Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,484)

Search Parameters:
Keywords = dispersion polymerization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2419 KB  
Article
Development and 3D Printing of AESO-Based Composites Containing Olive Pit Powder
by Giovanna Colucci, Francesca Sacchi, Marta Checchi, Marianna Barbalinardo, Francesca Chiarini, Federica Bondioli, Carla Palumbo and Massimo Messori
J. Compos. Sci. 2025, 9(9), 479; https://doi.org/10.3390/jcs9090479 - 3 Sep 2025
Abstract
Bio-based polymeric composites were prepared by dispersing different amounts of olive pit (OP) powder within an acrylate epoxidized soybean oil (AESO) photocurable resin using tetrahydrofurfuryl acrylate (THFA) as diluent and (2,4,6-trimethylbenzoyl), phosphine oxide (BAPO) as photo-initiator, and they were photocured by Vat Photopolymerization [...] Read more.
Bio-based polymeric composites were prepared by dispersing different amounts of olive pit (OP) powder within an acrylate epoxidized soybean oil (AESO) photocurable resin using tetrahydrofurfuryl acrylate (THFA) as diluent and (2,4,6-trimethylbenzoyl), phosphine oxide (BAPO) as photo-initiator, and they were photocured by Vat Photopolymerization (VP) using a Liquid Crystal Display (LCD) 3D printer. Formulation viscosity was studied because of its important role in a VP process able to influence the printability of the final parts. Different 3D printed architectures were successfully realized with good resolution and accuracy, high level of detail, and flexibility. The effect of OP addition was investigated by thermal (TGA and DSC), morphological (SEM and PSD), viscoelastic (DMA), and mechanical (tensile testing) characterization. The filler led to an increase in the Tg, storage modulus, and tensile properties, underlining the stiffening effect induced by the OP particles onto the polymeric starting resin. This underlines the possibility to apply these bio-based composites in many application fields by valorizing agro-wastes, developing more sustainable materials, and taking advantages of VP 3D printing, such as low costs, minimal wastage, and customized geometry. Biocompatibility tests were also successfully carried out. The results clearly indicate that the AESO-based composites promote cell adhesion and viability. Full article
(This article belongs to the Special Issue Sustainable Polymer Composites: Waste Reutilization and Valorization)
Show Figures

Figure 1

14 pages, 3061 KB  
Article
High–Energy–Density Fiber Supercapacitor Based on Graphene-Enhanced Hierarchically Nanostructured Conductive Polymer Composite Electrodes
by Chuangen Ye, Qingfeng Yang, Mingxian Xu, Haitang Qiu, Xiaozhen Zhang, Jianping Ma, Haiyang Gao, Xuansheng Feng and Yong Li
Nanomaterials 2025, 15(17), 1350; https://doi.org/10.3390/nano15171350 - 2 Sep 2025
Abstract
The development of portable and wearable electronics has promoted the advancement of fiber supercapacitors (FSCs), but their low energy density still limits their application in flexible devices. Herein, we incorporated micron-sized graphene dispersions at varying concentrations into the polyaniline (PANI) precursor solution prepared [...] Read more.
The development of portable and wearable electronics has promoted the advancement of fiber supercapacitors (FSCs), but their low energy density still limits their application in flexible devices. Herein, we incorporated micron-sized graphene dispersions at varying concentrations into the polyaniline (PANI) precursor solution prepared via electrochemical polymerization and subsequently electrodeposited PANI/graphene composites onto the surface of carbon nanotube (CNT) fibers, ultimately obtaining fibrous PANI/graphene@CNT composite electrodes. This electrode material not only exhibits the superior electrochemical activity characteristic of conducting polymers synthesized by electrochemical polymerization but also possesses a relatively high specific surface area. Furthermore, we fabricated coaxial fiber supercapacitors using PANI/graphene@CNT composite fibers and CNT films as the positive and negative electrode materials, respectively. The maximum energy density and power density could reach 160.5 µWh cm−2 and 13 mW cm−2 respectively, proving its excellent energy storage and output capabilities. More importantly, the prepared CFASC device showed remarkable mechanical and electrochemical durability. Even after 3000 bending cycles, it retained 89.77% of its original capacitance, highlighting its promising applicability in the realm of flexible electronics. The resulting devices demonstrate excellent electrochemical performance and mechanical stability. Full article
(This article belongs to the Special Issue Application of Nanostructures in Electrochemical Energy Storage)
Show Figures

