Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,859)

Search Parameters:
Keywords = distorted current

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6267 KB  
Article
Local and Remote Digital Pre-Distortion for 5G Power Amplifiers with Safe Deep Reinforcement Learning
by Christian Spano, Damiano Badini, Lorenzo Cazzella and Matteo Matteucci
Sensors 2025, 25(19), 6102; https://doi.org/10.3390/s25196102 - 3 Oct 2025
Abstract
The demand for higher data rates and energy efficiency in wireless communication systems drives power amplifiers (PAs) into nonlinear operation, causing signal distortions that hinder performance. Digital Pre-Distortion (DPD) addresses these distortions, but existing systems face challenges with complexity, adaptability, and resource limitations. [...] Read more.
The demand for higher data rates and energy efficiency in wireless communication systems drives power amplifiers (PAs) into nonlinear operation, causing signal distortions that hinder performance. Digital Pre-Distortion (DPD) addresses these distortions, but existing systems face challenges with complexity, adaptability, and resource limitations. This paper introduces DRL-DPD, a Deep Reinforcement Learning-based solution for DPD that aims to reduce computational burden, improve adaptation to dynamic environments, and minimize resource consumption. To ensure safety and regulatory compliance, we integrate an ad-hoc Safe Reinforcement Learning algorithm, CRE-DDPG (Cautious-Recoverable-Exploration Deep Deterministic Policy Gradient), which prevents ACLR measurements from falling below safety thresholds. Simulations and hardware experiments demonstrate the potential of DRL-DPD with CRE-DDPG to surpass current DPD limitations in both local and remote configurations, paving the way for more efficient communication systems, especially in the context of 5G and beyond. Full article
Show Figures

Figure 1

13 pages, 3051 KB  
Article
Leakage Current Equalization via Thick Semiconducting Coatings Suppresses Pin Corrosion in Disc Insulators
by Cong Zhang, Hongyan Zheng, Zikui Shen, Junbin Su, Yibo Yang, Heng Zhong and Xiaotao Fu
Energies 2025, 18(19), 5246; https://doi.org/10.3390/en18195246 - 2 Oct 2025
Abstract
In coastal hot and humid regions, the steel pin of AC porcelain insulators often suffers from severe electrochemical corrosion due to surface contamination and moisture, leading to insulator string breakage. Contrary to the common belief that AC corrosion is negligible, this study reveals [...] Read more.
In coastal hot and humid regions, the steel pin of AC porcelain insulators often suffers from severe electrochemical corrosion due to surface contamination and moisture, leading to insulator string breakage. Contrary to the common belief that AC corrosion is negligible, this study reveals the significant role of the DC component in leakage currents and the synergy of this DC component with localized high current densities in accelerating corrosion, based on field investigations and experiments. Using a simulation model based on the Suwarno equivalent circuit, it is shown that non-linear contamination causes highly non-sinusoidal leakage currents, with total harmonic distortion up to 40% and a DC component of approximately 22%. To mitigate this, a conductive silicone rubber coating is proposed to block moisture and distribute leakage current evenly, keeping surface current density below the critical threshold of 100 A/m2. Simulations indicate that a 2 mm thick coating with conductivity around 10−4 S/m effectively reduces current density to a safe level. Accelerated corrosion tests confirm that this conductive coating significantly suppresses pitting corrosion caused by high current densities, outperforming traditional insulating coatings. This study presents a practical and effective approach for protecting AC insulators in harsh environments, contributing to improved transmission line reliability in high-temperature and high-humidity regions. Full article
(This article belongs to the Special Issue Advances in High-Voltage Engineering and Insulation Technologies)
Show Figures

Figure 1

15 pages, 4024 KB  
Article
Comparative Analysis of Efficiency and Harmonic Generation in Multiport Converters: Study of Two Operating Conditions
by Francisco J. Arizaga, Juan M. Ramírez, Janeth A. Alcalá, Julio C. Rosas-Caro and Armando G. Rojas-Hernández
World Electr. Veh. J. 2025, 16(10), 566; https://doi.org/10.3390/wevj16100566 - 2 Oct 2025
Abstract
This study presents a comparative analysis of efficiency and harmonic generation in Triple Active Bridge (TAB) converters under two operating configurations: Case I, with one input source and two loads, and Case II, with two input sources and one load. Two modulation strategies, [...] Read more.
This study presents a comparative analysis of efficiency and harmonic generation in Triple Active Bridge (TAB) converters under two operating configurations: Case I, with one input source and two loads, and Case II, with two input sources and one load. Two modulation strategies, Single-Phase Shift (SPS) and Dual-Phase Shift (DPS), are evaluated through frequency-domain modeling and simulations performed in MATLAB/Simulink. The analysis is complemented by experimental validation on a laboratory prototype. The results show that DPS reduces harmonic amplitudes, decreases conduction losses, and improves output waveform quality, leading to higher efficiency compared to SPS. Harmonic current spectra and total harmonic distortion (THD) are analyzed to quantify the impact of each modulation method. The findings highlight that DPS is more suitable for applications requiring stable power transfer and improved efficiency, such as renewable energy systems, electric vehicles, and multi-source DC microgrids. Full article
(This article belongs to the Section Power Electronics Components)
Show Figures

