Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,156)

Search Parameters:
Keywords = digital terrain model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4516 KB  
Article
Accurate Extraction Method for Continental Margin FOS Line Considering Terrain Continuity
by Dong Wang, Jian Dong, Zhiqiang Zhang, Tian Xie, Xiaodong Ma and Tianyue Wang
J. Mar. Sci. Eng. 2025, 13(9), 1744; https://doi.org/10.3390/jmse13091744 - 10 Sep 2025
Abstract
This paper addresses the limitations and low efficiency of current methods for precise identification of continental margin break points in the delimitation of the outer continental shelf. From a three-dimensional perspective, it proposes a novel method for extracting the foot-of-slope (FOS) line of [...] Read more.
This paper addresses the limitations and low efficiency of current methods for precise identification of continental margin break points in the delimitation of the outer continental shelf. From a three-dimensional perspective, it proposes a novel method for extracting the foot-of-slope (FOS) line of the continental margin that considers terrain continuity. First, the algorithm uses the rolling ball transform to classify the strength of the attributes of negative topographic feature lines of the seafloor. Then, it conducts experiments on two sets of negative topographic feature lines with strong and weak attributes. By calculating the proportion of the intersection of weak attribute lines with strong ones, it establishes a hierarchical pattern of importance for these lines. Subsequently, the algorithm integrates a multi-factor screening process for the continental margin FOS line. Finally, it achieves accurate and efficient extraction of the FOS line while preserving terrain continuity. The method’s effectiveness is verified through visual interpretation, comparison, and efficiency experiments in a real digital depth model. The results indicate that the algorithm can accurately extract the FOS line, effectively distinguish the continental margin, and maintain high efficiency. Full article
(This article belongs to the Special Issue Data-Driven Methods for Marine Structures, Second Edition)
Show Figures

Figure 1

22 pages, 15219 KB  
Article
Integrating UAS Remote Sensing and Edge Detection for Accurate Coal Stockpile Volume Estimation
by Sandeep Dhakal, Ashish Manandhar, Ajay Shah and Sami Khanal
Remote Sens. 2025, 17(18), 3136; https://doi.org/10.3390/rs17183136 - 10 Sep 2025
Abstract
Accurate stockpile volume estimation is essential for industries that manage bulk materials across various stages of production. Conventional ground-based methods such as walking wheels, total stations, Global Navigation Satellite Systems (GNSSs), and Terrestrial Laser Scanners (TLSs) have been widely used, but often involve [...] Read more.
Accurate stockpile volume estimation is essential for industries that manage bulk materials across various stages of production. Conventional ground-based methods such as walking wheels, total stations, Global Navigation Satellite Systems (GNSSs), and Terrestrial Laser Scanners (TLSs) have been widely used, but often involve significant safety risks, particularly when accessing hard-to-reach or hazardous areas. Unmanned Aerial Systems (UASs) provide a safer and more efficient alternative for surveying irregularly shaped stockpiles. This study evaluates UAS-based methods for estimating the volume of coal stockpiles at a storage facility near Cadiz, Ohio. Two sensor platforms were deployed: a Freefly Alta X quadcopter equipped with a Real-Time Kinematic (RTK) Light Detection and Ranging (LiDAR, active sensor) and a WingtraOne UAS with Post-Processed Kinematic (PPK) multispectral imaging (optical, passive sensor). Three approaches were compared: (1) LiDAR; (2) Structure-from-Motion (SfM) photogrammetry with a Digital Surface Model (DSM) and Digital Terrain Model (DTM) (SfM–DTM); and (3) an SfM-derived DSM combined with a kriging-interpolated DTM (SfM–intDTM). An automated boundary detection workflow was developed, integrating slope thresholding, Near-Infrared (NIR) spectral filtering, and Canny edge detection. Volume estimates from SfM–DTM and SfM–intDTM closely matched LiDAR-based reference estimates, with Root Mean Square Error (RMSE) values of 147.51 m3 and 146.18 m3, respectively. The SfM–intDTM approach achieved a Mean Absolute Percentage Error (MAPE) of ~2%, indicating strong agreement with LiDAR and improved accuracy compared to prior studies. A sensitivity analysis further highlighted the role of spatial resolution in volume estimation. While RMSE values remained consistent (141–162 m3) and the MAPE below 2.5% for resolutions between 0.06 m and 5 m, accuracy declined at coarser resolutions, with the MAPE rising to 11.76% at 10 m. This emphasizes the need to balance the resolution with the study objectives, geographic extent, and computational costs when selecting elevation data for volume estimation. Overall, UAS-based SfM photogrammetry combined with interpolated DTMs and automated boundary extraction offers a scalable, cost-effective, and accurate approach for stockpile volume estimation. The methodology is well-suited for both the high-precision monitoring of individual stockpiles and broader regional-scale assessments and can be readily adapted to other domains such as quarrying, agricultural storage, and forestry operations. Full article
Show Figures