Figure 1

13 pages, 1642 KB  
Article
Phenylethyl Alcohol-Based Polymeric Nanogels Obtained Through Polymerization-Induced Self-Assembly Toward Achieving Broad-Spectrum Antibacterial Activity
by Rui Xie, Xinru Gao, Ketao Liu, Deshui Yu, Qiaoran Li, Guang Yang and Feihu Bi
Gels 2025, 11(9), 690; https://doi.org/10.3390/gels11090690 - 1 Sep 2025
Viewed by 143
Abstract
The emergence of bacterial resistance has spurred an urgent need to develop effective alternatives to traditional antibiotics. Phenylethyl alcohol from plants exhibits potential antimicrobial properties, but its efficacy is limited due to its compromised dispersion in water and structural stability in ambient conditions. [...] Read more.
The emergence of bacterial resistance has spurred an urgent need to develop effective alternatives to traditional antibiotics. Phenylethyl alcohol from plants exhibits potential antimicrobial properties, but its efficacy is limited due to its compromised dispersion in water and structural stability in ambient conditions. Herein, for the first time, a polymerization-induced self-assembly strategy was employed to obtain different morphological nanogels with phenylethyl alcohol moieties as hydrophobic cores through in situ reversible addition–fragmentation chain-transfer (RAFT) polymerization. The well-defined copolymers of PTEGx-co-PPMAy with controllable molecular weights and narrow polydispersity were confirmed by a combination of techniques. The generated phenylethyl alcohol-based nanogels demonstrated potent antibacterial activity, particularly PTEG30-co-PPMA70 with a one-dimensional linear architecture, which achieved a minimum inhibitory concentration of 62 μg mL−1 against E. coli. SEM revealed membrane disruption as the bactericidal mechanism, highlighting enhanced efficacy against Gram-negative bacteria due to structural differences in cell envelopes. This study establishes a robust platform for designing phenylethyl alcohol-based nanogels with controllable structures toward achieving potent antimicrobial performance, offering a promising strategy for combating bacterial resistance while addressing the dilemma of conventional antibiotic drug systems. Full article
(This article belongs to the Special Issue Customizing Hydrogels: A Journey from Concept to End-Use Properties)
Show Figures

Figure 1

13 pages, 4343 KB  
Article
Interfacial Engineering of Hydrophobic Montmorillonite for High-Energy-Capability Polypropylene Nanocomposite Dielectrics
by Shiheng Li, Guangsen Zheng, Chu Cao, Chaoqiong Zhu, Baojing Zhang, Ziming Cai and Peizhong Feng
Crystals 2025, 15(9), 786; https://doi.org/10.3390/cryst15090786 - 31 Aug 2025
Viewed by 146
Abstract
Polypropylene (PP) dielectric capacitors are crucial for electronics and electric power systems due to their high power density. However, their relatively low energy density limits their practical application in energy storage devices, presenting a long-standing challenge. Montmorillonite (MMT), a natural phyllosilicate mineral abundantly [...] Read more.
Polypropylene (PP) dielectric capacitors are crucial for electronics and electric power systems due to their high power density. However, their relatively low energy density limits their practical application in energy storage devices, presenting a long-standing challenge. Montmorillonite (MMT), a natural phyllosilicate mineral abundantly found on earth, features a two-dimensional nanosheet structure and excellent insulating properties. MMT nanosheets have shown promise in enhancing the breakdown strength and energy storage capability of PP dielectric, but compatibility issues with the PP matrix remain a challenge. In this study, we propose a novel surface modification strategy in which polystyrene (PS)-capped MMT (PCM) nanosheets are synthesized through a polymerization–dissolution process. The modified PCM nanosheets demonstrate improved compatibility and are well dispersed within the PP matrix. Optimal loading of the PCM nanosheets effectively dissipate charge energy and hinder the growth of electric trees in the PP matrix. As a result, the PP nanocomposite with 0.2 wt% PCM nanosheets exhibits an enhanced breakdown strength of 619 MV m−1 and a discharged energy density of 4.23 J cm−3, with an energy storage efficiency exceeding 90%. These findings provide a promising strategy for the development of high-energy-density dielectric capacitors in an economical manner. Full article
(This article belongs to the Section Polycrystalline Ceramics)
Show Figures

