reconstruction is a critical research task. However, current coherent optical imaging formulas can only calculate the amplitude distribution of the image light field when the object size is smaller than one-quarter of the diameter of the optical system’s entrance pupil, making it difficult to meet the needs of applied research. This paper derives formulas that are not restricted by the size of the incident pupil and can calculate the amplitude and phase distributions of the image light field. Based on the mathematical analysis of the formulas, this paper introduces a technique for obtaining the amplitude and phase distribution of detected objects and provides experimental evidence. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

17 pages, 4223 KB  
Article
Space–Bandwidth Product Extension for Holographic Displays Through Cascaded Wavefront Modulation
by Shenao Zhang, Wenjia Li, Bo Dai, Qi Wang, Songlin Zhuang, Dawei Zhang and Chenliang Chang
Appl. Sci. 2025, 15(17), 9237; https://doi.org/10.3390/app15179237 - 22 Aug 2025
Viewed by 252
Abstract
The immersive experience of holographic displays is fundamentally limited by their space–bandwidth product (SBP), which imposes an inherent trade-off between the field of view (FOV) and eyebox size. This paper proposes a method to extend the SBP by employing cascaded modulation with a [...] Read more.
The immersive experience of holographic displays is fundamentally limited by their space–bandwidth product (SBP), which imposes an inherent trade-off between the field of view (FOV) and eyebox size. This paper proposes a method to extend the SBP by employing cascaded modulation with a dynamic spatial light modulator (SLM) and a passive high-resolution binary random phase mask (BRPM). We find that the key to unlocking this extension of SBP lies in a sophisticated algorithmic optimization, grounded in a physically accurate model of the system. We identify and correct the Nyquist undersampling problem caused by high-frequency scattering in standard diffraction models. Based on this physically accurate model, we employ a gradient descent optimization framework to achieve efficient, end-to-end solving for complex light fields. Simulation and experimental results demonstrate that our method achieves an approximately 16-fold SBP extension (4-fold FOV) while delivering significantly superior reconstructed image quality compared to the traditional Gerchberg–Saxton (GS) algorithm. Furthermore, this study quantitatively reveals the system’s extreme sensitivity to sub-pixel level alignment accuracy, providing critical guidance for the engineering and implementation of our proposed method. Full article
Show Figures

Figure 1

12 pages, 3310 KB  
Article
Resolution Enhancement in Extreme Ultraviolet Ptychography Using a Refined Illumination Probe and Small-Etendue Source
by Seungchan Moon, Junho Hong, Taeho Lee and Jinho Ahn
Photonics 2025, 12(8), 831; https://doi.org/10.3390/photonics12080831 - 21 Aug 2025
Viewed by 570
Abstract
Extreme ultraviolet (EUV) ptychography is a promising actinic mask metrology technique capable of providing aberration-free images with subwavelength resolution. However, its performance is fundamentally constrained by the strong absorption of EUV light and the limited detection of high-frequency diffraction signals, which are critical [...] Read more.
Extreme ultraviolet (EUV) ptychography is a promising actinic mask metrology technique capable of providing aberration-free images with subwavelength resolution. However, its performance is fundamentally constrained by the strong absorption of EUV light and the limited detection of high-frequency diffraction signals, which are critical for resolving fine structural details. In this study, we demonstrate significant improvements in EUV ptychographic imaging by implementing an upgraded EUV source system with reduced source etendue and applying an illumination aperture to spatially refine the probe. This approach effectively enhances the photon flux and spatial coherence, resulting in an increased signal-to-noise ratio of the high-frequency diffraction components and an extended maximum detected spatial frequency. Simulations and experimental measurements using a Siemens star pattern confirmed that the refined probe enabled more robust phase retrieval and higher-resolution image reconstruction. Consequently, we achieved a half-pitch resolution of 46 nm, corresponding to a critical dimension of 11.5 nm at the wafer plane. These findings demonstrate the enhanced capability of EUV ptychography as a high-fidelity actinic metrology tool for next-generation EUV mask characterization. Full article
Show Figures