Figure 1

21 pages, 11683 KB  
Article
A Generative Adversarial Network for Pixel-Scale Lunar DEM Generation from Single High-Resolution Image and Low-Resolution DEM Based on Terrain Self-Similarity Constraint
by Tianhao Chen, Yexin Wang, Jing Nan, Chenxu Zhao, Biao Wang, Bin Xie, Wai-Chung Liu, Kaichang Di, Bin Liu and Shaohua Chen
Remote Sens. 2025, 17(17), 3097; https://doi.org/10.3390/rs17173097 - 5 Sep 2025
Viewed by 428
Abstract
Lunar digital elevation models (DEMs) are a fundamental data source for lunar research and exploration. However, high-resolution DEM products for the Moon are only available in some local areas, which makes it difficult to meet the needs of scientific research and missions. To [...] Read more.
Lunar digital elevation models (DEMs) are a fundamental data source for lunar research and exploration. However, high-resolution DEM products for the Moon are only available in some local areas, which makes it difficult to meet the needs of scientific research and missions. To this end, we have previously developed a deep learning-based method (LDEMGAN1.0) for single-image lunar DEM reconstruction. To address issues such as loss of detail in LDEMGAN1.0, this study leverages the inherent structural self-similarity of different DEM data from the same lunar terrain and proposes an improved version, named LDEMGAN2.0. During the training process, the model computes the self-similarity graph (SSG) between the outputs of the LDEMGAN2.0 generator and the ground truth, and incorporates the self-similarity loss (SSL) constraint into the network generator loss to guide DEM reconstruction. This improves the network’s capacity to capture both local and global terrain structures. Using the LROC NAC DTM product (2 m/pixel) as the ground truth, experiments were conducted in the Apollo 11 landing area. The proposed LDEMGAN2.0 achieved mean absolute error (MAE) of 1.49 m, root mean square error (RMSE) of 2.01 m, and structural similarity index measure (SSIM) of 0.86, which is 46.0%, 33.4%, and 11.6% higher than that of LDEMGAN1.0. Both qualitative and quantitative evaluations demonstrate that LDEMGAN2.0 enhances detail recovery and reduces reconstruction artifacts. Full article
(This article belongs to the Special Issue Planetary Geologic Mapping and Remote Sensing (Second Edition))
Show Figures