Figure 1

16 pages, 2638 KB  
Article
Use of Artificial Neural Networks for Recycled Pellets Identification: Polypropylene-Based Composites
by Maya T. Gómez-Bacab, Aldo L. Quezada-Campos, Carlos D. Patiño-Arévalo, Zenen Zepeda-Rodríguez, Luis A. Romero-Cano and Marco A. Zárate-Navarro
Polymers 2025, 17(17), 2349; https://doi.org/10.3390/polym17172349 - 29 Aug 2025
Viewed by 222
Abstract
Polymer recycling is challenging due to practical classification difficulties. Even when the polymer matrix is identified, the presence of various polymeric composites complicates their accurate classification. In this study, Fourier-transform infrared spectroscopy (ATR-FTIR) was used in combination with artificial neural networks (ANNs) to [...] Read more.
Polymer recycling is challenging due to practical classification difficulties. Even when the polymer matrix is identified, the presence of various polymeric composites complicates their accurate classification. In this study, Fourier-transform infrared spectroscopy (ATR-FTIR) was used in combination with artificial neural networks (ANNs) to quantitatively predict the mineral filler content in polypropylene (PP) composites. Calibration curves were developed to correlate ATR-FTIR spectral features (600–1700 cm−1) with the concentration (wt.%) of three mineral fillers: talc (PP-Talc), calcium carbonate (PP-CaCO3), and glass fiber (PP-GF). ANN models developed in MATLAB 2024a achieved prediction errors below 7.5% and regression coefficients (R2) above 0.98 for all filler types. The method was successfully applied to analyze a commercial recycled pellet, and its predictions were validated by X-ray fluorescence (XRF) and energy-dispersive X-ray spectroscopy (EDX). This approach provides a simple, rapid, and non-destructive tool for non-expert users to identify both the type and amount of mineral filler in recycled polymer materials, thereby reducing misclassification in their commercialization or quality control in industrial formulations. Full article
(This article belongs to the Special Issue Artificial Intelligence in Polymers)
Show Figures

Figure 1

16 pages, 8464 KB  
Article
Characterization of PVC/CaCO3 Nanocomposites Aged Under the Combined Effects of Temperature and UV-Radiation
by Soraya Nait Larbi, Mustapha Moudoud, Abdallah Hedir, Omar Lamrous, Ali Durmus, David Clark and Ferhat Slimani
Materials 2025, 18(17), 4001; https://doi.org/10.3390/ma18174001 - 27 Aug 2025
Viewed by 416
Abstract
This article examines the influence of micro- and nanoscale calcium carbonate (CaCO3) fillers on the dielectric behavior and aging resistance of polyvinyl chloride (PVC)-based composites. PVC films containing varying CaCO3 contents (0%, 2.5%, 5%, and 7.5% by weight) were subjected [...] Read more.
This article examines the influence of micro- and nanoscale calcium carbonate (CaCO3) fillers on the dielectric behavior and aging resistance of polyvinyl chloride (PVC)-based composites. PVC films containing varying CaCO3 contents (0%, 2.5%, 5%, and 7.5% by weight) were subjected to accelerated aging through prolonged ultraviolet (UV) exposure and thermal stress for up to 1248 h. The evolution of dielectric properties was characterized by impedance spectroscopy, while structural modifications were analyzed using Fourier-transform infrared (FTIR) spectroscopy. Additionally, changes in surface morphology, internal homogeneity (related to particle size, shape, and distribution), and chemical composition were investigated using scanning electron microscopy combined with energy-dispersive X-ray spectroscopy (SEM-EDX), to evaluate the effects of irradiation and variations in the material’s surface composition and morphology. The results reveal a significant correlation between filler concentration and dielectric stability, highlighting the potential of CaCO3 reinforcement to improve the long-term reliability of polymeric insulating materials. The results further highlight that beyond the amount of filler used, the fine-scale feature of CaCO3, particularly its particle size and how well it is dispersed, has a significant impact on how the material responds to aging and maintains its dielectric properties. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

