Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (24,516)

Search Parameters:
Keywords = disruption

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 854 KB  
Review
Digital Devices Use and Sleep in Adolescents: An Umbrella Review
by Maria Fiore, Desiree Arena, Valentina Crisafi, Vittorio Grieco, Marco Palella, Chiara Timperanza, Antonio Conti, Giuseppe Cuffari and Margherita Ferrante
Int. J. Environ. Res. Public Health 2025, 22(10), 1517; https://doi.org/10.3390/ijerph22101517 (registering DOI) - 2 Oct 2025
Abstract
This umbrella review provides a comprehensive synthesis of the available evidence on the relationship between digital device use and adolescent sleep. It summarizes results from systematic reviews and meta-analyses, presenting the magnitude and direction of observed associations. A total of seven systematic reviews, [...] Read more.
This umbrella review provides a comprehensive synthesis of the available evidence on the relationship between digital device use and adolescent sleep. It summarizes results from systematic reviews and meta-analyses, presenting the magnitude and direction of observed associations. A total of seven systematic reviews, including five qualitative reviews and two meta-analyses, were included, comprising 127 primary studies with a combined sample of 867,003 participants. The findings suggest a negative impact of digital device use on various sleep parameters, including sleep duration, bedtime procrastination, and sleep quality. Devices such as smartphones and computers were found to have a greater adverse effect, while television use showed a weaker association. The most significant disruptions were observed in relation to social media and internet use, with problematic usage leading to delayed bedtimes, shorter sleep duration, and increased sleep onset latency. The review also highlights the role of timing and duration of device use, with late-night use particularly contributing to sleep disturbances. Biological, psychological, and social mechanisms are proposed as potential pathways underlying these effects. Despite moderate evidence supporting the negative impact of digital media on sleep, there is considerable heterogeneity across studies, and many relied on self-reported data, which may limit the generalizability of the findings. Future research should aim to standardize exposure and outcome measures, incorporate objective data collection methods, and explore causal relationships through longitudinal studies. This umbrella review underscores the importance of developing targeted public health strategies, parental guidance, and clinical awareness to mitigate the potential adverse effects of digital device use on adolescent sleep and mental health. Full article
Show Figures