Figure 1

20 pages, 4665 KB  
Article
Robust Bathymetric Mapping in Shallow Waters: A Digital Surface Model-Integrated Machine Learning Approach Using UAV-Based Multispectral Imagery
by Mandi Zhou, Ai Chin Lee, Ali Eimran Alip, Huong Trinh Dieu, Yi Lin Leong and Seng Keat Ooi
Remote Sens. 2025, 17(17), 3066; https://doi.org/10.3390/rs17173066 - 3 Sep 2025
Viewed by 597
Abstract
The accurate monitoring of short-term bathymetric changes in shallow waters is essential for effective coastal management and planning. Machine Learning (ML) applied to Unmanned Aerial Vehicle (UAV)-based multispectral imagery offers a rapid and cost-effective solution for bathymetric surveys. However, models based solely on [...] Read more.
The accurate monitoring of short-term bathymetric changes in shallow waters is essential for effective coastal management and planning. Machine Learning (ML) applied to Unmanned Aerial Vehicle (UAV)-based multispectral imagery offers a rapid and cost-effective solution for bathymetric surveys. However, models based solely on multispectral imagery are inherently limited by confounding factors such as shadow effects, poor water quality, and complex seafloor textures, which obscure the spectral–depth relationship, particularly in heterogeneous coastal environments. To address these issues, we developed a hybrid bathymetric inversion model that integrates digital surface model (DSM) data—providing high-resolution topographic information—with ML applied to UAV-based multispectral imagery. The model training was supported by multibeam sonar measurements collected from an Unmanned Surface Vehicle (USV), ensuring high accuracy and adaptability to diverse underwater terrains. The study area, located around Lazarus Island, Singapore, encompasses a sandy beach slope transitioning into seagrass meadows, coral reef communities, and a fine-sediment seabed. Incorporating DSM-derived topographic information substantially improved prediction accuracy and correlation, particularly in complex environments. Compared with linear and bio-optical models, the proposed approach achieved accuracy improvements exceeding 20% in shallow-water regions, with performance reaching an R2 > 0.93. The results highlighted the effectiveness of DSM integration in disentangling spectral ambiguities caused by environmental variability and improving bathymetric prediction accuracy. By combining UAV-based remote sensing with the ML model, this study presents a scalable and high-precision approach for bathymetric mapping in complex shallow-water environments, thereby enhancing the reliability of UAV-based surveys and supporting the broader application of ML in coastal monitoring and management. Full article
Show Figures

Figure 1

22 pages, 2438 KB  
Article
Assessment of Soil Microplastics and Their Relation to Soil and Terrain Attributes Under Different Land Uses
by John Jairo Arévalo-Hernández, Eduardo Medeiros Severo, Angela Dayana Barrera de Brito, Diego Tassinari and Marx Leandro Naves Silva
AgriEngineering 2025, 7(9), 281; https://doi.org/10.3390/agriengineering7090281 - 31 Aug 2025
Viewed by 448
Abstract
The assessment of microplastics (MPs) in terrestrial ecosystems has garnered increasing global attention due to their accumulation and migration in soils, which may have potential impacts on soil health, biodiversity, and agricultural productivity. However, research on their distribution and interactions in soil remains [...] Read more.
The assessment of microplastics (MPs) in terrestrial ecosystems has garnered increasing global attention due to their accumulation and migration in soils, which may have potential impacts on soil health, biodiversity, and agricultural productivity. However, research on their distribution and interactions in soil remains limited, especially in tropical regions. This study aimed to characterize MPs extracted from tropical soil samples and relate their abundance to soil and terrain attributes under different land uses (forest, grassland, and agriculture). Soil samples were collected from an experimental farm in Lavras, Minas Gerais, Southeastern Brazil, to determine soil physical and chemical attributes and MP abundance in a micro-watershed. These locations were also used to obtain terrain attributes from a digital elevation model and the normalized difference vegetation index (NDVI). The majority of microplastics found in all samples were identified as polypropylene (PP), polyethylene (PE), polyethylene terephthalate (PET), and vinyl polychloride (PVC). The spatial distribution of MP was rather heterogeneous, with average abundances of 3826, 2553, and 3406 pieces kg−1 under forest, grassland, and agriculture, respectively. MP abundance was positively related to macroporosity and sand content and negatively related to clay content and most chemical attributes. Regarding terrain attributes, MP abundance was negatively correlated with plan curvature, convergence index, and vertical distance to channel network, and positively related to topographic wetness index. These findings indicate that continuous water fluxes at both the landscape and soil surface scales play a key role, suggesting a tendency for higher MP accumulation in lower-lying areas and soils with greater porosity. These conditions promote MP transport and accumulation through surface runoff and facilitate their entry into the soil. Full article
(This article belongs to the Section Sustainable Bioresource and Bioprocess Engineering)
Show Figures