17 pages, 1323 KB  
Article
Predicting the Post-Hartree-Fock Electron Correlation Energy of Complex Systems with the Information-Theoretic Approach
by Ping Wang, Dongxiong Hu, Linling Lu, Yilin Zhao, Jingbo Chen, Paul W. Ayers, Shubin Liu and Dongbo Zhao
Molecules 2025, 30(17), 3500; https://doi.org/10.3390/molecules30173500 - 26 Aug 2025
Viewed by 417
Abstract
Employing some simple physics-inspired density-based information-theoretic approach (ITA) quantities to predict the electron correlation energies remains an open challenge. In this work, we expand the scope of the LR(ITA) (LR means linear regression) protocol to more complex systems, including (i) 24 octane isomers; [...] Read more.
Employing some simple physics-inspired density-based information-theoretic approach (ITA) quantities to predict the electron correlation energies remains an open challenge. In this work, we expand the scope of the LR(ITA) (LR means linear regression) protocol to more complex systems, including (i) 24 octane isomers; (ii) polymeric structures, polyyne, polyene, all-trans-polymethineimine, and acene; (iii) molecular clusters, such as metallic Ben and Mgn, covalent Sn, hydrogen-bonded protonated water clusters H+(H2O)n, and dispersion-bound carbon dioxide (CO2)n, and benzene (C6H6)n clusters. With LR(ITA), one can simply predict the post-Hartree-Fock (such as MP2 and coupled cluster) electron correlation energies at the cost of Hartree-Fock calculations, even with chemical accuracy. For large molecular clusters, we employ the linear-scaling generalized energy-based fragmentation (GEBF) method to gauge the accuracy of LR(ITA). Employing benzene clusters as an illustration, the LR(ITA) method shows similar accuracy to that of GEBF. Overall, we have verified that ITA quantities can be used to predict the post-Hartree-Fock electron correlation energies of various complex systems. Full article
Show Figures

Figure 1

14 pages, 1950 KB  
Article
Tailoring Microwave Absorption via Ferromagnetic Resonance and Quarter-Wave Effects in Carbonaceous Ternary FeCoCr Alloy/PVDF Polymer Composites
by Rajeev Kumar, Harish Kumar Choudhary, Shital P. Pawar, Manjunatha Mushtagatte and Balaram Sahoo
Microwave 2025, 1(2), 8; https://doi.org/10.3390/microwave1020008 - 25 Aug 2025
Viewed by 224
Abstract
In this study, we investigate the dominant electromagnetic wave absorption mechanism–ferromagnetic resonance (FMR) loss versus quarter-wave cancellation in a novel PVDF-based polymer composite embedded with carbonaceous nanostructures incorporating FeCoCr ternary alloy. The majority of the nanoparticles are embedded at the terminal ends of [...] Read more.
In this study, we investigate the dominant electromagnetic wave absorption mechanism–ferromagnetic resonance (FMR) loss versus quarter-wave cancellation in a novel PVDF-based polymer composite embedded with carbonaceous nanostructures incorporating FeCoCr ternary alloy. The majority of the nanoparticles are embedded at the terminal ends of the carbon nanotubes, while a small fraction exists as isolated core–shell, carbon-coated spherical particles. Overall, the synthesized material predominantly exhibits a nanotubular carbon morphology. High-resolution transmission electron microscopy (HRTEM) confirms that the encapsulated nanoparticles are quasi-spherical in shape, with an average size ranging from approximately 25 to 40 nm. The polymeric composite was synthesized via solution casting, ensuring homogenous dispersion of filler constituent. Electromagnetic interference (EMI) shielding performance and reflection loss characteristics were evaluated in the X-band frequency range. Experimental results reveal a significant reflection loss exceeding −20 dB at a matching thickness of 2.5 mm, with peak absorption shifting across frequencies with thickness variation. The comparative analysis, supported by quarter-wave theory and FMR resonance conditions, indicates that the absorption mechanism transitions between magnetic resonance and interference-based cancellation depending on the material configuration and thickness. This work provides experimental validation of loss mechanism dominance in magnetic alloy/polymer composites and proposes design principles for tailoring broadband microwave absorbers. Full article
Show Figures

