Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = dilution-attenuation factor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1314 KB  
Article
Analytical and Clinical Validation of a Plasma Fibroblast Growth Factor 21 ELISA Kit Using an Automated Platform in Steatotic Liver Disease
by Makito Tanaka, Shingo Tanaka, Ryo Kobayashi, Ryosei Murai and Satoshi Takahashi
Biomolecules 2025, 15(6), 877; https://doi.org/10.3390/biom15060877 - 16 Jun 2025
Viewed by 524
Abstract
Steatotic liver disease is a global health challenge that requires reliable and noninvasive diagnostic biomarkers. This research aimed to validate the analytical and clinical performance of a fibroblast growth factor 21 (FGF21) enzyme-linked immunosorbent assay (ELISA) kit using an automated immunoassay analyzer. Plasma [...] Read more.
Steatotic liver disease is a global health challenge that requires reliable and noninvasive diagnostic biomarkers. This research aimed to validate the analytical and clinical performance of a fibroblast growth factor 21 (FGF21) enzyme-linked immunosorbent assay (ELISA) kit using an automated immunoassay analyzer. Plasma FGF21 levels were measured using a commercial ELISA kit on an automated immunoassay analyzer. Validation included intra- and inter-assay precision, dilution linearity, spike recovery, lower limit of quantification (LLOQ), interference testing, and sample stability analysis. Clinical evaluation involved 97 patients who underwent abdominal ultrasound-based attenuation imaging for the diagnosis of hepatic steatosis. The assay demonstrated high analytical precision, with intra- and inter-assay coefficients of variation <15% and an LLOQ of 3.260 pg/mL. Dilution linearity, spike recovery, and interference tests confirmed the reliability of the assay, whereas stability tests highlighted the minimal effect of freeze-thaw cycles and storage conditions. Clinically, FGF21 levels correlated with attenuation coefficient (r = 0.44). Diagnostic performance indicated 84% sensitivity and 81% specificity at defined FGF21 thresholds for the diagnosis of hepatic steatosis. This research confirmed the reliable analytical and clinical performance of the FGF21 ELISA kit, reinforcing its potential as a diagnostic biomarker of hepatic steatosis. Full article
(This article belongs to the Section Molecular Biomarkers)
Show Figures

Figure 1

13 pages, 2256 KB  
Article
Risk and Pollutant Protective Concentration Levels of Drilling Waste Used to Pave Oil and Gas Field Well Sites
by Jinzhong Yang, Yufei Yang, Lu Tian, Jinliang Zhou and Yiou Wang
Water 2025, 17(1), 30; https://doi.org/10.3390/w17010030 - 26 Dec 2024
Cited by 1 | Viewed by 750
Abstract
Paving oil and gas field well sites of drilling waste allow us to reuse solid waste. However, to keep the risk within acceptable limits, some questions need to be answered: what is the dilution effect that soil and groundwater have on the transport [...] Read more.
Paving oil and gas field well sites of drilling waste allow us to reuse solid waste. However, to keep the risk within acceptable limits, some questions need to be answered: what is the dilution effect that soil and groundwater have on the transport of pollutants? What is the minimum concentration of pollutants leached from drill wastes? In this study, we focus on the paving of well sites using drilling wastes, and we analyze the pollutant migration pattern in the soil vadose zone and groundwater mixing zone after rainwater leaching. The drilling waste pollutant protective concentration level (PCL) and the corresponding dilution attenuation factor (DAF) were then proposed. In addition, the PCL’s accessibility, uncertainty, and environmental significance were further analyzed. It was found that the pollutant dilution factor (DF) of the groundwater mixed zone was strongly influenced by the thickness of the mixed zone, the groundwater Darcy rate, the length of the contaminant source, and the permeability, and each contributed approximately 25%. The soil vadose zone attenuation factor (AF) was primarily influenced by the soil vadose zone (i.e., groundwater depth) thickness that contributed approximately 53%. The contaminant DAF values of the well site drilling waste paving (e.g., the soil vadose zone thickness ranged from 5 to 30 m) ranged from 12 to 84. Additionally, the PCL values of the contaminants ranged from 12 to 84 times of the acceptable concentration (e.g., the Class III permissible limits of the Groundwater Quality Standards GB/T 14848-2017) at the groundwater compliance point. The expression for the exponential relationship between the DAF or PLC and the depth of the soil vadose zone was also provided in this study. The study results provide a reference for the actual process of the use of drilling wastes to pave well sites and for solid waste treatment or soil remediation decision-making and the associated risk assessment procedures. Full article
(This article belongs to the Special Issue Management of Solid Waste and Landfill Leachate)
Show Figures

