Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (334)

Search Parameters:
Keywords = displacement reduction mechanism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3611 KB  
Article
Optimization of the Structural Design of a Vertical Lathe Table in the Context of Minimizing Thermal Deformations
by Janusz Śliwka, Krzysztof Lis and Mateusz Wąsik
Appl. Sci. 2025, 15(21), 11439; https://doi.org/10.3390/app152111439 - 26 Oct 2025
Viewed by 153
Abstract
Modern machining industries require high precision and efficiency in machine tools, where thermal deformations significantly impact accuracy. This study focuses on optimizing the structural parameters of a vertical turning center to minimize thermal displacements affecting machining precision. The optimization process is divided into [...] Read more.
Modern machining industries require high precision and efficiency in machine tools, where thermal deformations significantly impact accuracy. This study focuses on optimizing the structural parameters of a vertical turning center to minimize thermal displacements affecting machining precision. The optimization process is divided into parametric and topological methodologies. The parametric approach targets three primary objectives: minimizing mass (q1), maximizing static stiffness (q2), and reducing thermal displacement (q3). Multi-criteria optimization techniques, including Pareto-based and scalarization methods, are applied to balance these conflicting factors. Finite Element Analysis (FEA) models assist in evaluating machine stiffness and displacement, with constraints imposed on structural mass and stiffness to maintain performance. Parametric optimization, using iterative computational algorithms such as Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), refines rib and wall thicknesses of the lathe table to achieve displacement reductions. The optimization process successfully lowers displacement at critical measurement points while maintaining structural integrity. Hybrid PSO (hPSO) outperforms other algorithms in achieving optimal parameter sets with minimal computational effort. Topological optimization, based on the Solid Isotropic Microstructure with Penalization (SIMP) method, further enhances structural efficiency by refining material distribution. The iterative process identifies optimal energy flow paths while ensuring compliance with mechanical constraints. A hybrid approach integrating parametric adjustments with topological refinement leads to superior performance, achieving a 43% reduction in displacement at key measurement points compared to the initial design. The final optimized design reduces mass by 1 ton compared to the original model and 2.5 tons compared to the best rib–wall optimization results. The study’s findings establish a foundation for implementing active deformation compensation systems in machine tools, enhancing machining precision. The integration of parametric and topological optimization presents a robust framework for designing machine tool structures with improved thermal stability and structural efficiency. Full article
(This article belongs to the Special Issue Smart Manufacturing and Materials: 3rd Edition)
Show Figures

Figure 1

26 pages, 7816 KB  
Article
Study on Fiber-Fabric Hierarchical Reinforcement for High-Toughness Magnesium Phosphate Cement Composites
by Weipeng Feng, Yuan Fang, Chengman Wang, Peng Cui, Kunde Zhuang, Wenyang Zhang and Zhijun Dong
Polymers 2025, 17(21), 2844; https://doi.org/10.3390/polym17212844 - 24 Oct 2025
Viewed by 283
Abstract
Magnesium phosphate cement (MPC) has gained attention in specialized construction applications due to its rapid setting and high early strength, though its inherent brittleness limits structural performance. This study developed an innovative toughening strategy through synergistic reinforcement using hybrid fibers and carbon fiber-reinforced [...] Read more.
Magnesium phosphate cement (MPC) has gained attention in specialized construction applications due to its rapid setting and high early strength, though its inherent brittleness limits structural performance. This study developed an innovative toughening strategy through synergistic reinforcement using hybrid fibers and carbon fiber-reinforced polymer (CFRP) fabric capable of multi-scale crack control. The experimental program systematically evaluated the hybrid fiber system, dosage, and CFRP positioning effects through mechanical testing of 7-day cured specimens. The results indicated that 3.5% fiber dosage optimized flexural–compressive balance (45% flexural gain with <20% compressive reduction), while CFRP integration at 19 mm displacement enhanced flexural capacity via multi-scale reinforcement. Fracture analysis revealed that the combined system increases post-cracking strength by 60% through coordinated crack bridging at micro (fiber) and macro (CFRP) scales. These findings elucidated the mechanisms by which fiber–CFRP interaction mitigates MPC’s brittleness through hierarchical crack control while maintaining its rapid hardening advantages. The study established quantitative design guidelines, showing the fiber composition of CF/WSF/CPS15 = 1/1/1 with 19 mm CFRP placement achieves optimal toughness–flexural balance (ff/fc > 0.38). The developed composite system reduced brittleness through effective crack suppression across scales, confirming its capability to transform fracture behavior from brittle to quasi-ductile. This work advances MPC’s engineering applicability by resolving its mechanical limitations through rationally designed composite systems, with particular relevance to rapid repair scenarios requiring both early strength and damage tolerance, expanding its potential in specialized construction where conventional cement proves inadequate. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Graphical abstract