Figure 1

26 pages, 1645 KB  
Review
Mechanotransduction-Epigenetic Coupling in Pulmonary Regeneration: Multifunctional Bioscaffolds as Emerging Tools
by Jing Wang and Anmin Xu
Pharmaceuticals 2025, 18(10), 1487; https://doi.org/10.3390/ph18101487 (registering DOI) - 2 Oct 2025
Abstract
Pulmonary fibrosis (PF) is a progressive and fatal lung disease characterized by irreversible alveolar destruction and pathological extracellular matrix (ECM) deposition. Currently approved agents (pirfenidone and nintedanib) slow functional decline but do not reverse established fibrosis or restore functional alveoli. Multifunctional bioscaffolds present [...] Read more.
Pulmonary fibrosis (PF) is a progressive and fatal lung disease characterized by irreversible alveolar destruction and pathological extracellular matrix (ECM) deposition. Currently approved agents (pirfenidone and nintedanib) slow functional decline but do not reverse established fibrosis or restore functional alveoli. Multifunctional bioscaffolds present a promising therapeutic strategy through targeted modulation of critical cellular processes, including proliferation, migration, and differentiation. This review synthesizes recent advances in scaffold-based interventions for PF, with a focus on their dual mechano-epigenetic regulatory functions. We delineate how scaffold properties (elastic modulus, stiffness gradients, dynamic mechanical cues) direct cell fate decisions via mechanotransduction pathways, exemplified by focal adhesion–cytoskeleton coupling. Critically, we highlight how pathological mechanical inputs establish and perpetuate self-reinforcing epigenetic barriers to regeneration through aberrant chromatin states. Furthermore, we examine scaffolds as platforms for precision epigenetic drug delivery, particularly controlled release of inhibitors targeting DNA methyltransferases (DNMTi) and histone deacetylases (HDACi) to disrupt this mechano-reinforced barrier. Evidence from PF murine models and ex vivo lung slice cultures demonstrate scaffold-mediated remodeling of the fibrotic niche, with key studies reporting substantial reductions in collagen deposition and significant increases in alveolar epithelial cell markers following intervention. These quantitative outcomes highlight enhanced alveolar epithelial plasticity and upregulating antifibrotic gene networks. Emerging integration of stimuli-responsive biomaterials, CRISPR/dCas9-based epigenetic editors, and AI-driven design to enhance scaffold functionality is discussed. Collectively, multifunctional bioscaffolds hold significant potential for clinical translation by uniquely co-targeting mechanotransduction and epigenetic reprogramming. Future work will need to resolve persistent challenges, including the erasure of pathological mechanical memory and precise spatiotemporal control of epigenetic modifiers in vivo, to unlock their full therapeutic potential. Full article
(This article belongs to the Section Pharmacology)
14 pages, 1552 KB  
Article
Antifungal Activity of 8-Hydroxyquinoline Derivatives Against Candida auris, Candida haemulonii, Cryptococcus neoformans, and Cryptococcus gattii Complex
by Maria Eduarda Krummenauer, Matheus da Silva Camargo, Caroline de Bem Gentz, Marcela Silva Lopes, Letícia Feliciani da Luz, Danielle da Silva Trentin, Belisa Ávila Rodrigues, Karine Rigon Zimmer, Saulo Fernandes de Andrade and Marilene Henning Vainstein
Pathogens 2025, 14(10), 999; https://doi.org/10.3390/pathogens14100999 (registering DOI) - 2 Oct 2025
Abstract
Invasive fungal infections and the emergence of antifungal resistance pose significant challenges to public health. This study evaluates the antifungal activity of two 8-hydroxyquinoline derivatives, PH265 and PH276, against Cryptococcus spp., Candida auris, and Candida haemulonii. Using the EUCAST protocol, both [...] Read more.
Invasive fungal infections and the emergence of antifungal resistance pose significant challenges to public health. This study evaluates the antifungal activity of two 8-hydroxyquinoline derivatives, PH265 and PH276, against Cryptococcus spp., Candida auris, and Candida haemulonii. Using the EUCAST protocol, both compounds demonstrated broad-spectrum antifungal activity, with MICs ranging from 0.5 to 8 μg/mL. PH276 exhibited synergistic effects with fluconazole and caspofungin against C. haemulonii (FIC ≤ 0.5). The derivatives inhibited C. neoformans biofilm formation at higher concentrations and modulated polysaccharide capsule formation in Cryptococcus spp. In vivo toxicity assays in Tenebrio molitor, Galleria mellonella, and Caenorhabditis elegans revealed no significant adverse effects, with survival rates comparable to controls. These findings highlight PH265 and PH276 as promising antifungal agents with biofilm-disrupting properties, capsule-modulating effects, and low toxicity, supporting their potential for therapeutic development. Full article
Show Figures

Figure 1

27 pages, 3948 KB  
Article
Fully Automated Segmentation of Cervical Spinal Cord in Sagittal MR Images Using Swin-Unet Architectures
by Rukiye Polattimur, Emre Dandıl, Mehmet Süleyman Yıldırım and Utku Şenol
J. Clin. Med. 2025, 14(19), 6994; https://doi.org/10.3390/jcm14196994 (registering DOI) - 2 Oct 2025
Abstract
Background/Objectives: The spinal cord is a critical component of the central nervous system that transmits neural signals between the brain and the body’s peripheral regions through its nerve roots. Despite being partially protected by the vertebral column, the spinal cord remains highly [...] Read more.
Background/Objectives: The spinal cord is a critical component of the central nervous system that transmits neural signals between the brain and the body’s peripheral regions through its nerve roots. Despite being partially protected by the vertebral column, the spinal cord remains highly vulnerable to trauma, tumors, infections, and degenerative or inflammatory disorders. These conditions can disrupt neural conduction, resulting in severe functional impairments, such as paralysis, motor deficits, and sensory loss. Therefore, accurate and comprehensive spinal cord segmentation is essential for characterizing its structural features and evaluating neural integrity. Methods: In this study, we propose a fully automated method for segmentation of the cervical spinal cord in sagittal magnetic resonance (MR) images. This method facilitates rapid clinical evaluation and supports early diagnosis. Our approach uses a Swin-Unet architecture, which integrates vision transformer blocks into the U-Net framework. This enables the model to capture both local anatomical details and global contextual information. This design improves the delineation of the thin, curved, low-contrast cervical cord, resulting in more precise and robust segmentation. Results: In experimental studies, the proposed Swin-Unet model (SWU1), which uses transformer blocks in the encoder layer, achieved Dice Similarity Coefficient (DSC) and Hausdorff Distance 95 (HD95) scores of 0.9526 and 1.0707 mm, respectively, for cervical spinal cord segmentation. These results confirm that the model can consistently deliver precise, pixel-level delineations that are structurally accurate, which supports its reliability for clinical assessment. Conclusions: The attention-enhanced Swin-Unet architecture demonstrated high accuracy in segmenting thin and complex anatomical structures, such as the cervical spinal cord. Its ability to generalize with limited data highlights its potential for integration into clinical workflows to support diagnosis, monitoring, and treatment planning. Full article
(This article belongs to the Special Issue Artificial Intelligence and Deep Learning in Medical Imaging)
Show Figures