Figure 1

29 pages, 11547 KB  
Article
Effect of Eco-Friendly Application of Bee Honey Solution on Yield, Physio-Chemical, Antioxidants, and Enzyme Gene Expressions in Excessive Nitrogen-Stressed Common Bean (Phaseolus vulgaris L.) Plants
by Hussein E. E. Belal, Mostafa A. M. Abdelpary, El-Sayed M. Desoky, Esmat F. Ali, Najla Amin T. Al Kashgry, Mostafa M. Rady, Wael M. Semida, Amr E. M. Mahmoud and Ali A. S. Sayed
Plants 2023, 12(19), 3435; https://doi.org/10.3390/plants12193435 - 29 Sep 2023
Cited by 7 | Viewed by 2519
Abstract
Excessive use of nitrogen (N) pollutes the environment and causes greenhouse gas emissions; however, the application of eco-friendly plant biostimulators (BSs) can overcome these issues. Therefore, this paper aimed to explore the role of diluted bee honey solution (DHS) in attenuating the adverse [...] Read more.
Excessive use of nitrogen (N) pollutes the environment and causes greenhouse gas emissions; however, the application of eco-friendly plant biostimulators (BSs) can overcome these issues. Therefore, this paper aimed to explore the role of diluted bee honey solution (DHS) in attenuating the adverse impacts of N toxicity on Phaseolus vulgaris growth, yield quality, physio-chemical properties, and defense systems. For this purpose, the soil was fertilized with 100, 125, and 150% of the recommended N dose (RND), and the plants were sprayed with 1.5% DHS. Trials were arranged in a two-factor split-plot design (N levels occupied main plots × DH– occupied subplots). Excess N (150% RND) caused a significant decline in plant growth, yield quality, photosynthesis, and antioxidants, while significantly increasing oxidants and oxidative damage [hydrogen peroxide (H2O2), superoxide (O2•−), nitrate, electrolyte leakage (EL), and malondialdehyde (MDA) levels]. However, DHS significantly improved antioxidant activities (glutathione and nitrate reductases, catalase, ascorbate peroxidase, superoxide dismutase, proline, ascorbate, α-tocopherol, and glutathione) and osmoregulatory levels (soluble protein, glycine betaine, and soluble sugars). Enzyme gene expressions showed the same trend as enzyme activities. Additionally, H2O2, O2•−, EL, MDA, and nitrate levels were significantly declined, reflecting enhanced growth, yield, fruit quality, and photosynthetic efficiency. The results demonstrate that DHS can be used as an eco-friendly approach to overcome the harmful impacts of N toxicity on P. vulgaris plants. Full article
(This article belongs to the Special Issue Legumes and Stressful Conditions)
Show Figures