16 pages, 4882 KB  
Article
Dynamic Response and Damage Analysis of Variable Section Pile Group Foundation at Liquefaction Site Under Different Seismic Intensities
by Shi-Hao Zhou, Zhong-Ju Feng, Cong Zhang, Cheng-Cheng Zhang, Ji-Kun Wang and Si-Qi Wang
Buildings 2025, 15(21), 3840; https://doi.org/10.3390/buildings15213840 - 24 Oct 2025
Viewed by 213
Abstract
Liquefaction-induced failure of pile foundations remains a critical challenge in seismic bridge engineering, particularly for large-diameter variable-section piles widely used in deep foundations. To address the limited understanding of their dynamic behavior in liquefiable soils, this study conducted large-scale shaking table tests on [...] Read more.
Liquefaction-induced failure of pile foundations remains a critical challenge in seismic bridge engineering, particularly for large-diameter variable-section piles widely used in deep foundations. To address the limited understanding of their dynamic behavior in liquefiable soils, this study conducted large-scale shaking table tests on single and group pile foundations at the Xiang’an Bridge site in Xiamen. The model reproduced a stratified saturated sandy soil profile to examine pore pressure evolution, acceleration response, horizontal displacement, and bending moment under seismic intensities of 0.15 g, 0.25 g, 0.35 g, and 0.45 g. The experimental results validated the model’s reliability and revealed clear performance distinctions between the two pile types. As seismic intensity increased, the stable pore pressure ratio rose from 0.72 to 0.86, indicating progressive liquefaction. Compared with the single pile, the pile group exhibited 15–25% lower peak acceleration and displacement, and a delayed occurrence of maximum response by about 1.3 s. Damage occurred at 0.35 g for the single pile but only at 0.45 g for the pile group, accompanied by a more minor reduction in fundamental frequency (32.44% vs. 52.90%). These results demonstrate that the pile group effect mitigates the impact of liquefaction and enhances seismic resistance. The study provides experimental validation and quantitative insight into the dynamic response mechanisms of variable-section pile group foundations, contributing novel guidance for the seismic design of bridge foundations in liquefaction-prone regions. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

33 pages, 17635 KB  
Article
Stability Analysis of Transmission Towers in Mining-Affected Zones
by Bingchao Zhao, Yongsheng Tuo, Jingbin Wang, Yang Zhao, Xinyi Feng, Pan Chen, Haonan Chen and Feixiang Liu
Appl. Sci. 2025, 15(20), 11091; https://doi.org/10.3390/app152011091 - 16 Oct 2025
Viewed by 155
Abstract
Transmission towers located above mined-out areas may experience collapse or instability due to mining-induced ground subsidence and deformation, which poses significant risks to the safe operation of power transmission lines. To clearly evaluate the deformation resistance and failure threshold of transmission towers under [...] Read more.
Transmission towers located above mined-out areas may experience collapse or instability due to mining-induced ground subsidence and deformation, which poses significant risks to the safe operation of power transmission lines. To clearly evaluate the deformation resistance and failure threshold of transmission towers under mining-induced ground deformation, this article examines a typical 220 kV self-supporting transmission tower located in a mining area of Northern Shaanxi Province through a detailed three-dimensional finite element model constructed and simulated using ANSYS 2022. The mechanical response and failure process of the tower structure were systematically simulated under five typical deformation conditions: tilt, horizontal compression, horizontal tension, tilt–compression, and tilt–tension. The results indicate that under individual deformation conditions, the critical deformation values of the tower are 35 mm/m for tilt, 10 mm/m for horizontal compression, and 8 mm/m for horizontal tension, demonstrating that the structure is most sensitive to horizontal tensile deformation. Under combined deformation conditions, the critical deformation values for the combined tilt–compression and tilt–tension conditions exhibited a marked reduction, reaching 8 mm/m and 6 mm/m. Compared to individual deformation conditions, transmission towers demonstrate a significantly higher susceptibility to structural failure under combined deformation conditions. The displacement at the tower head and the tower tilt angle exhibit a linear positive correlation with the values of ground surface deformation. Under individual deformation conditions, the tilt of the tower was approximately 0.903 times the tilt deformation value and 0.089 times the values of horizontal compression and tension deformation, indicating that tilt deformation exerts a more pronounced influence on the inclination of the tower. Under combined deformation conditions, the tilt of the tower reached approximately 0.981 times that of the tilt–compression deformation value and 0.829 times that of the tilt–tension deformation value. Compared to the tower tilt induced individually by horizontal compression or tension deformation, the tilt under combined deformation conditions demonstrated a significantly greater value. Under mining-induced ground deformation, a redistribution of support reactions occurs, exhibiting either nonlinear or linear increasing trends depending on the type of deformation. The findings of this article provide a theoretical basis and data support for disaster prevention and control, safety evaluation, and structural design of transmission lines in mining areas. Full article
Show Figures