Figure 1

16 pages, 1003 KB  
Article
Double-Layered Microphysiological System Made of Polyethylene Terephthalate with Trans-Epithelial Electrical Resistance Measurement Function for Uniform Detection Sensitivity
by Naokata Kutsuzawa, Hiroko Nakamura, Laner Chen, Ryota Fujioka, Shuntaro Mori, Noriyuki Nakatani, Takahiro Yoshioka and Hiroshi Kimura
Biosensors 2025, 15(10), 663; https://doi.org/10.3390/bios15100663 (registering DOI) - 2 Oct 2025
Abstract
Microphysiological systems (MPSs) have emerged as alternatives to animal testing in drug development, following the FDA Modernization Act 2.0. Double-layer channel-type MPS chips with porous membranes are widely used for modeling various organs, including the intestines, blood–brain barrier, renal tubules, and lungs. However, [...] Read more.
Microphysiological systems (MPSs) have emerged as alternatives to animal testing in drug development, following the FDA Modernization Act 2.0. Double-layer channel-type MPS chips with porous membranes are widely used for modeling various organs, including the intestines, blood–brain barrier, renal tubules, and lungs. However, these chips faced challenges owing to optical interference caused by light scattering from the porous membrane, which hinders cell observation. Trans-epithelial electrical resistance (TEER) measurement offers a non-invasive method for assessing barrier integrity in these chips. However, existing electrode-integrated MPS chips for TEER measurement have non-uniform current densities, leading to compromised measurement accuracy. Additionally, chips made from polydimethylsiloxane have been associated with drug absorption issues. This study developed an electrode-integrated MPS chip for TEER measurement with a uniform current distribution and minimal drug absorption. Through a finite element method simulation, electrode patterns were optimized and incorporated into a polyethylene terephthalate (PET)-based chip. The device was fabricated by laminating PET films, porous membranes, and patterned gold electrodes. The chip’s performance was evaluated using a perfused Caco-2 intestinal model. TEER levels increased and peaked on day 5 when cells formed a monolayer, and then they decreased with the development of villi-like structures. Concurrently, capacitance increased, indicating microvilli formation. Exposure to staurosporine resulted in a dose-dependent reduction in TEER, which was validated by immunostaining, indicating a disruption of the tight junction. This study presents a TEER measurement MPS platform with a uniform current density and reduced drug absorption, thereby enhancing TEER measurement reliability. This system effectively monitors barrier integrity and drug responses, demonstrating its potential for non-animal drug-testing applications. Full article
30 pages, 2746 KB  
Article
Neurobiological and Existential Profiles in Posttraumatic Stress Disorder: The Role of Serotonin, Cortisol, Noradrenaline, and IL-12 Across Chronicity and Age
by Barbara Paraniak-Gieszczyk and Ewa Alicja Ogłodek
Int. J. Mol. Sci. 2025, 26(19), 9636; https://doi.org/10.3390/ijms26199636 (registering DOI) - 2 Oct 2025
Abstract
Posttraumatic Stress Disorder (PTSD) is characterized by disruptions in central nervous system functioning and existential crises, yet the mechanistic links between neurobiological processes and dimensions of life meaning and identity remain underexplored. The aim of this study was to examine the relationships between [...] Read more.
Posttraumatic Stress Disorder (PTSD) is characterized by disruptions in central nervous system functioning and existential crises, yet the mechanistic links between neurobiological processes and dimensions of life meaning and identity remain underexplored. The aim of this study was to examine the relationships between stress biomarkers (serotonin, cortisol, noradrenaline, and interleukin-12 [IL-12]) and existential attitudes (measured using the Life Attitude Profile (Revised) [LAP-R]) in mining rescuers, considering PTSD duration and participant age. This cross-sectional study included 92 men aged 18–50 years, divided into three groups: no PTSD (n = 28), PTSD ≤ 5 years (n = 33), and PTSD > 5 years (n = 31). Serum levels of four biomarkers and LAP-R scores across eight domains were evaluated. Statistical analyses employed nonparametric tests, including the Kruskal–Wallis test for overall group differences (with Wilcoxon r effect sizes for pairwise comparisons, Mann–Whitney U tests for post hoc pairwise comparisons, and Spearman’s rank correlations for biomarker–LAP-R associations. Age effects were assessed in two strata: 18–35 years and 36–50 years. Kruskal–Wallis tests revealed significant group differences (p < 0.001) for all biomarkers and most LAP-R domains, with very large effect sizes (r > 0.7) in pairwise comparisons for serotonin (control median: 225.2 ng/mL vs. PTSD ≤ 5y: 109.9 ng/mL, r = 0.86; vs. PTSD > 5y: 148.0 ng/mL, r = 0.86), IL-12 (control: ~8.0 pg/mL vs. PTSD ≤ 5y: 62.4 pg/mL, r = 0.86; vs. PTSD > 5y: ~21.0 pg/mL, r = 0.69), and LAP-R scales such as Life Purpose (control: 54.0 vs. PTSD ≤ 5y: 39.0, r = 0.78; vs. PTSD > 5y: 20.0, r = 0.86) and Coherence (control: 53.0 vs. PTSD ≤ 5y: 34.0, r = 0.85; vs. PTSD > 5y: 23.0, r = 0.86). The PTSD ≤ 5y group exhibited decreased serotonin, cortisol (median: 9.8 µg/dL), and noradrenaline (271.7 pg/mL) with elevated IL-12 (all p < 0.001 vs. control), alongside reduced LAP-R scores. The PTSD > 5y group showed elevated cortisol (median: ~50.0 µg/dL, p < 0.001 vs. control, r = 0.86) and normalized IL-12 but persistent LAP-R deficits. Older participants (36–50 years) in the PTSD ≤ 5y group displayed improved existential attitudes (e.g., Life Purpose: 47.0 vs. 27.5 in 18–35 years, p < 0.001), whereas in PTSD > 5y, age exacerbated biological stress (cortisol: 57.6 µg/dL vs. 36.1 µg/dL, p = 0.003). Spearman correlations revealed stage-specific patterns, such as negative associations between cortisol and Death Acceptance in PTSD > 5y (ρ = −0.49, p = 0.005). PTSD alters biomarker levels and their associations with existential dimensions, with duration and age modulating patient profiles. These findings underscore the necessity for integrated therapies addressing both biological and existential facets of PTSD. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