Graphical abstract

16 pages, 5156 KB  
Article
Development of a GIS-Based Methodological Framework for Regional Forest Planning: A Case Study in the Bosco Della Ficuzza Nature Reserve (Sicily, Italy)
by Santo Orlando, Pietro Catania, Massimo Vincenzo Ferro, Carlo Greco, Giuseppe Modica, Michele Massimo Mammano and Mariangela Vallone
Land 2025, 14(9), 1744; https://doi.org/10.3390/land14091744 - 28 Aug 2025
Viewed by 420
Abstract
Effective forest planning in Mediterranean environments requires tools capable of managing ecological complexity, socio-economic pressures, and fragmented governance. This study develops and applies a GIS- and GNSS-based methodological framework for regional forest planning, tested in the “Bosco della Ficuzza, Rocca Busambra, Bosco [...] Read more.
Effective forest planning in Mediterranean environments requires tools capable of managing ecological complexity, socio-economic pressures, and fragmented governance. This study develops and applies a GIS- and GNSS-based methodological framework for regional forest planning, tested in the “Bosco della Ficuzza, Rocca Busambra, Bosco del Cappelliere, Gorgo del Drago” Regional Nature Reserve (western Sicily, Italy). The main objective is to create a multi-layered Territorial Information System (TIS) that integrates high-resolution cartographic data, a Digital Terrain Model (DTM), and GNSS-based field surveys to support adaptive, participatory, and replicable forest management. The methodology combines the following: (i) DTM generation using Kriging interpolation to model slope and aspect with ±1.2 m accuracy; (ii) road infrastructure mapping and classification, adapted from national and regional forestry survey protocols; (iii) spatial analysis of fire-risk zones and accessibility, based on slope, exposure, and road pavement conditions; (iv) the integration of demographic and land use data to assess human–forest interactions. The resulting TIS enables complex spatial queries, infrastructure prioritization, and dynamic scenario modeling. Results demonstrate that the framework overcomes the limitations of many existing GIS-based systems—fragmentation, static orientation, and limited interoperability—by ensuring continuous data integration and adaptability to evolving ecological and governance conditions. Applied to an 8500 ha Mediterranean biodiversity hotspot, the model enhances road maintenance planning, fire-risk mitigation, and stakeholder engagement, offering a scalable methodology for other protected forest areas. This research contributes an innovative approach to Mediterranean forest governance, bridging ecological monitoring with socio-economic dynamics. The framework aligns with the EU INSPIRE Directive and highlights how low-cost, interoperable geospatial tools can support climate-resilient forest management strategies across fragmented Mediterranean landscapes. Full article
Show Figures

Figure 1

26 pages, 57687 KB  
Article
Assessing the Available Landslide Susceptibility Map and Inventory for the Municipality of Rio de Janeiro, Brazil: Potentials and Challenges for Data-Driven Applications
by Pedro Henrique Muniz Lima, Luiz Carlos Teixeira Coelho, Guilherme Damasceno Raposo, Irving da Silva Badolato, Raquel Batista Medeiros da Fonseca, Sonia Maria Lima Silva and Jonatas Goulart Marinho Falcão
ISPRS Int. J. Geo-Inf. 2025, 14(9), 330; https://doi.org/10.3390/ijgi14090330 - 26 Aug 2025
Viewed by 1069
Abstract
This study presents an initial evaluation of the heuristic landslide susceptibility map for the Municipality of Rio de Janeiro by comparing it with the official landslide inventory. The objective is to provide a first analysis of the accuracy of the current map (Reference [...] Read more.
This study presents an initial evaluation of the heuristic landslide susceptibility map for the Municipality of Rio de Janeiro by comparing it with the official landslide inventory. The objective is to provide a first analysis of the accuracy of the current map (Reference Map), which was developed using heuristic methods, in contrast with a basic predictive model based on Generalized Additive Models (GAMs). The study includes a critical review of the existing inventory and examines landslide records from 2010 to 2016, using georeferenced data provided by the GeoRio Foundation. Data from 2017 and 2018 are used for a preliminary test of the model. Rather than proposing a replacement, this study suggests that even simple data-driven models can offer useful insights into potential improvements in the reference susceptibility map. The results are exploratory and intended to inform future, more detailed analyses. While limited in scope, this work illustrates how quantitative approaches may complement existing methods in landslide prediction assessment. Full article
Show Figures