Figure 1

24 pages, 5147 KB  
Article
Potential Distribution and Response to Climate Change in Puccinellia tenuiflora in China Projected Using Optimized MaxEnt Model
by Hao Yang, Xiaoting Wei, Manyin Zhang and Jinxin Zhang
Biology 2025, 14(10), 1426; https://doi.org/10.3390/biology14101426 - 16 Oct 2025
Viewed by 294
Abstract
Global climate change is accelerating and human pressures are intensifying, exerting profound impacts on biodiversity and ecosystem service functions. The accurate prediction of species distributions has thus become a critical research direction in ecological conservation and restoration. This study selected Puccinellia tenuiflora, [...] Read more.
Global climate change is accelerating and human pressures are intensifying, exerting profound impacts on biodiversity and ecosystem service functions. The accurate prediction of species distributions has thus become a critical research direction in ecological conservation and restoration. This study selected Puccinellia tenuiflora, a species distributed across China, as its research subject. Utilizing 169 occurrence records and 10 environmental variables, we applied a parameter-optimized MaxEnt model to simulate the species’ current and future (2050s–2090s) potential suitable habitats under the SSP126, SSP370, and SSP585 scenarios. The results identified the human footprint index (HFI, 43.3%) and temperature seasonality (Bio4, 26.9%) as the dominant factors influencing its distribution. The current suitable area is primarily concentrated in northern China, covering approximately 258.26 × 104 km2. Under all future scenarios, a contraction of suitable habitat is projected, with the most significant reduction observed under SSP585 by the 2090s (a decrease of 56.2%). The distribution centroid is projected to shift northeastward by up to 145.36 km. This study elucidates the response mechanism of P. tenuiflora distribution to climate change and human activities. The projected habitat contraction and spatial displacement highlight the potential vulnerability of this species to future climate change. These findings, derived from a rigorously optimized and spatially validated model, provide a scientific basis for the conservation, reintroduction, and adaptive management of P. tenuiflora under climate change. Full article
(This article belongs to the Section Ecology)
Show Figures

Figure 1

24 pages, 5484 KB  
Article
Mechanistic Investigation of CO2-Soluble Compound Foaming Systems for Flow Blocking and Enhanced Oil Recovery
by Junhong Jia, Wei Fan, Chengwei Yang, Danchen Li and Xiukun Wang
Processes 2025, 13(10), 3299; https://doi.org/10.3390/pr13103299 - 15 Oct 2025
Viewed by 216
Abstract
Carbon dioxide (CO2) has been widely applied in gas flooding for reservoir development due to its remarkable oil recovery potential. However, because its viscosity is lower than that of water and most crude oils, severe channeling often occurs during the flooding [...] Read more.
Carbon dioxide (CO2) has been widely applied in gas flooding for reservoir development due to its remarkable oil recovery potential. However, because its viscosity is lower than that of water and most crude oils, severe channeling often occurs during the flooding process, resulting in a significant reduction in the sweep efficiency. To address this issue, foam flooding has attracted considerable attention as an effective method for controlling CO2 mobility. In this study, a compound foam system was developed with alpha-olefin sulfonate (AOS) as the primary foaming agent, alcohol ethoxylate (AEO) and cetyltrimethylammonium bromide (CTAB) as co-surfactants, and partially hydrolyzed polyacrylamide (HPAM) as the stabilizer. The optimal system was screened through evaluations of comprehensive foam index, salt tolerance, oil resistance, and shear resistance. Results indicate that the AOS+AEO formulation exhibits superior foaming ability, salt tolerance, and foam stability compared with the AOS+CTAB system, with the best performance achieved at a mass ratio of 2:1 (AOS:AEO), balancing both adaptability and economic feasibility. A heterogeneous reservoir model was constructed using parallel core flooding to investigate the displacement performance and blocking capability of the system. Nuclear magnetic resonance (NMR) imaging was employed to monitor in situ oil phase migration and clarify the recovery mechanisms. Experimental results show that the compound foam system demonstrates excellent conformance control performance, achieving a blocking efficiency of 84.5% and improving the overall oil recovery by 4.6%. NMR imaging further reveals that the system effectively mobilizes low-permeability zones, with T2 spectrum analysis indicating a 4.5% incremental recovery in low-permeability layers. Moreover, in reservoirs with larger permeability ratio, the system exhibits enhanced blocking efficiency (up to 86.5%), though the incremental recovery is not strictly proportional to the blocking effect. Compared with previous AOS-based CO2 foam studies that primarily relied on pressure drop and effluent analyses, this work introduces NMR imaging and T2 spectrum diagnostics to directly visualize pore-scale fluid redistribution and quantify sweep efficiency within heterogeneous cores. The NMR data provide mechanistic evidence that the enhanced recovery originates from selective foam propagation and the mobilization of residual oil in low-permeability channels, rather than merely from increased flow resistance. This integration of advanced pore-scale imaging with macroscopic displacement analysis represents a mechanistic advancement over conventional CO2 foam evaluations, offering new insights into the conformance control behavior of AOS-based foam systems in heterogeneous reservoirs. Full article
(This article belongs to the Special Issue Flow Mechanisms and Enhanced Oil Recovery)
Show Figures