27 pages, 6869 KB  
Article
Evaluation of Cyberattack Detection Models in Power Grids: Automated Generation of Attack Processes
by Davide Cerotti, Daniele Codetta Raiteri, Giovanna Dondossola, Lavinia Egidi, Giuliana Franceschinis, Luigi Portinale, Davide Savarro and Roberta Terruggia
Appl. Sci. 2025, 15(19), 10677; https://doi.org/10.3390/app151910677 (registering DOI) - 2 Oct 2025
Abstract
The recent growing adversarial activity against critical systems, such as the power grid, has raised attention on the necessity of appropriate measures to manage the related risks. In this setting, our research focuses on developing tools for early detection of adversarial activities, taking [...] Read more.
The recent growing adversarial activity against critical systems, such as the power grid, has raised attention on the necessity of appropriate measures to manage the related risks. In this setting, our research focuses on developing tools for early detection of adversarial activities, taking into account the specificities of the energy sector. We developed a framework to design and deploy AI-based detection models, and since one cannot risk disrupting regular operation with on-site tests, we also included a testbed for evaluation and fine-tuning. In the test environment, adversarial activity that produces realistic artifacts can be injected and monitored, and evidence analyzed by the detection models. In this paper we concentrate on the emulation of attacks inside our framework: A tool called SecuriDN is used to define, through a graphical interface, the network in terms of devices, applications, and protection mechanisms. Using this information, SecuriDN produces sequences of attack steps (based on the MITRE ATT&CK project) that are interpreted and executed by software called Netsploit. A case study related to Distributed Energy Resources is presented in order to show the process stages, highlight the possibilities given by our framework, and discuss possible limitations and future improvements. Full article
(This article belongs to the Special Issue Advanced Smart Grid Technologies, Applications and Challenges)
Show Figures