Figure 1

18 pages, 1425 KB  
Article
Exploring DC Power Quality Measurement and Characterization Techniques
by Yara Daaboul, Daniela Istrate, Yann Le Bihan, Ludovic Bertin and Xavier Yang
Sensors 2025, 25(19), 6043; https://doi.org/10.3390/s25196043 - 1 Oct 2025
Abstract
Within the modernizing energy infrastructure of today, the integration of renewable energy sources and direct current (DC)-powered technologies calls for the re-examination of traditional alternative current (AC) networks. Low-voltage DC (LVDC) grids offer an attractive way forward in reducing conversion losses and simplifying [...] Read more.
Within the modernizing energy infrastructure of today, the integration of renewable energy sources and direct current (DC)-powered technologies calls for the re-examination of traditional alternative current (AC) networks. Low-voltage DC (LVDC) grids offer an attractive way forward in reducing conversion losses and simplifying local power management. However, ensuring reliable operation depends on a thorough understanding of DC distortions—phenomena generated by power converters, source instability, and varying loads. Two complementary traceable measurement chains are presented in this article with the purpose of measuring the steady-state DC component and the amplitude and frequency of the distortions around the DC bus with low uncertainties. One chain is optimized for laboratory environments, with high effectiveness in a controlled setup, and the other one is designed as a flexible and easily transportable solution, ensuring efficient and accurate assessments of DC distortions for field applications. In addition to our hardware solutions fully characterized by the uncertainty budget, we present the measurement method used for assessing DC distortions after evaluating the limitations of conventional AC techniques. Both arrangements are set to measure voltages of up to 1000 V, currents of up to 30 A, and frequency components of up to 150–500 kHz, with an uncertainty varying from 0.01% to less than 1%. This level of accuracy in the measurements will allow us to draw reliable conclusions regarding the dynamic behavior of future LVDC grids. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

22 pages, 6708 KB  
Article
Enhanced Model Predictive Speed Control of PMSMs Based on Duty Ratio Optimization with Integrated Load Torque Disturbance Compensation
by Tarek Yahia, Abdelsalam A. Ahmed, M. M. Ahmed, Amr El Zawawi, Z. M. S. Elbarbary, M. S. Arafath and Mosaad M. Ali
Machines 2025, 13(10), 891; https://doi.org/10.3390/machines13100891 - 30 Sep 2025
Abstract
This paper proposes an enhanced Model Predictive Direct Speed Control (MPDSC) framework for Permanent Magnet Synchronous Motor (PMSM) drives, integrating duty ratio optimization and load torque disturbance compensation to significantly improve both transient and steady-state performance. Traditional finite-control-set MPC strategies, which apply a [...] Read more.
This paper proposes an enhanced Model Predictive Direct Speed Control (MPDSC) framework for Permanent Magnet Synchronous Motor (PMSM) drives, integrating duty ratio optimization and load torque disturbance compensation to significantly improve both transient and steady-state performance. Traditional finite-control-set MPC strategies, which apply a single voltage vector per sampling interval, often suffer from steady-state ripples, elevated total harmonic distortion (THD), and high computational complexity due to exhaustive switching evaluations. The proposed approach addresses these limitations through a novel dual-stage cost function structure: the first cost function optimizes dynamic response via predictive control of speed error, while the second adaptively minimizes torque ripple and harmonic distortion by adjusting the active–zero voltage vector duty ratio without the need for manual weight tuning. Robustness against time-varying disturbances is further enhanced by integrating a real-time load torque observer into the control loop. The scheme is validated through both MATLAB/Simulink R2020a simulations and real-time experimental testing on a dSPACE 1202 rapid control prototyping platform across small- and large-scale PMSM configurations. Experimental results confirm that the proposed controller achieves a transient speed deviation of just 0.004%, a steady-state ripple of 0.01 rpm, and torque ripple as low as 0.0124 Nm, with THD reduced to approximately 5.5%. The duty ratio-based predictive modulation ensures faster settling time, improved current quality, and greater immunity to load torque disturbances compared to recent duty-ratio MPC implementations. These findings highlight the proposed DR-MPDSC as a computationally efficient and experimentally validated solution for next-generation PMSM drive systems in automotive and industrial domains. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Figure 1