Figure 1

19 pages, 1784 KB  
Article
Influence of Stress on Gas Sorption Behavior and Induced Swelling in Coal: Implications for Sustainable CO2 Geological Storage
by Zhiming Fang, Chenlong Yang and Shaicheng Shen
Sustainability 2025, 17(20), 8990; https://doi.org/10.3390/su17208990 - 10 Oct 2025
Viewed by 260
Abstract
The influence of stress on gas sorption behavior and sorption-induced swelling in coal is critical for the success of CO2-enhanced coalbed methane recovery (CO2-ECBM) and geological carbon sequestration—a key strategy for mitigating climate change and promoting clean energy transitions. [...] Read more.
The influence of stress on gas sorption behavior and sorption-induced swelling in coal is critical for the success of CO2-enhanced coalbed methane recovery (CO2-ECBM) and geological carbon sequestration—a key strategy for mitigating climate change and promoting clean energy transitions. However, this influence remains insufficiently understood, largely due to experimental limitations (e.g., overreliance on powdered coal samples) and conflicting theoretical frameworks in existing studies. To address this gap, this study systematically investigates the effects of two distinct stress constraints—constant confining pressure and constant volume—on CO2 adsorption capacity, adsorption kinetics, and associated swelling deformation of intact anthracite coal cores. An integrated experimental apparatus was custom-designed for this study, combining volumetric sorption measurement with high-resolution strain monitoring via the confining fluid displacement (CFD) method and the confining pressure response (CPR) method. This setup enables the quantification of CO2–coal interactions under precisely controlled stress environments. Key findings reveal that stress conditions exert a regulatory role in shaping CO2–coal behavior: constant confining pressure conditions enhance CO2 adsorption capacity and sustain adsorption kinetics by accommodating matrix swelling, thereby preserving pore accessibility for continuous gas uptake. In contrast, constant volume constraints lead to rapid internal stress buildup, which inhibits further gas adsorption and accelerates the attainment of kinetic saturation. Sorption-induced swelling exhibits clear dependence on both pressure and constraint conditions. Elevated CO2 pressure leads to increased strain, while constant confining pressure facilitates more gradual, sustained expansion. This is particularly evident at higher pressures, where adsorption-induced swelling prevails over mechanical constraints. These results help resolve key discrepancies in the existing literature by clarifying the dual role of stress in modulating both pore accessibility (for gas transport) and mechanical response (for matrix deformation). These insights provide essential guidance for optimizing CO2 injection strategies and improving the long-term performance and sustainability of CO2-ECBM and geological carbon storage projects, ultimately supporting global efforts in carbon emission reduction and sustainable energy resource utilization. Full article
(This article belongs to the Section Resources and Sustainable Utilization)
Show Figures