Figure 1

35 pages, 47811 KB  
Article
Single-Exposure HDR Image Translation via Synthetic Wide-Band Characteristics Reflected Image Training
by Seung Hwan Lee and Sung Hak Lee
Mathematics 2025, 13(16), 2644; https://doi.org/10.3390/math13162644 - 17 Aug 2025
Viewed by 480
Abstract
High dynamic range (HDR) tone mapping techniques have been widely studied to effectively represent the broad dynamic range of real-world scenes. However, generating an HDR image from multiple low dynamic range (LDR) images captured at different exposure levels can introduce ghosting artifacts in [...] Read more.
High dynamic range (HDR) tone mapping techniques have been widely studied to effectively represent the broad dynamic range of real-world scenes. However, generating an HDR image from multiple low dynamic range (LDR) images captured at different exposure levels can introduce ghosting artifacts in dynamic scenes. Moreover, methods that estimate HDR information from a single LDR image often suffer from inherent accuracy limitations. To overcome these limitations, this study proposes a novel image processing technique that extends the dynamic range of a single LDR image. This technique achieves the goal through leveraging a Convolutional Neural Network (CNN) to generate a synthetic Near-Infrared (NIR) image—one that emulates the characteristic of real NIR imagery being less susceptible to diffraction, thus preserving sharper outlines and clearer details. This synthetic NIR image is then fused with the original LDR image, which contains color information, to create a tone-distributed HDR-like image. The synthetic NIR image is produced using a lightweight U-Net-based autoencoder, where the encoder extracts features from the LDR image, and the decoder synthesizes a synthetic NIR image that replicates the characteristics of a real NIR image. To enhance feature fusion, a cardinality structure inspired by Extended-Efficient Layer Aggregation Networks (E-ELAN) in You Only Look Once Version 7 (YOLOv7) and a modified convolutional block attention module (CBAM) incorporating a difference map are applied. The loss function integrates a discriminator to enforce adversarial loss, while VGG, structural similarity index, and mean squared error losses contribute to overall image fidelity. Additionally, non-reference image quality assessment losses based on BRISQUE and NIQE are incorporated to further refine image quality. Experimental results demonstrate that the proposed method outperforms conventional HDR techniques in both qualitative and quantitative evaluations. Full article
Show Figures

Figure 1

45 pages, 5794 KB  
Review
Nanophotonic Materials and Devices: Recent Advances and Emerging Applications
by Yuan-Fong Chou Chau
Micromachines 2025, 16(8), 933; https://doi.org/10.3390/mi16080933 - 13 Aug 2025
Viewed by 975
Abstract
Nanophotonics, the study of light–matter interactions at the nanometer scale, has emerged as a transformative field that bridges photonics and nanotechnology. Using engineered nanomaterials—including plasmonic metals, high-index dielectrics, two-dimensional (2D) materials, and hybrid systems—nanophotonics enables light manipulation beyond the diffraction limit, unlocking novel [...] Read more.
Nanophotonics, the study of light–matter interactions at the nanometer scale, has emerged as a transformative field that bridges photonics and nanotechnology. Using engineered nanomaterials—including plasmonic metals, high-index dielectrics, two-dimensional (2D) materials, and hybrid systems—nanophotonics enables light manipulation beyond the diffraction limit, unlocking novel applications in sensing, imaging, and quantum technologies. This review provides a comprehensive overview of recent advances (post-2020) in nanophotonic materials, fabrication methods, and their cutting-edge applications. We first discuss the fundamental principles governing nanophotonic phenomena, such as localized surface plasmon resonances (LSPRs), Mie resonances, and exciton–polariton coupling, highlighting their roles in enhancing light–matter interactions. Next, we examine state-of-the-art fabrication techniques, including top-down (e.g., electron beam lithography and nanoimprinting) and bottom-up (e.g., chemical vapor deposition and colloidal synthesis) approaches, as well as hybrid strategies that combine scalability with nanoscale precision. We then explore emerging applications across diverse domains: quantum photonics (single-photon sources, entangled light generation), biosensing (ultrasensitive detection of viruses and biomarkers), nonlinear optics (high-harmonic generation and wave mixing), and integrated photonic circuits. Special attention is given to active and tunable nanophotonic systems, such as reconfigurable metasurfaces and hybrid graphene–dielectric devices. Despite rapid progress, challenges remain, including optical losses, thermal management, and scalable integration. We conclude by outlining future directions, such as machine learning-assisted design, programmable photonics, and quantum-enhanced sensing, and offering insights into the next generation of nanophotonic technologies. This review serves as a timely resource for researchers in photonics, materials science, and nanotechnology. Full article
Show Figures