Figure 1

9 pages, 2331 KB  
Article
Influence of Sample Position on Strain Monitoring in Composite Materials Using Magnetic Microwires
by Rafael Garcia-Etxabe, Maitane Mendinueta, Marta Camacho-Iglesias, Valentina Zhukova and Arcady Zhukov
Sensors 2025, 25(16), 4892; https://doi.org/10.3390/s25164892 - 8 Aug 2025
Viewed by 274
Abstract
Soft magnetic materials are highly suitable for use as sensors in the monitoring of materials, applications, and processes, with proven effectiveness across various industries. Their ability to be configured as microwires allows excellent integration within composite structures, making them particularly effective for structural [...] Read more.
Soft magnetic materials are highly suitable for use as sensors in the monitoring of materials, applications, and processes, with proven effectiveness across various industries. Their ability to be configured as microwires allows excellent integration within composite structures, making them particularly effective for structural health monitoring. Research in this area has enabled the analysis of both hysteresis loops and scattering parameters in transmission and reflection within the microwave frequency range, under conditions such as composite matrix polymerization or when subjecting specimens to different stress states. Consequently, a clear dependence of scattering parameters and impedance on applied stress in composites with magnetic microwire inclusions, which can be monitored, has been demonstrated. However, despite the repeatability of the phenomenon, modeling this behavior is challenging due to the dispersion of results caused by multiple factors and varying conditions that influence outcomes in a conventional environment. This study analyzes the influence of the relative sample position on these measurements and presents results obtained by modifying the position and orientation of microwires through rotation and flipping movements of the test specimen. Full article
(This article belongs to the Special Issue Recent Trends and Advances in Magnetic Sensors)
Show Figures

Figure 1

14 pages, 4013 KB  
Review
Crystallization Studies of Poly(Trimethylene Terephthalate) Nanocomposites—A Review
by Nadarajah Vasanthan
J. Compos. Sci. 2025, 9(8), 417; https://doi.org/10.3390/jcs9080417 - 5 Aug 2025
Viewed by 745
Abstract
Poly(trimethylene terephthalate) (PTT) is a thermoplastic polyester with a unique structure due to having three methylene groups in the glycol unit. PTT competes with poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT) in carpets, textiles, and thermoplastic materials, primarily due to the development of [...] Read more.
Poly(trimethylene terephthalate) (PTT) is a thermoplastic polyester with a unique structure due to having three methylene groups in the glycol unit. PTT competes with poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT) in carpets, textiles, and thermoplastic materials, primarily due to the development of economically efficient synthesis methods. PTT is widely utilized in textiles, carpets, and engineering plastics because of its advantageous properties, including quick-drying capabilities and wrinkle resistance. However, its low melting point, resistance to chemicals, and brittleness compared to PET, have limited its applications. To address some of these limitations for targeted applications, PTT nanocomposites incorporating clay, carbon nanotube, silica, and ZnO have been developed. The distribution of nanoparticles within the PTT matrix remains a significant challenge for its potential applications. Several techniques, including sol–gel blending, melt blending, in situ polymerization, and in situ forming methods have been developed to obtain better dispersion. This review discusses advancements in the synthesis of various PTT nanocomposites and the effects of nanoparticles on the isothermal and nonisothermal crystallization of PTT. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