Figure 1

16 pages, 2428 KB  
Article
Bonding Performance at the Interface of Glass Fiber-Reinforced Polymer Anchors and Polymer Concrete
by Kai Liu, Wenchao Li, Tianlong Ling, Bo Huang and Meihong Zhou
Polymers 2025, 17(19), 2714; https://doi.org/10.3390/polym17192714 - 9 Oct 2025
Viewed by 327
Abstract
Currently, resin polymer anchoring agents are widely used for bolting support in coal mine roadways to anchor the bolts to the surrounding rock mass. However, due to the relatively low strength of the resin anchoring agent itself, the required anchoring length tends to [...] Read more.
Currently, resin polymer anchoring agents are widely used for bolting support in coal mine roadways to anchor the bolts to the surrounding rock mass. However, due to the relatively low strength of the resin anchoring agent itself, the required anchoring length tends to be excessively long. Based on this, this paper proposes the use of resin concrete as a replacement for resin. Compared to resin anchoring agents, resin concrete offers greater mechanical interlocking force with anchor rods, which can reduce the theoretical anchoring length. To systematically investigate the influence of factors such as the diameter and anchorage length of Glass Fiber-Reinforced Polymer (GFRP) bolt on the bond behavior between GFRP bolts and resin concrete, 33 standard pull-out tests were designed and conducted in accordance with the CSA S807-19 standard. Taking the 18 mm-diameter bolt as an example, when the bond lengths were 2D, 3D, 4D, and 5D, the average bond strengths were 41.32 MPa, 39.18 MPa, 38.84 MPa, and 37.44 MPa, respectively. This represents a decrease of 5.18%, 6.00%, and 9.39% for each subsequent increase in bond length. The results indicate that the bond strength between GFRP anchors and resin decreases as the anchorage length increases. Due to the shear lag effect, the average bond strength also decreases with increasing anchor diameter. Taking a 5D (where D is the anchor diameter) anchorage length as a reference, the average bond strengths for anchor diameters of 18 mm, 20 mm, 22 mm, and 24 mm were 37.44 MPa, 33.97 MPa, 32.18 MPa, and 31.50 MPa, respectively. The corresponding reductions compared to the 18 mm diameter case were 9.27%, 14.05%, and 15.87%. Based on the experimental results, this paper proposes a bond–slip constitutive model between the bolt and resin concrete, which consists of a rising branch, a descending branch, and a residual branch. A differential equation relating shear stress to displacement was established, and the functions describing the variation in displacement, normal stress, and shear stress along the position were solved for the ascending branch. Although an analytical solution for the differential equation of the descending branch was not obtained, it will not affect the subsequent derivation of the theoretical anchorage length for the GFRP bolt–resin concrete system, as structural components in practical engineering are not permitted to undergo excessive bond-slip. Full article
(This article belongs to the Special Issue Polymer Admixture-Modified Cement-Based Materials)
Show Figures

Figure 1

22 pages, 7067 KB  
Article
New Evaluation System for Extra-Heavy Oil Viscosity Reducer Effectiveness: From 1D Static Viscosity Reduction to 3D SAGD Chemical–Thermal Synergy
by Hongbo Li, Enhui Pei, Chao Xu and Jing Yang
Energies 2025, 18(19), 5307; https://doi.org/10.3390/en18195307 - 8 Oct 2025
Viewed by 477
Abstract
To overcome the production bottleneck induced by the high viscosity of extra-heavy oil and resolve the issues of limited efficiency in traditional thermal oil recovery methods (including cyclic steam stimulation (CSS), steam flooding, and steam-assisted gravity drainage (SAGD)) as well as the fragmentation [...] Read more.
To overcome the production bottleneck induced by the high viscosity of extra-heavy oil and resolve the issues of limited efficiency in traditional thermal oil recovery methods (including cyclic steam stimulation (CSS), steam flooding, and steam-assisted gravity drainage (SAGD)) as well as the fragmentation of existing viscosity reducer evaluation systems, this study establishes a multi-dimensional evaluation system for the effectiveness of viscosity reducers, with stage-averaged remaining oil saturation as the core benchmarks. A “1D static → 2D dynamic → 3D synergistic” progressive sequential experimental design was adopted. In the 1D static experiments, multi-gradient concentration tests were conducted to analyze the variation law of the viscosity reduction rate of viscosity reducers, thereby screening out the optimal adapted concentration for subsequent experiments. For the 2D dynamic experiments, sand-packed tubes were used as the experimental carrier to compare the oil recovery efficiencies of ultimate steam flooding, viscosity reducer flooding with different concentrations, and the composite process of “steam flooding → viscosity reducer flooding → secondary steam flooding”, which clarified the functional value of viscosity reducers in dynamic displacement. In the 3D synergistic experiments, slab cores were employed to simulate the SAGD development process after multiple rounds of cyclic steam stimulation, aiming to explore the regulatory effect of viscosity reducers on residual oil distribution and oil recovery factor. This novel evaluation system clearly elaborates the synergistic mechanism of viscosity reducers, i.e., “chemical empowerment (emulsification and viscosity reduction, wettability alteration) + thermal amplification (steam carrying and displacement, steam chamber expansion)”. It fills the gap in the existing evaluation chain, which previously lacked a connection from static performance to dynamic displacement and further to multi-process synergistic adaptation. Moreover, it provides quantifiable and implementable evaluation criteria for steam–chemical composite flooding of extra-heavy oil, effectively releasing the efficiency-enhancing potential of viscosity reducers. This study holds critical supporting significance for promoting the efficient and economical development of extra-heavy oil resources. Full article
Show Figures