Figure 1

14 pages, 1971 KB  
Article
High-Density Arrayed Spectrometer with Microlens Array Grating for Multi-Channel Parallel Spectral Analysis
by Fangyuan Zhao, Zhigang Feng and Shuonan Shan
Sensors 2025, 25(15), 4833; https://doi.org/10.3390/s25154833 - 6 Aug 2025
Viewed by 509
Abstract
To enable multi-channel parallel spectral analysis in array-based devices such as micro-light-emitting diodes (Micro-LEDs) and line-scan spectral confocal systems, the development of compact array spectrometers has become increasingly important. In this work, a novel spectrometer architecture based on a microlens array grating (MLAG) [...] Read more.
To enable multi-channel parallel spectral analysis in array-based devices such as micro-light-emitting diodes (Micro-LEDs) and line-scan spectral confocal systems, the development of compact array spectrometers has become increasingly important. In this work, a novel spectrometer architecture based on a microlens array grating (MLAG) is proposed, which addresses the major limitations of conventional spectrometers, including limited parallel detection capability, bulky structures, and insufficient spatial resolution. By integrating dispersion and focusing within a monolithic device, the system enables simultaneous acquisition across more than 2000 parallel channels within a 10 mm × 10 mm unit consisting of an f = 4 mm microlens and a 600 lines/mm blazed grating. Optimized microlens and aperture alignment allows for flexible control of the divergence angle of the incident light, and the system theoretically achieves nanometer-scale spectral resolution across a 380–780 nm wavelength range, with inter-channel measurement deviation below 1.25%. Experimental results demonstrate that this spectrometer system can theoretically support up to 2070 independently addressable subunits. At a wavelength of 638 nm, the coefficient of variation (CV) of spot spacing among array elements is as low as 1.11%, indicating high uniformity. The spectral repeatability precision is better than 1.0 nm, and after image enhancement, the standard deviation of the diffracted light shift is reduced to just 0.26 nm. The practical spectral resolution achieved is as fine as 3.0 nm. This platform supports wafer-level spectral screening of high-density Micro-LEDs, offering a practical hardware solution for high-precision industrial inline sorting, such as Micro-LED defect inspection. Full article
Show Figures