Figure 1

28 pages, 7941 KB  
Article
Multi-Annual Dynamics of a Coastal Groundwater System with Soil-Aquifer Treatment and Its Impact on the Fate of Trace Organic Compounds
by Quentin Guillemoto, Géraldine Picot-Colbeaux, Danièle Valdes, Nicolas Devau, Charlotte Thierion, Déborah Idier, Frédéric A. Mathurin, Marie Pettenati, Jean-Marie Mouchel and Wolfram Kloppmann
Water 2023, 15(5), 934; https://doi.org/10.3390/w15050934 - 28 Feb 2023
Cited by 1 | Viewed by 2389
Abstract
The combination of managed aquifer recharge (MAR) with soil-aquifer treatment (SAT) has clear advantages for the future sustainable quality and quantity management of groundwater, especially when using treated wastewater. We built a Marthe flow and transport model of an MAR–SAT system located in [...] Read more.
The combination of managed aquifer recharge (MAR) with soil-aquifer treatment (SAT) has clear advantages for the future sustainable quality and quantity management of groundwater, especially when using treated wastewater. We built a Marthe flow and transport model of an MAR–SAT system located in a near-shore sand aquifer, for quantifying the influence of environmental factors (climate, tides, and operational conditions) on the coastal hydrosystem with regard to the fate of trace organic compounds (TrOCs). The simulations show the impact of these factors on flow rates and dilution, and thus, on the potential reactivity of TrOCs. The dilution of secondary treated wastewater (STWW) is variable, depending on the operations (feeding from infiltration ponds) and on shore proximity (dilution by saltwater). We show that, close to the ponds and during infiltration, the attenuation of TrOC concentrations can be explained by reactivity. At the natural outlet of the aquifer, the simulated average residence times ranged from about 70 to 500 days, depending upon seasonal dynamics. It is important to study TrOCs at site scale in order to anticipate the effect of natural variations on the SAT and on the fate of TrOCs. Full article
(This article belongs to the Special Issue Managed Aquifer Recharge: A key to Sustainability)
Show Figures

Figure 1

13 pages, 1344 KB  
Article
X-ray Microtomography to Assess Determinants of In Vivo N-Butyl Cyanoacrylate Glubran®2 Polymerization: A Rabbit-Model Study
by Kévin Guillen, Pierre-Olivier Comby, Anne-Virginie Salsac, Nicolas Falvo, Marc Lenfant, Alexandra Oudot, Hugo Sikner, Anne Dencausse, Emilie Laveissiere, Serge Ludwig Aho-Glele and Romaric Loffroy
Biomedicines 2022, 10(10), 2625; https://doi.org/10.3390/biomedicines10102625 - 19 Oct 2022
Cited by 3 | Viewed by 2131
Abstract
Although introduced decades ago, few cyanoacrylate glues have been approved for endovascular use, despite evidence of their usefulness, notably for complex procedures suchas hemostatic embolization. Indications include massive bleeding requiring emergent hemostasis and prevention of severe bleeding during scheduled surgery to remove a [...] Read more.
Although introduced decades ago, few cyanoacrylate glues have been approved for endovascular use, despite evidence of their usefulness, notably for complex procedures suchas hemostatic embolization. Indications include massive bleeding requiring emergent hemostasis and prevention of severe bleeding during scheduled surgery to remove a hypervascular tumor. Adding radiopaque Lipiodol Ultra Fluid® (LUF) modulates glue polymerization and allows fluoroscopic guidance, but few comparative in vivo studies have assessed the impact of the resulting change in glue concentration or of other factors such as target-vessel blood flow. In a rabbit model, we used ex vivo X-ray microtomography to assess the results of in vivo renal-artery embolization by various mixtures of N-butyl cyanoacrylate (NBCA), metacryloxysulfolane, and LUF. Overall, penetration to the superficial interlobular arteries was achieved in about two-thirds of cases and into the capillaries in nearly half the cases, while cast fragmentation was seen in slightly more than half the cases. Greater NBCA dilution and the blocked-blood-flow technique were independently associated with greater distality of penetration. Blocked-blood-flow injection was independently associated with absence of fragmentation, capillary penetration, a shorter cast-to-capsule distance, and higher cast attenuation. A larger mixture volume was independently associated with higher indexed cast ratio and deeper penetration. Finally, microtomography is an adapted tool to assess ex vivo distribution of glue cast. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