19 pages, 5335 KB  
Article
Study on the Electro-Optical Properties of Polymer-Dispersed Liquid Crystals Doped with Cellulose Nanocrystals
by Jiayan Wang, Yan Qiao, Ziyi Yang, Yue Han, Hui Zhang, Zhiguang Li, Guili Zheng, Yanjun Zhang and Lizhi Zhu
Molecules 2025, 30(15), 3273; https://doi.org/10.3390/molecules30153273 - 5 Aug 2025
Viewed by 469
Abstract
The present study focuses on the effect of doping KH560-modified cellulose nanocrystals (CNCs) on the electro-optical characteristics of polymer-dispersed liquid crystals (PDLCs). PDLC films were fabricated through the polymerization-initiated phase separation (PIPS) process and doped with CNC nanoparticles at various concentrations. At low [...] Read more.
The present study focuses on the effect of doping KH560-modified cellulose nanocrystals (CNCs) on the electro-optical characteristics of polymer-dispersed liquid crystals (PDLCs). PDLC films were fabricated through the polymerization-initiated phase separation (PIPS) process and doped with CNC nanoparticles at various concentrations. At low concentrations, the CNCs at the interface, by virtue of their unique chiral characteristics, induce an orderly arrangement of liquid crystal molecules. Meanwhile, the interaction between the film’s fiber structure and the liquid crystal droplets brings about an augmentation in the arrangement efficiency. The excellent dispersion of CNCs diminishes the random alignment of liquid crystal molecules and mitigates light scattering. Additionally, it aids in the deflection of the liquid crystal director, facilitating the lubrication of the liquid crystals’ movement. It is remarkable that within the range of relatively lower CNCs doping concentrations, specifically from 0.005 wt% to 0.05 wt%, the PDLC films exhibit lower threshold and saturation voltages, faster response, enhanced viewing angle performance and higher contrast. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

17 pages, 588 KB  
Article
The Effect of Methacrylate-POSS in Nanosilica Dispersion Addition on Selected Mechanical Properties of Photo-Cured Dental Resins and Nanocomposites
by Norbert Sobon, Michal Krasowski, Karolina Kopacz, Barbara Lapinska, Izabela Barszczewska-Rybarek, Patrycja Kula and Kinga Bociong
J. Compos. Sci. 2025, 9(8), 403; https://doi.org/10.3390/jcs9080403 - 1 Aug 2025
Viewed by 371
Abstract
Background: This study aimed to assess the impact of methacrylate-functionalized polyhedral oligomeric silsesquioxanes dispersed in nanosilica (MA/Ns-POSS) on the mechanical properties of light-curable dental resins and composites. The primary goal was to evaluate how different concentrations of MA/Ns-POSS (0.5–20 wt.%) affect the hardness, [...] Read more.
Background: This study aimed to assess the impact of methacrylate-functionalized polyhedral oligomeric silsesquioxanes dispersed in nanosilica (MA/Ns-POSS) on the mechanical properties of light-curable dental resins and composites. The primary goal was to evaluate how different concentrations of MA/Ns-POSS (0.5–20 wt.%) affect the hardness, flexural strength, modulus, diametral tensile strength, polymerization shrinkage stress, and degree of conversion of these materials. Methods: A mixture of Bis-GMA, UDMA, TEGDMA, HEMA, and camphorquinone, with a tertiary amine as the photoinitiator, was used to create resin and composite samples, incorporating 45 wt.% silanized silica for the composites. Hardness (Vickers method, HV), flexural strength (FS), and flexural modulus (Ef) were assessed using three-point bending tests, while diametral tensile strength (DTS) polymerization shrinkage stresses (PSS), and degree of conversion (DC) analysis were analyzed for the composites. Results: The results showed that resins with 10 wt.% MA/Ns-POSS exhibited the highest Ef and FS values. Composite hardness peaked at 20 wt.% MA/Ns-POSS, while DTS increased up to 2.5 wt.% MA/Ns-POSS but declined at higher concentrations. PSS values decreased with increasing MA/Ns-POSS concentration, with the lowest values recorded at 15–20 wt.%. DC analysis also showed substantial improvement for 15–20 wt.% Conclusion: Incorporating MA/Ns-POSS improves the mechanical properties of both resins and composites, with 20 wt.% showing the best results. Further studies are needed to explore the influence of higher additive concentrations. Full article
(This article belongs to the Special Issue Innovations of Composite Materials in Prosthetic Dentistry)
Show Figures