Figure 1

31 pages, 15992 KB  
Article
Multi-Temporal Mineral Mapping in Two Torrential Basins Using PRISMA Hyperspectral Imagery
by Inés Pereira, Eduardo García-Meléndez, Montserrat Ferrer-Julià, Harald van der Werff, Pablo Valenzuela and Juncal A. Cruz
Remote Sens. 2025, 17(15), 2582; https://doi.org/10.3390/rs17152582 - 24 Jul 2025
Viewed by 664
Abstract
The Sierra Minera de Cartagena-La Unión, located in southeast of the Iberian Peninsula, has been significantly impacted by historical mining activities, which resulted in environmental degradation, including acid mine drainage (AMD) and heavy metal contamination. This study evaluates the potential of PRISMA hyperspectral [...] Read more.
The Sierra Minera de Cartagena-La Unión, located in southeast of the Iberian Peninsula, has been significantly impacted by historical mining activities, which resulted in environmental degradation, including acid mine drainage (AMD) and heavy metal contamination. This study evaluates the potential of PRISMA hyperspectral imagery for multi-temporal mapping of AMD-related minerals in two mining-affected drainage basins: Beal and Gorguel. Key minerals indicative of AMD—iron oxides and hydroxides (hematite, jarosite, goethite), gypsum, and aluminium-bearing clays—were identified and mapped using band ratios applied to PRISMA data acquired over five dates between 2020 and 2024. Additionally, Sentinel-2 data were incorporated in the analysis due to their higher temporal resolution to complement iron oxide and hydroxide evolution from PRISMA. Results reveal distinct temporal and spatial patterns in mineral distribution, influenced by seasonal precipitation and climatic factors. Jarosite was predominant after torrential precipitation events, reflecting recent AMD deposition, while gypsum exhibited seasonal variability linked to evaporation cycles. Goethite and hematite increased in drier conditions, indicating transitions in oxidation states. Validation using X-ray diffraction (XRD), laboratory spectral curves, and a larger time-series of Sentinel-2 imagery demonstrated strong correlations, confirming PRISMA’s effectiveness for iron oxides and hydroxides and gypsum identification and monitoring. However, challenges such as noise, striping effects, and limited image availability affected the accuracy of aluminium-bearing clay mapping and limited long-term trend analysis. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Graphical abstract

34 pages, 3259 KB  
Article
Controlled Detection for Micro- and Nanoplastic Spectroscopy/Photometry Integration Using Infrared Radiation
by Samuel Nlend, Sune Von Solms and Johann Meyer
Optics 2025, 6(3), 30; https://doi.org/10.3390/opt6030030 - 14 Jul 2025
Viewed by 322
Abstract
This paper suggests a perspective-controlled solution for an integrated Infrared micro-/nanoplastic spectroscopy/photometry-based detection, from the diffraction up to the geometry etendue, with the aim of yielding a universal spectrometer/photometer. Spectrophotometry, unlike spectroscopy that shows the interaction between matter and radiated energy, is a [...] Read more.
This paper suggests a perspective-controlled solution for an integrated Infrared micro-/nanoplastic spectroscopy/photometry-based detection, from the diffraction up to the geometry etendue, with the aim of yielding a universal spectrometer/photometer. Spectrophotometry, unlike spectroscopy that shows the interaction between matter and radiated energy, is a specific form of photometry that measures light parameters in a particular range as a function of wavelength. The solution, meant for diffraction grating and geometry etendue of the display unit, is provided by a controller that tunes the grating pitch to accommodate any emitted/transmitted wavelength from a sample made of microplastics, their degraded forms and their potential retention, and ensures that all the diffracted wavelengths are concentrated on the required etendue. The purpose is not only to go below the current Infrared limit of 20μm microplastic size, or to suggest an Infrared spectrophotometry geometry capable of detecting micro- and nanoplastics in the range of (1nm20μm) for integrated nano- and micro-scales, but also to transform most of the pivotal components to be directly wavelength-independent. The related controlled geometry solutions, from the controlled grating slit-width up to the controlled display unit etendue functions, are suggested for a wider generic range integration. The results from image-size characterization show that the following charge-coupled devices, nanopixel CCDs, and/or micropixel CCDs of less than 100nm are required on the display unit, justifying the Infrared micro- and nanoplastic-integrated spectrophotometry, and the investigation conducted with other electromagnetic spectrum ranges that suggests a possible universal spectrometer/photometer. Full article
Show Figures