Figure 1

18 pages, 8074 KB  
Article
Auranofin Ameliorates Gouty Inflammation by Suppressing NLRP3 Activation and Neutrophil Migration via the IL-33/ST2–CXCL1 Axis
by Hyeyeon Yoo, Ahyoung Choi, Minjun Kim, Yongseok Gye, Hyeonju Jo, Seung-Ki Kwok, Youngjae Park and Jennifer Jooha Lee
Cells 2025, 14(19), 1541; https://doi.org/10.3390/cells14191541 (registering DOI) - 2 Oct 2025
Abstract
Gout is a form of sterile inflammatory arthritis in which monosodium urate (MSU) crystals deposit and provoke a neutrophil-predominant response, primarily driven by activation of the NACHT, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome. Here, we show that auranofin, a Food [...] Read more.
Gout is a form of sterile inflammatory arthritis in which monosodium urate (MSU) crystals deposit and provoke a neutrophil-predominant response, primarily driven by activation of the NACHT, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome. Here, we show that auranofin, a Food and Drug Administration (FDA)-approved anti-rheumatic agent, exerts anti-inflammatory effects in both in vitro and in vivo models of gout. Auranofin inhibited NLRP3 inflammasome activation in human THP-1 cells and murine macrophages, leading to reduced cleavage of caspase-1, interleukin-1β (IL-1β), and interleukin-18 (IL-18). In MSU crystal-induced mouse models, auranofin treatment reduced paw swelling, serum cytokine levels, and tissue inflammation. Notably, auranofin suppressed neutrophil migration and decreased expression of C-X-C motif chemokine ligand 1 (CXCL1) in inflamed foot tissue and air-pouch exudates. Mechanistically, auranofin disrupted the interleukin-33 (IL-33)/suppression of tumorigenicity 2 (ST2) axis, a key signaling pathway promoting neutrophil recruitment. Overexpression of IL-33 abolished the anti-inflammatory effects of auranofin, highlighting the central role of IL-33 in gout pathogenesis. Together, our findings suggest that auranofin alleviates MSU-induced inflammation by concurrently inhibiting NLRP3 inflammasome activation and IL-33-mediated neutrophil recruitment, supporting its potential as a dual-action therapeutic candidate for gout. Full article
(This article belongs to the Section Cellular Immunology)
Show Figures

Figure 1

23 pages, 2752 KB  
Article
AI-Driven Outage Management with Exploratory Data Analysis, Predictive Modeling, and LLM-Based Interface Integration
by Kian Ansarinejad, Ying Huang and Nita Yodo
Energies 2025, 18(19), 5244; https://doi.org/10.3390/en18195244 (registering DOI) - 2 Oct 2025
Abstract
Power outages pose considerable risks to the reliability of electric grids, affecting both consumers and utilities through service disruptions and potential economic losses. This study analyzes a historical outage dataset from a Regional Transmission Organization (RTO) to reveal key patterns and trends that [...] Read more.
Power outages pose considerable risks to the reliability of electric grids, affecting both consumers and utilities through service disruptions and potential economic losses. This study analyzes a historical outage dataset from a Regional Transmission Organization (RTO) to reveal key patterns and trends that suggest outage management strategies. By integrating exploratory data analysis, predictive modeling, and a Large Language Model (LLM)-based interface integration, as well as data visualization techniques, we identify and present critical drivers of outage duration and frequency. A random forest regressor trained on features including planned duration, facility name, outage owner, priority, season, and equipment type proved highly effective for predicting outage duration with high accuracy. This predictive framework underscores the practical value of incorporating planning information and seasonal context in anticipating outage timelines. The findings of this study not only deepen the understanding of temporal and spatial outage dynamics but also provide valuable insights for utility companies and researchers. Utility companies can use these results to better predict outage durations, allocate resources more effectively, and improve service restoration time. Researchers can leverage this analysis to enhance future models and methodologies for studying outage patterns, ensuring that artificial intelligence (AI)-driven methods can contribute to improving management strategies. The broader impact of this study is to ensure that the insights gained can be applied to strengthen the reliability and resilience of power grids or energy systems in general. Full article
(This article belongs to the Special Issue Artificial Intelligence in Energy Sector)
Show Figures