Figure 1

21 pages, 3814 KB  
Article
Features of the Structure of Layered Epoxy Composite Coatings Formed on a Metal-Ceramic-Coated Aluminum Base
by Volodymyr Korzhyk, Volodymyr Kopei, Petro Stukhliak, Olena Berdnikova, Olga Kushnarova, Oleg Kolisnichenko, Oleg Totosko, Danylo Stukhliak and Liubomyr Ropyak
Materials 2025, 18(15), 3620; https://doi.org/10.3390/ma18153620 - 1 Aug 2025
Viewed by 480
Abstract
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer [...] Read more.
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer of basalt fabric, which allows for effective heating of the antenna, and to study the properties of this coating. The multilayer coating was formed on an aluminum base that was subjected to abrasive jet processing. The first and second metal-ceramic layers, Al2O3 + 5% Al, which were applied by high-speed multi-chamber cumulative detonation spraying (CDS), respectively, provide maximum adhesion strength to the aluminum base and high adhesion strength to the third layer of the epoxy composite containing Al2O3. On this not-yet-polymerized layer of epoxy composite containing Al2O3, a layer of carbon fabric (impregnated with epoxy resin) was formed, which serves as a resistive heating element. On top of this carbon fabric, a layer of epoxy composite containing Cr2O3 and SiO2 was applied. Next, basalt fabric was applied to this still-not-yet-polymerized layer. Then, the resulting layered coating was compacted and dried. To study this multilayer coating, X-ray analysis, light and raster scanning microscopy, and transmission electron microscopy were used. The thickness of the coating layers and microhardness were measured on transverse microsections. The adhesion strength of the metal-ceramic coating layers to the aluminum base was determined by both bending testing and peeling using the adhesive method. It was established that CDS provides the formation of metal-ceramic layers with a maximum fraction of lamellae and a microhardness of 7900–10,520 MPa. In these metal-ceramic layers, a dispersed subgrain structure, a uniform distribution of nanoparticles, and a gradient-free level of dislocation density are observed. Such a structure prevents the formation of local concentrators of internal stresses, thereby increasing the level of dispersion and substructural strengthening of the metal-ceramic layers’ material. The formation of materials with a nanostructure increases their strength and crack resistance. The effectiveness of using aluminum, chromium, and silicon oxides as nanofillers in epoxy composite layers was demonstrated. The presence of structures near the surface of these nanofillers, which differ from the properties of the epoxy matrix in the coating, was established. Such zones, specifically the outer surface layers (OSL), significantly affect the properties of the epoxy composite. The results of industrial tests showed the high performance of the multilayer coating during antenna heating. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