Figure 1

17 pages, 4289 KB  
Patent Summary
Manual Resin Gear Drive for Fine Adjustment of Schlieren Optical Elements
by Emilia Georgiana Prisăcariu and Iulian Vlăducă
Inventions 2025, 10(5), 89; https://doi.org/10.3390/inventions10050089 - 2 Oct 2025
Viewed by 281
Abstract
High-precision angular positioning mechanisms are essential across diverse scientific and industrial applications, from optical instrumentation to automated mechanical systems. Conventional bronze–steel gear reduction units, while reliable, are often heavy, costly, and unsuitable for chemically aggressive or vacuum environments, limiting their use in advanced [...] Read more.
High-precision angular positioning mechanisms are essential across diverse scientific and industrial applications, from optical instrumentation to automated mechanical systems. Conventional bronze–steel gear reduction units, while reliable, are often heavy, costly, and unsuitable for chemically aggressive or vacuum environments, limiting their use in advanced research setups. This work introduces a novel 1:360 gear reduction system manufactured by resin-based additive manufacturing, designed to overcome these limitations. The compact worm–gear assembly translates a single crank rotation into a precise one-degree indicator displacement, enabling fine and repeatable angular control. A primary application is the alignment of parabolic mirrors in schlieren systems, where accurate tilt adjustment is critical to correct optical alignment; however, the design is broadly adaptable to other precision positioning tasks in laboratory and industrial contexts. Compared with conventional assemblies, the resin-based reducer offers reduced weight, chemical and vacuum compatibility, and lower production cost. Its three-stage reduction design further enhances load-bearing capacity, achieving approximately double the theoretical torque transfer of equivalent commercial systems. These features establish the device as a robust, scalable, and automation-ready solution for high-accuracy angular adjustment, contributing both to specialized optical research and general-purpose precision engineering. Full article
(This article belongs to the Section Inventions and Innovation in Advanced Manufacturing)
Show Figures

Figure 1

19 pages, 2040 KB  
Article
Physicochemical and Mechanical Performance of Dental Resins Formulated from Dimethacrylated Oligoesters Derived from PET Recycling via Glycolysis
by Stefanos Karkanis, Alexandros K. Nikolaidis, Elisabeth A. Koulaouzidou and Dimitris S. Achilias
Polymers 2025, 17(19), 2660; https://doi.org/10.3390/polym17192660 - 1 Oct 2025
Viewed by 504
Abstract
Growing concerns over the toxicity and sustainability of dental materials have driven the search for alternatives to bisphenol A-glycidyl methacrylate (Bis-GMA), a widely used dental resin monomer associated with health risks. This study highlights the potential of less health-hazardous dental formulations by incorporating [...] Read more.
Growing concerns over the toxicity and sustainability of dental materials have driven the search for alternatives to bisphenol A-glycidyl methacrylate (Bis-GMA), a widely used dental resin monomer associated with health risks. This study highlights the potential of less health-hazardous dental formulations by incorporating high-value materials derived from the glycolysis of poly(ethylene terephthalate) (PET). Dimethacrylated oligoesters (PET-GLY-DM), synthesized through the methacrylation of PET glycolysis products, were blended with Bis-GMA and triethylene glycol dimethacrylate (TEGDMA), toward the gradual replacement of Bis-GMA content. The innovative PET-GLY-DM-based resins exhibited a higher degree of conversion compared to traditional Bis-GMA/TEGDMA formulations, as measured by FTIR spectroscopy, accompanied by an increase in polymerization shrinkage, evaluated via a linear variable displacement transducer system. While the incorporation of PET-GLY-DM slightly reduced flexural strength and elastic modulus, it significantly decreased water sorption, resulting in a smaller reduction in mechanical properties after water immersion for 7 days at 37 °C and improved long-term performance. Furthermore, PET-GLY-DM resins exhibited low bisphenol-A (BPA) release measured with HPLC. It was thus confirmed that PET-GLY-DM resins derived from the glycolysis of PET wastes represent a promising alternative to conventional light-cured dental resins, offering reduced BPA release and improved water resistance. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
Show Figures