Figure 1

26 pages, 4045 KB  
Article
UAV Path Planning for Forest Firefighting Using Optimized Multi-Objective Jellyfish Search Algorithm
by Rui Zeng, Runteng Luo and Bin Liu
Mathematics 2025, 13(17), 2745; https://doi.org/10.3390/math13172745 - 26 Aug 2025
Viewed by 364
Abstract
This paper presents a novel approach to address the challenges of complex terrain, dynamic wind fields, and multi-objective constraints in multi-UAV collaborative path planning for forest firefighting missions. An extensible algorithm, termed Parallel Vectorized Differential Evolution-based Multi-Objective Jellyfish Search (PVDE-MOJS), is proposed to [...] Read more.
This paper presents a novel approach to address the challenges of complex terrain, dynamic wind fields, and multi-objective constraints in multi-UAV collaborative path planning for forest firefighting missions. An extensible algorithm, termed Parallel Vectorized Differential Evolution-based Multi-Objective Jellyfish Search (PVDE-MOJS), is proposed to enhance path planning performance. A comprehensive multi-objective cost function is formulated, incorporating path length, threat avoidance, altitude constraints, path smoothness, and wind effects. Forest-specific constraints are modeled using cylindrical threat zones and segmented wind fields. The conventional jellyfish search algorithm is then enhanced through multi-core parallel fitness evaluation, vectorized non-dominated sorting, and differential evolution-based mutation. These improvements substantially boost convergence efficiency and solution quality in high-dimensional optimization scenarios. Simulation results on the Phillip Archipelago Forest Farm digital elevation model (DEM) in Australia demonstrate that PVDE-MOJS outperforms the original MOJS algorithm in terms of inverted generational distance (IGD) across benchmark functions UF1–UF10. The proposed method achieves effective obstacle avoidance, altitude optimization, and wind adaptation, producing uniformly distributed Pareto fronts. This work offers a viable solution for emergency UAV path planning in forest fire rescue scenarios, with future extensions aimed at dynamic environments and large-scale UAV swarms. Full article
Show Figures

Figure 1

27 pages, 20171 KB  
Article
An Approach to Selecting an E-Commerce Warehouse Location Based on Suitability Maps: The Case of Samara Region
by Sergey Sakulin, Alexander Alfimtsev and Nikita Gavrilov
ISPRS Int. J. Geo-Inf. 2025, 14(9), 326; https://doi.org/10.3390/ijgi14090326 - 24 Aug 2025
Viewed by 632
Abstract
In the context of the rapid development of e-commerce, the selection of optimal land plots for the construction of warehouse complexes that meet environmental, technical, and political requirements has become increasingly relevant. This task requires a comprehensive approach that accounts for a wide [...] Read more.
In the context of the rapid development of e-commerce, the selection of optimal land plots for the construction of warehouse complexes that meet environmental, technical, and political requirements has become increasingly relevant. This task requires a comprehensive approach that accounts for a wide range of factors, including transportation accessibility, environmental conditions, geographic features, legal constraints, and more. Such an approach enhances the efficiency and sustainability of decision-making processes. This article presents a solution to the aforementioned problem that employs the use of land suitability maps generated by aggregating multiple evaluation criteria. These criteria represent the degree to which each land plot satisfies the requirements of various stakeholders and are expressed as suitability functions based on attribute values. Attributes describe different characteristics of the land plots and are represented as layers on a digital terrain map. The criteria and their corresponding attributes are classified as either quantitative or binary. Binary criteria are aggregated using the minimum operator, which filters out plots that violate any constraints by assigning them a suitability score of zero. Quantitative criteria are aggregated using the second-order Choquet integral, a method that accounts for interdependencies among criteria while maintaining computational simplicity. The criteria were developed based on statistical and environmental data obtained from an analysis of the Samara region in Russia. The resulting suitability maps are visualized as gradient maps, where land plots are categorized according to their degree of suitability—from completely unsuitable to highly suitable. This visual representation facilitates intuitive interpretation and comparison of different location options. These maps serve as an effective tool for planners and stakeholders, providing comprehensive and objective insights into the potential of land plots while incorporating all relevant factors. The proposed approach supports spatial analysis and land use planning by integrating mathematical modeling with modern information technologies to address pressing challenges in sustainable development. Full article
Show Figures