Figure 1

38 pages, 2633 KB  
Review
Preservation of Fruit Quality at Postharvest Through Plant-Based Extracts and Elicitors
by Dixin Chen, Li Liu, Zhongkai Gao, Jianshe Zhao, Yingjun Yang and Zhiguo Shen
Horticulturae 2025, 11(10), 1186; https://doi.org/10.3390/horticulturae11101186 (registering DOI) - 2 Oct 2025
Abstract
Plant-based extracts and elicitors (signaling molecules that activate the fruit’s innate defense responses) have emerged as promising and sustainable alternatives to synthetic chemicals for preserving postharvest fruit quality and extending shelf life. This review provides a comprehensive analysis, uniquely complemented by a bibliometric [...] Read more.
Plant-based extracts and elicitors (signaling molecules that activate the fruit’s innate defense responses) have emerged as promising and sustainable alternatives to synthetic chemicals for preserving postharvest fruit quality and extending shelf life. This review provides a comprehensive analysis, uniquely complemented by a bibliometric assessment of the research landscape from 2005 to 2025, to identify key trends and effective solutions. This review systematically examined the efficacy of various natural compounds including essential oils (complex volatile compounds with potent antimicrobial activity such as lemongrass and thyme), phenolic-rich botanical extracts like neem and aloe vera, and plant-derived elicitors such as methyl jasmonate and salicylic acid. Their preservative mechanisms are multifaceted, involving direct antimicrobial activity by disrupting microbial membranes, potent antioxidant effects that scavenge free radicals, and the induction of a fruit’s innate defense systems, enhancing the activity of enzymes like superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). Applications of edible coatings of chitosan or aloe vera gel, nano-emulsions, and pre- or postharvest treatments effectively reduce decay by Botrytis cinerea and Penicillium spp.), delay ripening by suppressing ethylene production, minimize water loss, and alleviate chilling injury. Despite their potential, challenges such as sensory changes, batch-to-batch variability, regulatory hurdles, and scaling production costs limit widespread commercialization. Future prospects hinge on innovative technologies like nano-encapsulation to improve stability and mask flavors, hurdle technology combining treatments synergistically, and optimizing elicitor application protocols. This review demonstrates the potential of continued research and advanced formulation to create plant-based preservatives, that can become integral components of an eco-friendly postharvest management strategy, effectively reducing losses and meeting consumer demands for safe, high-quality fruit. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Graphical abstract

18 pages, 1009 KB  
Article
Augmented Reality and Inferential Comprehension in Advanced EFL Learners: Disfluency, Metacognitive Reflection, and Productive Struggle
by Benjamin Roman and Jose Belda-Medina
Educ. Sci. 2025, 15(10), 1311; https://doi.org/10.3390/educsci15101311 - 2 Oct 2025
Abstract
Augmented Reality (AR) continues to generate interest as a pedagogical tool in contexts where English is a Foreign Language (EFL). However, its role in developing higher-order cognitive skills, such as inferencing, remains underexplored. This exploratory, mixed-methods study investigates whether AR can scaffold inference-making [...] Read more.
Augmented Reality (AR) continues to generate interest as a pedagogical tool in contexts where English is a Foreign Language (EFL). However, its role in developing higher-order cognitive skills, such as inferencing, remains underexplored. This exploratory, mixed-methods study investigates whether AR can scaffold inference-making in advanced EFL learners. Forty-seven university students in XX were assigned to either a control group (CG) or an experimental group (EG). Both groups read Edgar Allan Poe’s “The Tell-Tale Heart” in digital format. The CG received a conventional inference-based comprehension lesson, while the EG engaged with two interactive AR scenes developed using the Onirix Studio platform. Pre- and post-tests assessed inferential comprehension, and qualitative data were gathered through open-ended responses. While the CG demonstrated modest post-test gains and the EG showed a slight decline, neither change reached statistical significance. Notably, qualitative findings revealed that a salient AR element—a ticking clock—likely prompted misinterpretation in the EG, disrupting symbolic reasoning and contributing to schema misalignment. However, some learners exhibited metacognitive insight suggestive of productive struggle. These results suggest that AR may hold untapped potential for developing metacognitive reflection and critical literacy. Directions for future research are outlined. Full article
(This article belongs to the Section Technology Enhanced Education)
Show Figures