Figure 1

16 pages, 2510 KB  
Article
Aberration Theoretical Principle of Broadband Multilayer Refractive–Diffractive Optical Elements by Polychromatic Integral Aberration Method
by Ying Yang, Chongxing Liu, Wanting Yang, Yumin Wei, Mengyuan Liu, Bo Dong and Changxi Xue
Photonics 2025, 12(7), 690; https://doi.org/10.3390/photonics12070690 - 8 Jul 2025
Viewed by 267
Abstract
Multilayer diffractive optical elements (MLDOEs), which have broadband imaging performance, are widely used in lightweight and compact optical systems on the surface of the refractive lenses forming refractive–diffractive lenses. However, current research is generally limited to its broadband diffraction efficiency distribution and rarely [...] Read more.
Multilayer diffractive optical elements (MLDOEs), which have broadband imaging performance, are widely used in lightweight and compact optical systems on the surface of the refractive lenses forming refractive–diffractive lenses. However, current research is generally limited to its broadband diffraction efficiency distribution and rarely involves the study of the imaging quality of multilayer refractive–diffractive optical elements in the broadband. The lack of research on its aberration principle and the absence of methods on how to achieve average aberration control in the broadband have led to a decline in imaging quality when it is applied to the optical system. Therefore, in this paper, we have derived in detail the aberration theory of multilayer refractive–diffractive optical elements and proposed the polychromatic integral aberration (PIA) method to evaluate the aberration characteristics of multilayer diffraction optical elements in the whole broadband. First, we start with the aberrations of diffractive optical elements in the air, and then derive the overall aberrations applied to multilayer refractive–diffractive optical elements. Then, based on the performance of the average aberrations throughout the entire broadband, a broadband aberration evaluation method named PIA is proposed. Finally, the design of traditional multilayer diffraction optical elements, the design of refractive–diffractive multilayer optical elements based on the derivation, and the design of multilayer refraction diffraction optical elements under the PIA method are compared. The results show that the multilayer refractive–diffractive optical element designed by PIA can effectively achieve aberration control and balanced aberration performance in the whole broadband. This research provides a practical and feasible path for exploring the imaging quality of broadband multilayer refractive–diffractive optical elements. Full article
Show Figures

Figure 1

10 pages, 4530 KB  
Article
A Switchable-Mode Full-Color Imaging System with Wide Field of View for All Time Periods
by Shubin Liu, Linwei Guo, Kai Hu and Chunbo Zou
Photonics 2025, 12(7), 689; https://doi.org/10.3390/photonics12070689 - 8 Jul 2025
Viewed by 350
Abstract
Continuous, single-mode imaging systems fail to deliver true-color high-resolution imagery around the clock under extreme lighting. High-fidelity color and signal-to-noise ratio imaging across the full day–night cycle remains a critical challenge for surveillance, navigation, and environmental monitoring. We present a competitive dual-mode imaging [...] Read more.
Continuous, single-mode imaging systems fail to deliver true-color high-resolution imagery around the clock under extreme lighting. High-fidelity color and signal-to-noise ratio imaging across the full day–night cycle remains a critical challenge for surveillance, navigation, and environmental monitoring. We present a competitive dual-mode imaging platform that integrates a 155 mm f/6 telephoto daytime camera with a 52 mm f/1.5 large-aperture low-light full-color night-vision camera into a single, co-registered 26 cm housing. By employing a sixth-order aspheric surface to reduce the element count and weight, our system achieves near-diffraction-limited MTF (>0.5 at 90.9 lp/mm) in daylight and sub-pixel RMS blur < 7 μm at 38.5 lp/mm under low-light conditions. Field validation at 0.0009 lux confirms high-SNR, full-color capture from bright noon to the darkest nights, enabling seamless switching between long-range, high-resolution surveillance and sensitive, low-light color imaging. This compact, robust design promises to elevate applications in security monitoring, autonomous navigation, wildlife observation, and disaster response by providing uninterrupted, color-faithful vision in all lighting regimes. Full article
(This article belongs to the Special Issue Research on Optical Materials and Components for 3D Displays)
Show Figures