Figure 1

22 pages, 4204 KB  
Article
Integrative Runoff Infiltration Modeling of Mountainous Urban Karstic Terrain
by Yaakov Anker, Nitzan Ne’eman, Alexander Gimburg and Itzhak Benenson
Hydrology 2025, 12(9), 222; https://doi.org/10.3390/hydrology12090222 - 22 Aug 2025
Viewed by 443
Abstract
Global climate change, combined with the construction of impermeable urban elements, tends to increase runoff, which might cause flooding and reduce groundwater recharge. Moreover, the first flash of these areas might accumulate pollutants that might deteriorate groundwater quality. A digital elevation model (DEM) [...] Read more.
Global climate change, combined with the construction of impermeable urban elements, tends to increase runoff, which might cause flooding and reduce groundwater recharge. Moreover, the first flash of these areas might accumulate pollutants that might deteriorate groundwater quality. A digital elevation model (DEM) describes urban landscapes by representing the watershed relief at any given location. While, in concept, finer DEMs and land use classification (LUC) are yielding better hydrological models, it is suggested that over-accuracy overestimates minor tributaries that might be redundant. Optimal DEM resolution with integrated spectral and feature-based LUC was found to reflect the hydrological network’s significant tributaries. To cope with the karstic urban watershed complexity, ModClark Transform and SCS Curve Number methods were integrated over a GIS-HEC-HMS platform to a nominal urban watershed sub-basin analysis procedure, allowing for detailed urban runoff modeling. This precise urban karstic terrain modeling procedure can predict runoff volume and discharge in urban, mountainous karstic watersheds, and may be used for water-sensitive design or in such cities to control runoff and prevent its negative impacts. Full article
(This article belongs to the Special Issue The Influence of Landscape Disturbance on Catchment Processes)
Show Figures

Figure 1

20 pages, 5304 KB  
Article
Deep Learning with UAV Imagery for Subtropical Sphagnum Peatland Vegetation Mapping
by Zhengshun Liu and Xianyu Huang
Remote Sens. 2025, 17(17), 2920; https://doi.org/10.3390/rs17172920 - 22 Aug 2025
Viewed by 625
Abstract
Peatlands are vital for global carbon cycling, and their ecological functions are influenced by vegetation composition. Accurate vegetation mapping is crucial for peatland management and conservation, but traditional methods face limitations such as low spatial resolution and labor-intensive fieldwork. We used ultra-high-resolution UAV [...] Read more.
Peatlands are vital for global carbon cycling, and their ecological functions are influenced by vegetation composition. Accurate vegetation mapping is crucial for peatland management and conservation, but traditional methods face limitations such as low spatial resolution and labor-intensive fieldwork. We used ultra-high-resolution UAV imagery captured across seasonal and topographic gradients and assessed the impact of phenology and topography on classification accuracy. Additionally, this study evaluated the performance of four deep learning models (ResNet, Swin Transformer, ConvNeXt, and EfficientNet) for mapping vegetation in a subtropical Sphagnum peatland. ConvNeXt achieved peak accuracy at 87% during non-growing seasons through its large-kernel feature extraction capability, while ResNet served as the optimal efficient alternative for growing-season applications. Non-growing seasons facilitated superior identification of Sphagnum and monocotyledons, whereas growing seasons enhanced dicotyledon distinction through clearer morphological features. Overall accuracy in low-lying humid areas was 12–15% lower than in elevated terrain due to severe spectral confusion among vegetation. SHapley Additive exPlanations (SHAP) of the ConvNeXt model identified key vegetation indices, the digital surface model, and select textural features as primary performance drivers. This study concludes that the combination of deep learning and UAV imagery presents a powerful tool for peatland vegetation mapping, highlighting the importance of considering phenological and topographical factors. Full article
Show Figures