21 pages, 6476 KB  
Article
NLOS Identification- and Correction-Focused Fusion of UWB and LiDAR-SLAM Based on Factor Graph Optimization for High-Precision Positioning with Reduced Drift
by Zhijian Chen, Aigong Xu, Xin Sui, Yuting Hao, Cong Zhang and Zhengxu Shi
Remote Sens. 2022, 14(17), 4258; https://doi.org/10.3390/rs14174258 - 29 Aug 2022
Cited by 13 | Viewed by 3432
Abstract
In this study, we propose a tightly coupled integrated method of ultrawideband (UWB) and light detection and ranging (LiDAR)-based simultaneous localization and mapping (SLAM) for global navigation satellite system (GNSS)-denied environments to achieve high-precision positioning with reduced drift. Specifically, we focus on non-line-of-sight [...] Read more.
In this study, we propose a tightly coupled integrated method of ultrawideband (UWB) and light detection and ranging (LiDAR)-based simultaneous localization and mapping (SLAM) for global navigation satellite system (GNSS)-denied environments to achieve high-precision positioning with reduced drift. Specifically, we focus on non-line-of-sight (NLOS) identification and correction. In previous work, we utilized laser point cloud maps to identify and exclude NLOS measurements in real time to attenuate their severe effects on the integrated system. However, the complete exclusion of NLOS measurements will likely lead to deterioration in the dilution of precision (DOP) for the remaining line-of-sight (LOS) anchors, counterproductively introducing large positioning errors into the integrated system. Therefore, this study considers the ranging accuracy and geometric distribution of UWB anchors and innovatively proposes an NLOS correction method using a grey prediction model. For a poor line-of-sight (LOS) anchor geometric distribution, the grey prediction model is used to fill in the gaps by predicting the NLOS measurements based on historical measurements. Including the corrected measurements effectively improves the original poor geometric configuration, improving the system positioning accuracy. Since conventional filtering-based fusion methods are exceedingly sensitive to measurement outliers, we use state-of-the-art factor graph optimization (FGO) to tightly integrate the UWB measurements (LOS and corrected measurements) with LiDAR-SLAM. The temporal correlation between measurements and the redundant system measurements effectively enhance the robustness of the integrated system. Experimental results show that the tightly coupled integrated method combining NLOS correction and FGO improves the positioning accuracy under a poor geometric distribution, increases the system availability, and achieves better positioning than filtering-based fusion methods with a root-mean-square error of 0.086 m in the plane direction, achieving subdecimeter indoor high-precision positioning. Full article
(This article belongs to the Special Issue Remote Sensing in Navigation: State-of-the-Art)
Show Figures

Graphical abstract

15 pages, 3249 KB  
Article
Hydration Dynamics of Model Peptides with Different Hydrophobic Character
by Laura Lupi, Brenda Bracco, Paola Sassi, Silvia Corezzi, Assunta Morresi, Daniele Fioretto, Lucia Comez and Marco Paolantoni
Life 2022, 12(4), 572; https://doi.org/10.3390/life12040572 - 12 Apr 2022
Cited by 1 | Viewed by 2553
Abstract
The multi-scale dynamics of aqueous solutions of the hydrophilic peptide N-acetyl-glycine-methylamide (NAGMA) have been investigated through extended frequency-range depolarized light scattering (EDLS), which enables the broad-band detection of collective polarizability anisotropy fluctuations. The results have been compared to those obtained for N [...] Read more.
The multi-scale dynamics of aqueous solutions of the hydrophilic peptide N-acetyl-glycine-methylamide (NAGMA) have been investigated through extended frequency-range depolarized light scattering (EDLS), which enables the broad-band detection of collective polarizability anisotropy fluctuations. The results have been compared to those obtained for N-acetyl-leucinemethylamide (NALMA), an amphiphilic peptide which shares with NAGMA the same polar backbone, but also contains an apolar group. Our study indicates that the two model peptides induce similar effects on the fast translational dynamics of surrounding water. Both systems slow down the mobility of solvating water molecules by a factor 6–8, with respect to the bulk. Moreover, the two peptides cause a comparable far-reaching spatial perturbation extending to more than two hydration layers in diluted conditions. The observed concentration dependence of the hydration number is explained considering the random superposition of different hydration shells, while no indication of solute aggregation phenomena has been found. The results indicate that the effect on the dynamics of water solvating the amphiphilic peptide is dominated by the hydrophilic backbone. The minor impact of the hydrophobic moiety on hydration features is consistent with structural findings derived by Fourier transform infrared (FTIR) measurements, performed in attenuated total reflectance (ATR) configuration. Additionally, we give evidence that, for both systems, the relaxation mode in the GHz frequency range probed by EDLS is related to solute rotational dynamics. The rotation of NALMA occurs at higher timescales, with respect to the rotation of NAGMA; both processes are significantly slower than the structural dynamics of hydration water, suggesting that solute and solvent motions are uncoupled. Finally, our results do not indicate the presence of super-slow water (relaxation times in the order of tens of picoseconds) around the peptides investigated. Full article
Show Figures