Figure 1

10 pages, 1891 KB  
Article
Alternative Methods to Enhance the Axial Resolution of Total Internal Reflection Fluorescence–Structured Illumination Microscopy
by Xiu Zheng, Xiaomian Cai, Wenjie Liu, Youhua Chen and Cuifang Kuang
Photonics 2025, 12(7), 652; https://doi.org/10.3390/photonics12070652 - 27 Jun 2025
Viewed by 413
Abstract
Total internal reflection fluorescence–structured illumination microscopy (TIRF-SIM) can enhance the lateral resolution of fluorescence microscopy to twice the diffraction limit, enabling subtler observations of activity in subcellular life. However, the lack of an axial resolution makes it difficult to resolve three-dimensional (3D) subcellular [...] Read more.
Total internal reflection fluorescence–structured illumination microscopy (TIRF-SIM) can enhance the lateral resolution of fluorescence microscopy to twice the diffraction limit, enabling subtler observations of activity in subcellular life. However, the lack of an axial resolution makes it difficult to resolve three-dimensional (3D) subcellular structures. In this paper, we present an alternative TIRF-SIM axial resolution enhancement method by exploiting quantitative information regarding the distance between fluorophores and the surface within the evanescent field. Combining the lateral super-resolution information of TIRF-SIM with reconstructed axial information, a 3D super-resolution image with a 25 nm axial resolution is achieved without attaching special optical components or high-power lasers. The reconstruction results of cell samples demonstrate that the axial resolution enhancement method for TIRF-SIM can effectively resolve the axial depth of densely structured regions. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

16 pages, 2167 KB  
Article
Pushing Optical Resolution to the Few-Nanometer Scale via dSTORM Imaging of Expanded Specimen–Gel Composites
by Jimmy Ching-Cheng Hsu and T. Tony Yang
Gels 2025, 11(7), 491; https://doi.org/10.3390/gels11070491 - 25 Jun 2025
Viewed by 602
Abstract
Direct stochastic optical reconstruction microscopy (dSTORM) circumvents the diffraction limit of light, emerging as a powerful superresolution technique for visualizing subcellular structures with a nanoscale resolution of 10–20 nm. Yet achieving ultrastructural resolution using dSTORM alone remains challenging, despite its advantage of requiring [...] Read more.
Direct stochastic optical reconstruction microscopy (dSTORM) circumvents the diffraction limit of light, emerging as a powerful superresolution technique for visualizing subcellular structures with a nanoscale resolution of 10–20 nm. Yet achieving ultrastructural resolution using dSTORM alone remains challenging, despite its advantage of requiring only minimal modifications to the imaging setup and sample preparation compared to conventional fluorescence microscopy. A recent advancement that integrates expansion microscopy (ExM), which embeds specimens in a swellable polymer gel, with dSTORM holds promise for attaining imaging resolutions below 10 nm. The combined resolution, however, is governed by the expansion factor of samples, and prior studies have primarily focused on integrations involving approximately 4-fold gel expansion, as dSTORM imaging of high-fold-expanded specimens is still technically demanding. Here, we propose a pragmatic expansion strategy—post-labeling ten-fold robust expansion microscopy (plTREx)—and outline a workflow to facilitate its compatibility with dSTORM, collectively termed plTREx-dSTORM. Specifically, this workflow enhances the mechanical stability of the expansion hydrogel and improves fluorescence signal density across both widefield and dSTORM imaging platforms. Furthermore, we optimize the re-embedding protocol to integrate hydrogel expansion with dSTORM while preventing gel shrinkage. Together, plTREx-dSTORM enables highly refined imaging capable of ultrastructural interpretation of cellular proteins, effectively bridging the resolution gap between electron microscopy and optical microscopy. Full article
(This article belongs to the Special Issue Recent Advances in Protein Gels)
Show Figures

Figure 1

Back to TopTop