Figure 1

24 pages, 14790 KB  
Article
Morphodynamics, Genesis, and Anthropogenically Modulated Evolution of the Elfeija Continental Dune Field, Arid Southeastern Morocco
by Rachid Amiha, Belkacem Kabbachi, Mohamed Ait Haddou, Adolfo Quesada-Román, Youssef Bouchriti and Mohamed Abioui
Earth 2025, 6(3), 100; https://doi.org/10.3390/earth6030100 - 19 Aug 2025
Viewed by 380
Abstract
The Elfeija Dune Field (EDF) is a continental aeolian system in an arid region of southeastern Morocco. Studying this system is critical for understanding the effects of mounting climatic and anthropogenic pressures. This study provides a comprehensive characterization of the EDF’s morphology, sedimentology, [...] Read more.
The Elfeija Dune Field (EDF) is a continental aeolian system in an arid region of southeastern Morocco. Studying this system is critical for understanding the effects of mounting climatic and anthropogenic pressures. This study provides a comprehensive characterization of the EDF’s morphology, sedimentology, aeolian dynamics, genesis, and recent evolution. A multi-scale, multidisciplinary approach was adopted, integrating field observations, sedimentological analyses, MERRA-2 reanalysis wind data, cartographic analysis, digital terrain modeling, and morphometric measurements. The results reveal an active 30 km2 dune field, elongated WSW-ENE, which is divisible into three morphodynamic zones with a high dune density (80–90 dunes/km2). The wind regime is predominantly from the W to WSW, driving a net ENE sand transport and creating conditions conducive to barchan formation (RDP/DP > 0.78). Sediments are quartz dominated, with significant calcite and various clay minerals (illite, kaolinite, and smectite). Dune sands are primarily fine- to medium-grained and well sorted, in contrast to the more poorly sorted interdune deposits. The landscape is dominated by barchans (mean height H = 2.5 m; mean length L = 50 m) and their coalescent forms, indicating sustained aeolian activity. The potential sand flux was estimated at 1.7 kg/m/s, with a dune collision probability of 32%. The field’s genesis is hypothesized to be controlled by a topographically induced Venturi effect, with an initiation approximately 1000 years ago, potentially linked to the Medieval Climatic Optimum. Significant anthropogenic impacts from expanding irrigated agriculture are observed at the dune field margins. By providing a detailed characterization of the EDF and its sensitivity to natural and anthropogenic forcings, this study establishes a critical baseline for the sustainable management of arid environments. Full article
Show Figures

Figure 1

16 pages, 7955 KB  
Article
Development and Validation of a Computer Vision Dataset for Object Detection and Instance Segmentation in Earthwork Construction Sites
by JongHo Na, JaeKang Lee, HyuSoung Shin and IlDong Yun
Appl. Sci. 2025, 15(16), 9000; https://doi.org/10.3390/app15169000 - 14 Aug 2025
Viewed by 419
Abstract
Construction sites report the highest rate of industrial accidents, prompting the active development of smart safety management systems based on deep learning-based computer vision technology. To support the digital transformation of construction sites, securing site-specific datasets is essential. In this study, raw data [...] Read more.
Construction sites report the highest rate of industrial accidents, prompting the active development of smart safety management systems based on deep learning-based computer vision technology. To support the digital transformation of construction sites, securing site-specific datasets is essential. In this study, raw data were collected from an actual earthwork site. Key construction equipment and terrain objects primarily operated at the site were identified, and 89,766 images were processed to build a site-specific training dataset. This dataset includes annotated bounding boxes for object detection and polygon masks for instance segmentation. The performance of the dataset was validated using representative models—YOLO v7 for object detection and Mask R-CNN for instance segmentation. Quantitative metrics and visual assessments confirmed the validity and practical applicability of the dataset. The dataset used in this study has been made publicly available for use by researchers in related fields. This dataset is expected to serve as a foundational resource for advancing object detection applications in construction safety. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