Figure 1

16 pages, 2957 KB  
Article
Importance of Infiltration Rates for Fate and Transport of Benzene in High-Tiered Risk-Based Assessment Considering Korean Site-Specific Factors at Contaminated Sites
by Sun Woo Chang, Il-Moon Chung, Il Hwan Kim, Jin Chul Joo and Hee Sun Moon
Water 2021, 13(24), 3646; https://doi.org/10.3390/w13243646 - 18 Dec 2021
Cited by 2 | Viewed by 3237
Abstract
Widely used conservative approaches for risk-based assessments of the subsurface transport processes have been calculated using simple analytical equations or general default values. Higher-tier risk assessment of contaminated sites requires the numerical models or additional site-specific values for input parameters. Previous studies have [...] Read more.
Widely used conservative approaches for risk-based assessments of the subsurface transport processes have been calculated using simple analytical equations or general default values. Higher-tier risk assessment of contaminated sites requires the numerical models or additional site-specific values for input parameters. Previous studies have focused on the development of sophisticated models fit into risk-based frameworks. Our study mainly aims to explore the applicability of site-specific parameters and to modify the risk-based fate and transport model according to the types of the site-specific parameters. To apply the modified fate and transport equation and the site-specific default infiltration range, this study assessed the source depletion, leachate concentrations, and exposure concentration of benzene, which is a representative organic contaminant. The numerical models consist of two continuous processes, the fate and transport of contaminants from (1) the soil to the groundwater table in the vadose zone and subsequently (2) from the groundwater table to exposure wells in the saturated zone. Spatially varied Korean domestic recharge data were successfully incorporated into site-specific infiltration parameters in the models. The numerical simulation results were expressed as transient time series of concentrations over time. Results presented the narrow range of predicted concentrations at the groundwater table when site-specific infiltration was applied, and the dilution–attenuation factors for the unsaturated zone (DAFunsat) were derived based on the prediction. When a contaminant travels to the longest path length of 10 m with a source depth of 1 m in the vadoze zone, the simulated DAFunsat ranged from 3 to 4. The highest DAFunsat simulation results are close to 1 when contaminants travel to a source depth of 5 m and the shortest path length of 1 m. In the saturated aquifer below the contaminated sites, the variation in exposure concentration with time at monitoring wells is detected differently depending on the depth of the saturated zone. Full article
(This article belongs to the Special Issue Remediation of NAPL-Contaminated Groundwater Aquifers)
Show Figures