Figure 1

38 pages, 6435 KB  
Article
FedResilience: A Federated Classification System to Ensure Critical LTE Communications During Natural Disasters
by Alvaro Acuña-Avila, Christian Fernández-Campusano, Héctor Kaschel and Raúl Carrasco
Systems 2025, 13(10), 866; https://doi.org/10.3390/systems13100866 - 2 Oct 2025
Abstract
Natural disasters can disrupt communication services, leading to severe consequences in emergencies. Maintaining connectivity and communication quality during crises is crucial for coordinating rescues, providing critical information, and ensuring reliable and secure service. This study proposes FedResilience, a Federated Learning (FL) system for [...] Read more.
Natural disasters can disrupt communication services, leading to severe consequences in emergencies. Maintaining connectivity and communication quality during crises is crucial for coordinating rescues, providing critical information, and ensuring reliable and secure service. This study proposes FedResilience, a Federated Learning (FL) system for classifying Long-Term Evolution (LTE) network coverage in both normal operation and natural disaster scenarios. A three-tier architecture is implemented: (i) edge nodes, (ii) a central aggregation server, and (iii) a batch processing interface. Five FL aggregation methods (FedAvg, FedProx, FedAdam, FedYogi, and FedAdagrad) were evaluated under normal conditions and disaster simulations. The results show that FedAdam outperforms the other methods under normal conditions, achieving an F1 score of 0.7271 and a Global System Adherence (SAglobal) of 91.51%. In disaster scenarios, FedProx was superior, with an F1 score of 0.7946 and SAglobal of 61.73%. The innovation in this study is the introduction of the System Adherence (SA) metric to evaluate the predictive fidelity of the model. The system demonstrated robustness against Non-Independent and Identically Distributed (non-IID) data distributions and the ability to handle significant class imbalances. FedResilience serves as a tool for companies to implement automated corrective actions, contributing to the predictive maintenance of LTE networks through FL while preserving data privacy. Full article
(This article belongs to the Special Issue Data-Driven Decision Making for Complex Systems)
17 pages, 1269 KB  
Review
Ethylene-Triggered Rice Root System Architecture Adaptation Response to Soil Compaction
by Yuxiang Li, Bingkun Ge, Chunxia Yan, Zhi Qi, Rongfeng Huang and Hua Qin
Agriculture 2025, 15(19), 2071; https://doi.org/10.3390/agriculture15192071 - 2 Oct 2025
Abstract
Soil compaction is a major constraint on global agriculture productivity. It disrupts soil structure, reduces soil porosity and fertility, and increases mechanical impedance, thereby restricting root growth and crop yield. Recent studies on rice (Oryza sativa) reveal that the phytohormone ethylene [...] Read more.
Soil compaction is a major constraint on global agriculture productivity. It disrupts soil structure, reduces soil porosity and fertility, and increases mechanical impedance, thereby restricting root growth and crop yield. Recent studies on rice (Oryza sativa) reveal that the phytohormone ethylene serves as a primary signal and functions as a hub in orchestrating root response to soil compaction. Mechanical impedance promotes ethylene biosynthesis and compacted soil impedes ethylene diffusion, resulting in ethylene accumulation in root tissues and triggering a complex hormonal crosstalk network to orchestrate root system architectural modification to facilitate plant adaptation to compacted soil. This review summarizes the recent advances on rice root adaptation response to compacted soil and emphasizes the regulatory network triggered by ethylene, which will improve our understanding of the role of ethylene in root growth and development and provide a pathway for breeders to optimize crop performance under specific agronomic conditions. Full article
17 pages, 2528 KB  
Article
Potential Modulatory Effects of β-Hydroxy-β-Methylbutyrate on Type I Collagen Fibrillogenesis: Preliminary Study
by Izabela Świetlicka, Eliza Janek, Krzysztof Gołacki, Dominika Krakowiak, Michał Świetlicki and Marta Arczewska
Int. J. Mol. Sci. 2025, 26(19), 9621; https://doi.org/10.3390/ijms26199621 - 2 Oct 2025
Abstract
β-Hydroxy-β-methylbutyrate (HMB), a natural metabolite derived from the essential amino acid leucine, is primarily recognised for its anabolic and anti-catabolic effects on skeletal muscle tissue. Recent studies indicate that HMB may also play a role in influencing the structural organisation of extracellular matrix [...] Read more.
β-Hydroxy-β-methylbutyrate (HMB), a natural metabolite derived from the essential amino acid leucine, is primarily recognised for its anabolic and anti-catabolic effects on skeletal muscle tissue. Recent studies indicate that HMB may also play a role in influencing the structural organisation of extracellular matrix (ECM) components, particularly collagen, which is crucial for maintaining the mechanical integrity of connective tissues. In this investigation, bovine type I collagen was polymerised in the presence of two concentrations of HMB (0.025 M and 0.25 M) to explore its potential function as a molecular modulator of fibrillogenesis. The morphology of the resulting collagen fibres and their molecular architecture were examined using atomic force microscopy (AFM) and Fourier-transform infrared (FTIR) spectroscopy. The findings demonstrated that lower levels of HMB facilitated the formation of more regular and well-organised fibrillar structures, exhibiting increased D-band periodicity and enhanced stabilisation of the native collagen triple helix, as indicated by Amide I and III band profiles. Conversely, higher concentrations of HMB led to significant disruption of fibril morphology and alterations in secondary structure, suggesting that HMB interferes with the self-assembly of collagen monomers. These structural changes are consistent with a non-covalent influence on interchain interactions and fibril organisation, to which hydrogen bonding and short-range electrostatics may contribute. Collectively, the results highlight the potential of HMB as a small-molecule regulator for soft-tissue matrix engineering, extending its consideration beyond metabolic supplementation towards controllable, materials-oriented modulation of ECM structure. Full article
(This article belongs to the Special Issue Advanced Spectroscopy Research: New Findings and Perspectives)
Show Figures