28 pages, 19126 KB  
Article
Digital Geospatial Twinning for Revaluation of a Waterfront Urban Park Design (Case Study: Burgas City, Bulgaria)
by Stelian Dimitrov, Bilyana Borisova, Antoaneta Ivanova, Martin Iliev, Lidiya Semerdzhieva, Maya Ruseva and Zoya Stoyanova
Land 2025, 14(8), 1642; https://doi.org/10.3390/land14081642 - 14 Aug 2025
Viewed by 1193
Abstract
Digital twins play a crucial role in linking data with practical solutions. They convert raw measurements into actionable insights, enabling spatial planning that addresses environmental challenges and meets the needs of local communities. This paper presents the development of a digital geospatial twin [...] Read more.
Digital twins play a crucial role in linking data with practical solutions. They convert raw measurements into actionable insights, enabling spatial planning that addresses environmental challenges and meets the needs of local communities. This paper presents the development of a digital geospatial twin for a residential district in Burgas, the largest port city on Bulgaria’s southern Black Sea coast. The aim is to provide up-to-date geospatial data quickly and efficiently, and to merge available data into a single, accurate model. This model is used to test three scenarios for revitalizing coastal functions and improving a waterfront urban park in collaboration with stakeholders. The methodology combines aerial photogrammetry, ground-based mobile laser scanning (MLS), and airborne laser scanning (ALS), allowing for robust 3D modeling and terrain reconstruction across different land cover conditions. The current topography, areas at risk from geological hazards, and the vegetation structure with detailed attribute data for each tree are analyzed. These data are used to evaluate the strengths and limitations of the site concerning the desired functionality of the waterfront, considering urban priorities, community needs, and the necessity of addressing contemporary climate challenges. The carbon storage potential under various development scenarios is assessed. Through effective visualization and communication with residents and professional stakeholders, collaborative development processes have been facilitated through a series of workshops focused on coastal transformation. The results aim to support the design of climate-neutral urban solutions that mitigate natural risks without compromising the area’s essential functions, such as residential living and recreation. Full article
Show Figures

Figure 1

30 pages, 9948 KB  
Article
A Linear Feature-Based Method for Signal Photon Extraction and Bathymetric Retrieval Using ICESat-2 Data
by Zhenwei Shi, Jianzhong Li, Ze Yang, Hui Long, Hongwei Cui, Shibin Zhao, Xiaokai Li and Qiang Li
Remote Sens. 2025, 17(16), 2792; https://doi.org/10.3390/rs17162792 - 12 Aug 2025
Viewed by 371
Abstract
The ATL03 data from the photon-counting LiDAR onboard the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) holds substantial potential for shallow-water bathymetry due to its high sensitivity and broad spatial coverage. However, distinguishing signal photons from noise in low-photon-density and complex terrain environments [...] Read more.
The ATL03 data from the photon-counting LiDAR onboard the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) holds substantial potential for shallow-water bathymetry due to its high sensitivity and broad spatial coverage. However, distinguishing signal photons from noise in low-photon-density and complex terrain environments remains a significant challenge. This study proposes an adaptive photon extraction algorithm based on linear feature analysis, incorporating resolution adjustment, segmented Gaussian fitting, and linear feature-based signal identification. To address the reduction in signal photon density with increasing water depth, the method employs a depth-dependent adaptive neighborhood search radius, which dynamically expands into deeper regions to ensure reliable local feature computation. Experiments using eight ICESat-2 datasets demonstrated that the proposed method achieves average precision and recall values of 0.977 and 0.958, respectively, with an F1 score of 0.967 and an overall accuracy of 0.972. The extracted bathymetric depths demonstrated strong agreement with the reference Continuously Updated Digital Elevation Model (CUDEM), achieving a coefficient of determination of 0.988 and a root mean square error of 0.829 m. Compared to conventional methods, the proposed approach significantly improves signal photon extraction accuracy, adaptability, and parameter stability, particularly in sparse photon and complex terrain scenarios. In comparison with the DBSCAN algorithm, the proposed method achieves a 30.0% increase in precision, 17.3% improvement in recall, 24.3% increase in F1 score, and 22.2% improvement in overall accuracy. These findings confirm the effectiveness and robustness of the proposed algorithm for ICESat-2 shallow-water bathymetry applications. Full article
(This article belongs to the Section Earth Observation Data)
Show Figures

Figure 1

Back to TopTop