Graphical abstract

66 pages, 9599 KB  
Review
A Review: Absolute Linear Encoder Measurement Technology
by Maqiang Zhao, Yuyu Yuan, Linbin Luo and Xinghui Li
Sensors 2025, 25(19), 5997; https://doi.org/10.3390/s25195997 - 29 Sep 2025
Cited by 1 | Viewed by 1173
Abstract
Absolute linear encoders have emerged as a core technical enabler in the fields of high-end manufacturing and precision displacement measurement, owing to their inherent advantages such as the elimination of the need for homing operations and the retention of position data even upon [...] Read more.
Absolute linear encoders have emerged as a core technical enabler in the fields of high-end manufacturing and precision displacement measurement, owing to their inherent advantages such as the elimination of the need for homing operations and the retention of position data even upon power failure. However, there remains a notable scarcity of comprehensive review materials that can provide systematic guidance for practitioners engaged in the field of absolute linear encoder measurement technology. The present study aims to address this gap by offering a practical reference to professionals in this domain. In this research, we first systematically delineate the three fundamental categories of measurement principles underlying absolute linear encoders. Subsequently, we analyze the evolutionary trajectory of coding technologies, encompassing the design logics and application characteristics of quasi-absolute coding (including non-embedded and embedded variants) as well as absolute coding (covering multi-track and single-track configurations). Furthermore, we summarize the primary error sources that influence measurement accuracy and explore the operational mechanisms of various types of errors. This study clarifies the key technical pathways and existing challenges associated with absolute linear encoders, thereby providing practitioners in relevant fields with a decision-making guide for technology selection and insights into future development directions. Moving forward, efforts should focus on achieving breakthroughs in critical technologies such as high fault-tolerant coding design, integrated manufacturing, and error compensation, so as to advance the development of absolute linear encoders toward higher precision, miniaturization, cost reduction, and enhanced reliability. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

21 pages, 4287 KB  
Article
Performance Enhancement and Control Strategy for Dual-Stator Bearingless Switched Reluctance Motors in Magnetically Levitated Artificial Hearts
by Chuanyu Sun, Tao Liu, Chunmei Wang, Qilong Gao, Xingling Xiao and Ning Han
Electronics 2025, 14(19), 3782; https://doi.org/10.3390/electronics14193782 - 24 Sep 2025
Viewed by 242
Abstract
Magnetically levitated artificial hearts impose stringent requirements on the blood-pump motor: zero friction, minimal heat generation and full biocompatibility. Traditional mechanical-bearing motors and permanent-magnet bearingless motors fail to satisfy all of these demands simultaneously. A bearingless switched reluctance motor (BSRM), whose rotor contains [...] Read more.
Magnetically levitated artificial hearts impose stringent requirements on the blood-pump motor: zero friction, minimal heat generation and full biocompatibility. Traditional mechanical-bearing motors and permanent-magnet bearingless motors fail to satisfy all of these demands simultaneously. A bearingless switched reluctance motor (BSRM), whose rotor contains no permanent magnets, offers a simple structure, high thermal tolerance, and inherent fault-tolerance, making it an ideal drive for implantable circulatory support. This paper proposes an 18/15/6-pole dual-stator BSRM (DSBSRM) that spatially separates the torque and levitation flux paths, enabling independent, high-precision control of both functions. To suppress torque ripple induced by pulsatile blood flow, a variable-overlap TSF-PWM-DITC strategy is developed that optimizes commutation angles online. In addition, a grey-wolf-optimized fast non-singular terminal sliding-mode controller (NRLTSMC) is introduced to shorten rotor displacement–error convergence time and to enhance suspension robustness against hydraulic disturbances. Co-simulation results under typical artificial heart operating conditions show noticeable reductions in torque ripple and speed fluctuation, as well as smaller rotor radial positioning error, validating the proposed motor and control scheme as a high-performance, biocompatible, and reliable drive solution for next-generation magnetically levitated artificial hearts. Full article
Show Figures