Graphical abstract

16 pages, 237 KB  
Review
Norms of Masculinities and Gender Socialization Among Young Boys in South Africa: Implications for Gender-Based Violence, Policies, and Interventions
by Judith I. Ani and Lucky Norah Katende-Kyenda
Sexes 2025, 6(4), 54; https://doi.org/10.3390/sexes6040054 - 2 Oct 2025
Abstract
Masculinity norms and gender socialization play a critical role in shaping boys’ attitudes, behaviours, and interactions within society. In South Africa, historical legacies of colonialism and apartheid, coupled with deeply ingrained cultural and societal expectations, have contributed to rigid masculinity norms that emphasize [...] Read more.
Masculinity norms and gender socialization play a critical role in shaping boys’ attitudes, behaviours, and interactions within society. In South Africa, historical legacies of colonialism and apartheid, coupled with deeply ingrained cultural and societal expectations, have contributed to rigid masculinity norms that emphasize dominance, emotional restraint, and aggression. These constructs not only influence boys’ development but also have significant implications for gender-based violence (GBV). This paper explores how norms of masculinity and processes of gender socialization among boys in South Africa shape attitudes and behaviours that contribute to gender-based violence (GBV). The central aim is to offer a critical theoretical synthesis and contextual analysis that informs the development of gender-equitable policies and interventions. Drawing on theoretical frameworks such as hegemonic masculinities, intersectionality, and social learning theory, this study examines how historical, cultural, and socio-economic factors shape gender socialization and influence boys’ developmental trajectories. Through an intersectional lens, this paper underscores the urgent need to challenge harmful masculinity norms and promote alternative models that encourage emotional expression, empathy, and equitable gender relations. Finally, it provides recommendations on how these harmful norms can be disrupted through educational, community, media, and policy-level reforms to foster healthier masculinity norms and reduce GBV in South Africa. Full article
Back to TopTop