18 pages, 3967 KB  
Article
A Thorough Investigation of the Mechanism of theAntagonistic Effect Between Phosphorus and Basic Oxide-Forming Minerals as Flame Retardants of PolymericComposite Coatings
by Evangelia Mitropoulou, Georgios N. Mathioudakis, Amaia Soto Beobide, Athanasios Porfyris, Vassilios Dracopoulos, Kerim Kılınç, Theodosios Chatzinikolaou, Deniz Savci, Cem Gunesoglu, Joannis Kallitsis and George A. Voyiatzis
Coatings 2025, 15(8), 886; https://doi.org/10.3390/coatings15080886 - 30 Jul 2025
Viewed by 412
Abstract
Halogenated flame retardants have been amongst the most widely used and effective solutions for enhancing fire resistance. However, their use is currently strictly regulated due to serious health and environmental concerns. In this context, phosphorus-based and mineral flame retardants have emerged as promising [...] Read more.
Halogenated flame retardants have been amongst the most widely used and effective solutions for enhancing fire resistance. However, their use is currently strictly regulated due to serious health and environmental concerns. In this context, phosphorus-based and mineral flame retardants have emerged as promising alternatives. Despite this, their combined use is neither straightforward nor guaranteed to be effective. This study scrutinizes the interactions between these two classes of flame retardants (FR) through a systematic analysis aimed at elucidating the antagonistic pathways that arise from their coexistence. Specifically, this study focuses on two inorganic fillers, mineral huntite and chemically precipitated magnesium hydroxide, both of which produce basic oxides upon thermal decomposition. These fillers were incorporated into a poly(butylene terephthalate) (PBT) matrix to be utilized as advanced-mattress FR coating fabric and were subjected to a series of flammability tests. The pyrolysis products of the prepared polymeric composite compounds were isolated and thoroughly characterized using a combination of analytical techniques. Thermogravimetric analysis (TGA) and differential thermogravimetric analysis (dTGA) were employed to monitor decomposition behavior, while the char residues collected at different pyrolysis stages were examined spectroscopically, using FTIR-ATR and Raman spectroscopy, to identify their structure and the chemical reactions that led to their formation. X-ray diffraction (XRD) experiments were also conducted to complement the spectroscopic findings in the chemical composition of the resulting char residues and to pinpoint the different species that constitute them. The morphological changes of the char’s structure were monitored by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDS). Finally, the Limited Oxygen Index (LOI) and UL94 (vertical sample mode) methods were used to assess the relative flammability of the samples, revealing a significant drop in flame retardancy when both types of flame retardants are present. This reduction is attributed to the neutralization of acidic phosphorus species by the basic oxides generated during the decomposition of the basic inorganic fillers, as confirmed by the characterization techniques employed. These findings underscore the challenge of combining organophosphorus with popular flame-retardant classes such as mineral or basic metal flame retardants, offering insight into a key difficulty in formulating next-generation halogen-free flame-retardant composite coatings. Full article
(This article belongs to the Special Issue Innovative Flame-Retardant Coatings for High-Performance Materials)
Show Figures

Figure 1

13 pages, 1041 KB  
Article
Synthesis and FT-IR/Raman Characterization of a Graphene Oxide–Methacrylamide Monomer for Dental Applications
by Gennaro Ruggiero, Davide Di Rosa, Francesco Caso, Roberto Sorrentino, Fernando Zarone and Giuseppe Caso
Materials 2025, 18(15), 3550; https://doi.org/10.3390/ma18153550 - 29 Jul 2025
Viewed by 611
Abstract
Background: Graphene oxide (GO) is widely explored as a functional additive in polymer composites; however, its simple physical dispersion in dental resins often leads to poor interfacial stability and limited long-term performance. Covalent functionalization may overcome these limitations by enabling chemical integration into [...] Read more.
Background: Graphene oxide (GO) is widely explored as a functional additive in polymer composites; however, its simple physical dispersion in dental resins often leads to poor interfacial stability and limited long-term performance. Covalent functionalization may overcome these limitations by enabling chemical integration into the polymer matrix. This study presents the synthesis and FT-IR/Raman characterization of GRAPHYMERE®, a novel graphene oxide-based monomer obtained through exfoliation, amine functionalization with 1,6-hexanediamine, and transamidation with methyl methacrylate. Methods: A novel GO-based monomer, GRAPHYMERE®, was synthesized through a three-step process involving GO exfoliation, amine functionalization with 1,6-hexanediamine, and transamidation with methyl methacrylate to introduce polymerizable acrylic groups. The resulting product was characterized using FT-IR and Raman spectroscopy. Results: Spectroscopic analyses confirmed the presence of aliphatic chains and amine functionalities on the GO surface. Although some expected signals were overlapped, the data suggest successful surface modification and partial insertion of methacrylamide groups. The process is straightforward, uses low-toxicity reagents, and avoids complex reaction steps. Conclusions: GRAPHYMERE® represents a chemically modified GO monomer potentially suitable for copolymerization within dental resin matrices. While its structural features support compatibility with radical polymerization systems, further studies are required to assess its mechanical performance and functional properties in dental resin applications. Full article
(This article belongs to the Special Issue Advanced Biomaterials for Medical Applications (2nd Edition))
Show Figures

Graphical abstract

Back to TopTop