Figure 1

23 pages, 9960 KB  
Article
MNP-Enhanced Microwave Medical Imaging by Means of Pseudo-Noise Sensing
by Sebastian Ley, Jürgen Sachs, Bernd Faenger, Ingrid Hilger and Marko Helbig
Sensors 2021, 21(19), 6613; https://doi.org/10.3390/s21196613 - 4 Oct 2021
Cited by 8 | Viewed by 3131
Abstract
Magnetic nanoparticles have been investigated for microwave imaging over the last decade. The use of functionalized magnetic nanoparticles, which are able to accumulate selectively within tumorous tissue, can increase the diagnostic reliability. This paper deals with the detecting and imaging of magnetic nanoparticles [...] Read more.
Magnetic nanoparticles have been investigated for microwave imaging over the last decade. The use of functionalized magnetic nanoparticles, which are able to accumulate selectively within tumorous tissue, can increase the diagnostic reliability. This paper deals with the detecting and imaging of magnetic nanoparticles by means of ultra-wideband microwave sensing via pseudo-noise technology. The investigations were based on phantom measurements. In the first experiment, we analyzed the detectability of magnetic nanoparticles depending on the magnetic field intensity of the polarizing magnetic field, as well as the viscosity of the target and the surrounding medium in which the particles were embedded, respectively. The results show a nonlinear behavior of the magnetic nanoparticle response depending on the magnetic field intensity for magnetic nanoparticles diluted in distilled water and for magnetic nanoparticles embedded in a solid medium. Furthermore, the maximum amplitude of the magnetic nanoparticles responses varies for the different surrounding materials of the magnetic nanoparticles. In the second experiment, we investigated the influence of the target position on the three-dimensional imaging of the magnetic nanoparticles in a realistic measurement setup for breast cancer imaging. The results show that the magnetic nanoparticles can be detected successfully. However, the intensity of the particles in the image depends on its position due to the path-dependent attenuation, the inhomogeneous microwave illumination of the breast, and the inhomogeneity of the magnetic field. Regarding the last point, we present an approach to compensate for the inhomogeneity of the magnetic field by computing a position-dependent correction factor based on the measured magnetic field intensity and the magnetic susceptibility of the magnetic particles. Moreover, the results indicate an influence of the polarizing magnetic field on the measured ultra-wideband signals even without magnetic nanoparticles. Such a disturbing influence of the polarizing magnetic field on the measurements should be reduced for a robust magnetic nanoparticles detection. Therefore, we analyzed the two-state (ON/OFF) and the sinusoidal modulation of the external magnetic field concerning the detectability of the magnetic nanoparticles with respect to these spurious effects, as well as their practical application. Full article
Show Figures

Figure 1

29 pages, 1767 KB  
Article
External Stimuli on Neural Networks: Analytical and Numerical Approaches
by Evaldo M. F. Curado, Nilo B. Melgar and Fernando D. Nobre
Entropy 2021, 23(8), 1034; https://doi.org/10.3390/e23081034 - 11 Aug 2021
Cited by 1 | Viewed by 2361
Abstract
Based on the behavior of living beings, which react mostly to external stimuli, we introduce a neural-network model that uses external patterns as a fundamental tool for the process of recognition. In this proposal, external stimuli appear as an additional field, and basins [...] Read more.
Based on the behavior of living beings, which react mostly to external stimuli, we introduce a neural-network model that uses external patterns as a fundamental tool for the process of recognition. In this proposal, external stimuli appear as an additional field, and basins of attraction, representing memories, arise in accordance with this new field. This is in contrast to the more-common attractor neural networks, where memories are attractors inside well-defined basins of attraction. We show that this procedure considerably increases the storage capabilities of the neural network; this property is illustrated by the standard Hopfield model, which reveals that the recognition capacity of our model may be enlarged, typically, by a factor 102. The primary challenge here consists in calibrating the influence of the external stimulus, in order to attenuate the noise generated by memories that are not correlated with the external pattern. The system is analyzed primarily through numerical simulations. However, since there is the possibility of performing analytical calculations for the Hopfield model, the agreement between these two approaches can be tested—matching results are indicated in some cases. We also show that the present proposal exhibits a crucial attribute of living beings, which concerns their ability to react promptly to changes in the external environment. Additionally, we illustrate that this new approach may significantly enlarge the recognition capacity of neural networks in various situations; with correlated and non-correlated memories, as well as diluted, symmetric, or asymmetric interactions (synapses). This demonstrates that it can be implemented easily on a wide diversity of models. Full article
(This article belongs to the Special Issue Memory Storage Capacity in Recurrent Neural Networks)
Show Figures