Figure 1

11 pages, 211 KB  
Article
Open Fractures on the Field: Two Decades of Pediatric Sports Injuries in a Level 1 Trauma Cohort
by Britta Chocholka, Lara Marie Bogensperger, Iryna Yegorova, Vanessa Groß, Manuela Jaindl, Bikash Parajuli, Sanika Rapole, Thomas Manfred Tiefenboeck and Stephan Payr
J. Clin. Med. 2025, 14(18), 6667; https://doi.org/10.3390/jcm14186667 - 22 Sep 2025
Viewed by 478
Abstract
Background: Open fractures in pediatric patients are uncommon but clinically relevant, often resulting from high-energy trauma or sports-related incidents. This study analyzes the demographic patterns, types of sports, injury mechanisms, treatment strategies, and outcomes in children and adolescents with sports-related open fractures. [...] Read more.
Background: Open fractures in pediatric patients are uncommon but clinically relevant, often resulting from high-energy trauma or sports-related incidents. This study analyzes the demographic patterns, types of sports, injury mechanisms, treatment strategies, and outcomes in children and adolescents with sports-related open fractures. Methods: In this retrospective study, 74 pediatric patients with sports-related open fractures treated at a level 1 trauma center between 2002 and 2023 were documented. Parameters such as age, sex, fracture location, sport type, treatment modality, complications, and outcomes were evaluated. Results: The cohort included 74 patients, with a mean age of 13 ± 3.6 years. Open fractures of the upper extremity were most common (seen in 34 patients). Moreover, 10 open craniofacial and 27 open nasal fractures represented 50.0% of injuries, mainly in male athletes involved in contact sports. Soccer was the leading injury-related sport (n = 14; 18.9%). Surgical treatment was required in 28 patients (37.8%), most frequently using elastic stable intramedullary nailing, Kirschner wire fixation in the upper extremities or nasal bone reduction. Antibiotics were administered in 46 patients (62.2%), with a mean documented duration of 2.7 ± 3.1 days. An excellent outcome was documented in 95%. Conclusions: Sports-related open fractures in children primarily affect male adolescents in contact sports and involve the upper extremities and facial region. Conservative management is effective in stable, non-displaced and low-grade injuries. Surgical treatment is frequently indicated in open forearm fractures. The implementation of a structured trauma care protocol, incorporating early debridement, definitive treatment, and antibiotics, has been demonstrated to yield a safe and effective treatment outcome with a favorable prognosis for sports-related open fractures in children. Full article
(This article belongs to the Special Issue Advancing Pediatric Sports Medicine: Insights and Innovations)
13 pages, 1199 KB  
Article
Evaluation of the Effectiveness of TECAR and Vibration Therapy as Methods Supporting Muscle Recovery After Strenuous Eccentric Exercise
by Łukasz Oleksy, Anna Mika, Maciej Daszkiewicz, Martyna Sopa, Miłosz Szczudło, Maciej Kuchciak, Artur Stolarczyk, Olga Adamska, Paweł Reichert, Zofia Dzięcioł-Anikiej and Renata Kielnar
J. Clin. Med. 2025, 14(18), 6648; https://doi.org/10.3390/jcm14186648 - 21 Sep 2025
Viewed by 1804
Abstract
Background/Objectives. Despite growing interest in capacitive-resistive electric transfer TECAR) and Vibration therapy (VT), their comparative effectiveness in sports recovery remains unclear. This study aimed to evaluate and contrast the short-term effects of TECAR and VT on neuromuscular recovery following eccentric muscle fatigue, [...] Read more.
Background/Objectives. Despite growing interest in capacitive-resistive electric transfer TECAR) and Vibration therapy (VT), their comparative effectiveness in sports recovery remains unclear. This study aimed to evaluate and contrast the short-term effects of TECAR and VT on neuromuscular recovery following eccentric muscle fatigue, relative to passive rest, in active young adults. We hypothesized that both interventions would accelerate recovery and potentially reduce injury risk. Methods. Forty-one participants were randomized into two groups: TECAR therapy (Group 1) and VT (Group 2). Neuromuscular function was assessed at baseline, post-exercise, and post-intervention using tensiomyography (TMG) and electromyography (EMG). Results. Both groups showed a significant increase in EMG MDF intercept after exercise. Post-intervention, VT induced a further rise in this parameter, whereas TECAR stabilized values without significant change. In the contralateral resting limb, increases persisted after exercise and passive recovery. Between-limb differences were significant only in the TECAR group. TMG analysis revealed a non-significant but large-effect increase in contraction delay (Td) post-exercise, followed by significant reductions after both interventions. In the left limb, Td changes were not significant. For maximal displacement (Dm), both VMO and VLO muscles demonstrated a significant decrease post-exercise and a marked recovery after both therapies. Other TMG parameters (Ts, Tc, Tr) showed no significant changes. Conclusions. Both TECAR and VT effectively enhanced neuromuscular recovery after eccentric exercise. TECAR demonstrated a modest but consistent advantage, particularly in normalizing muscle recruitment and restoring mechanical properties, making it suitable in contexts requiring rapid recovery. VT, however, remains a more accessible and cost-effective modality. These findings support the application of both techniques in sports recovery, while highlighting the need for further research in professional athletes and diverse exercise settings to optimize regeneration strategies and reduce injury risk. Full article
(This article belongs to the Special Issue Clinical Aspects of Return to Sport After Injuries)
Show Figures

Figure 1

Back to TopTop