Figure 1

18 pages, 4369 KB  
Article
The Impact of an Efflux Pump Inhibitor on the Activity of Free and Liposomal Antibiotics against Pseudomonas aeruginosa
by Douweh Leyla Gbian and Abdelwahab Omri
Pharmaceutics 2021, 13(4), 577; https://doi.org/10.3390/pharmaceutics13040577 - 18 Apr 2021
Cited by 18 | Viewed by 3612
Abstract
The eradication of Pseudomonas aeruginosa in cystic fibrosis patients has become continuously difficult due to its increased resistance to treatments. This study assessed the efficacy of free and liposomal gentamicin and erythromycin, combined with Phenylalanine arginine beta-naphthylamide (PABN), a broad-spectrum efflux pump inhibitor, [...] Read more.
The eradication of Pseudomonas aeruginosa in cystic fibrosis patients has become continuously difficult due to its increased resistance to treatments. This study assessed the efficacy of free and liposomal gentamicin and erythromycin, combined with Phenylalanine arginine beta-naphthylamide (PABN), a broad-spectrum efflux pump inhibitor, against P. aeruginosa isolates. Liposomes were prepared and characterized for their sizes and encapsulation efficiencies. The antimicrobial activities of formulations were determined by the microbroth dilution method. Their activity on P. aeruginosa biofilms was assessed, and the effect of sub-inhibitory concentrations on bacterial virulence factors, quorum sensing (QS) signals and bacterial motility was also evaluated. The average diameters of liposomes were 562.67 ± 33.74 nm for gentamicin and 3086.35 ± 553.95 nm for erythromycin, with encapsulation efficiencies of 13.89 ± 1.54% and 51.58 ± 2.84%, respectively. Liposomes and PABN combinations potentiated antibiotics by reducing minimum inhibitory and bactericidal concentrations by 4–32 fold overall. The formulations significantly inhibited biofilm formation and differentially attenuated virulence factor production as well as motility. Unexpectedly, QS signal production was not affected by treatments. Taken together, the results indicate that PABN shows potential as an adjuvant of liposomal macrolides and aminoglycosides in the management of lung infections in cystic fibrosis patients. Full article
(This article belongs to the Special Issue Polymers Enhancing Bioavailability in Drug Delivery)
Show Figures

Figure 1

17 pages, 1273 KB  
Article
Presence and Natural Treatment of Organic Micropollutants and their Risks after 100 Years of Incidental Water Reuse in Agricultural Irrigation
by Alma C. Chávez-Mejía, Inés Navarro-González, Rafael Magaña-López, Dafne Uscanga-Roldán, Paloma I. Zaragoza-Sánchez and Blanca Elena Jiménez-Cisneros
Water 2019, 11(10), 2148; https://doi.org/10.3390/w11102148 - 15 Oct 2019
Cited by 17 | Viewed by 4060
Abstract
The aim of the research was to show the presence of micropollutants contained in the wastewater of Mexico City within the distribution canals of the Mezquital Valley (MV), as well as their retention in agricultural soil and aquifers. This system constitutes the world’s [...] Read more.
The aim of the research was to show the presence of micropollutants contained in the wastewater of Mexico City within the distribution canals of the Mezquital Valley (MV), as well as their retention in agricultural soil and aquifers. This system constitutes the world’s oldest and largest example of the use of untreated wastewater for agricultural irrigation. The artificial recharge associated with the MV aquifers, with groundwater extracted for human consumption showing its importance as a water resource for Mexico City. The results of sampling show the presence of 18 compounds, with 10 of these considered as endocrine disruptor compounds (EDCs). The concentration of these pollutants ranged from 2 ng/L for 17 β-estradiol to 99 ng/L for DEHP, with these values decreasing throughout the course of the canals due to the wastewater dilution factor, their retention in agricultural soil, and their accumulation in the local aquifer. The main mechanisms involved in natural attenuation are adsorption, filtration, and biodegradation. Drinking water equivalent levels (DWELs) were estimated for 11 compounds with regard to acceptable daily intakes (ADIs), by assuming local exposure parameters for a rural Mexican population. These were compared with the maximum groundwater concentrations (Cgw) to screen the potential risks. The very low ratios of Cgw to DWELs indicate no appreciable human health risk from the presence of trace concentrations of these compounds in the source of drinking water in the MV. Despite this, far from being exceeded after more than 100 years of irrigation with residual water, the natural soil attenuation seems to remain stable. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

Back to TopTop