14 pages, 2582 KB  
Article
Study on Fault Characteristics of Generator Circuit Breaker Switching Coil Based on Coil Current Waveforms
by Yujing Guo, Junqing Wang, Ming Yu, Yingbing Ran, Ge Xu, Yexing Wang, Jia Liu, Jumin Bao and Yu Wang
Electronics 2025, 14(19), 3864; https://doi.org/10.3390/electronics14193864 - 29 Sep 2025
Abstract
The reliability of the generator circuit breaker (GCB) switching coil affects the safe and stable operation of the power system, in which the faults of abnormal voltage, poor contact, and mechanical jamming of the switching coil can easily lead to the refusal of [...] Read more.
The reliability of the generator circuit breaker (GCB) switching coil affects the safe and stable operation of the power system, in which the faults of abnormal voltage, poor contact, and mechanical jamming of the switching coil can easily lead to the refusal of the circuit breaker, which threatens the safety of the power grid. In order to study the fault characteristics of the GCB switching coil, this paper combines multi-physical field simulation and experimental testing, establishes the electromagnetic field simulation model of the switching coil, and analyzes the characteristics of current waveforms under typical faults such as voltage abnormality, poor contact, and core jamming. Through simulation and testing to verify the mechanism of current waveform distortion under different fault states, demonstrated the change rule of characteristic parameters when the fault occurs, and provided a basis for the diagnosis of the operation status of the switching coil based on current waveform. Full article
Show Figures

Figure 1

14 pages, 10382 KB  
Article
A Low-Power, Wide-DR PPG Readout IC with VCO-Based Quantizer Embedded in Photodiode Driver Circuits
by Haejun Noh, Woojin Kim, Yongkwon Kim, Seok-Tae Koh and Hyuntak Jeon
Electronics 2025, 14(19), 3834; https://doi.org/10.3390/electronics14193834 - 27 Sep 2025
Abstract
This work presents a low-power photoplethysmography (PPG) readout integrated circuit (IC) that achieves a wide dynamic range (DR) through the direct integration of a voltage-controlled oscillator (VCO)-based quantizer into the photodiode driver. Conventional PPG readout circuits rely on either transimpedance amplifier (TIA) or [...] Read more.
This work presents a low-power photoplethysmography (PPG) readout integrated circuit (IC) that achieves a wide dynamic range (DR) through the direct integration of a voltage-controlled oscillator (VCO)-based quantizer into the photodiode driver. Conventional PPG readout circuits rely on either transimpedance amplifier (TIA) or light-to-digital converter (LDC) topologies, both of which require auxiliary DC suppression loops. These additional loops not only raise power consumption but also limit the achievable DR. The proposed design eliminates the need for such circuits by embedding a linear regulator with a mirroring scale calibrator and a time-domain quantizer. The quantizer provides first-order noise shaping, enabling accurate extraction of the AC PPG signal while the regulator directly handles the large DC current component. Post-layout simulations show that the proposed readout achieves a signal-to-noise-and-distortion ratio (SNDR) of 40.0 dB at 10 µA DC current while consuming only 0.80 µW from a 2.5 V supply. The circuit demonstrates excellent stability across process–voltage–temperature (PVT) corners and maintains high accuracy over a wide DC current range. These features, combined with a compact silicon area of 0.725 mm2 using TSMC 250 nm bipolar–CMOS–DMOS (BCD) process, make the proposed IC an attractive candidate for next-generation wearable and biomedical sensing platforms. Full article
(This article belongs to the Special Issue CMOS Integrated Circuits Design)
Show Figures

Figure 1

16 pages, 2456 KB  
Article
Effect of Mechanical Activation on Electrochemical Properties of Chalcopyrite in Iron-Containing Sulfuric Acid Solutions
by Yuxin Li, Zuyuan Tian, Xu Wang and Congren Yang
Metals 2025, 15(10), 1075; https://doi.org/10.3390/met15101075 - 25 Sep 2025
Abstract
Mechanical activation significantly enhances the leaching of chalcopyrite, a process that is fundamentally electrochemical in nature. Thus, a comprehensive understanding of its impact on the electrochemical behavior of chalcopyrite in leaching systems is crucial. This study examines the effect of mechanical activation on [...] Read more.
Mechanical activation significantly enhances the leaching of chalcopyrite, a process that is fundamentally electrochemical in nature. Thus, a comprehensive understanding of its impact on the electrochemical behavior of chalcopyrite in leaching systems is crucial. This study examines the effect of mechanical activation on the electrochemical and semiconductor properties of chalcopyrite in H2SO4 solutions containing Fe2+ or/and Fe3+ at pH = 1.5. Mechanical activation was carried out using a planetary ball mill at 700 rpm for durations ranging from 0 to 2.5 h to reduce particle size and induce lattice distortion, thereby increasing its electrochemical activity. In iron-containing electrolytes, mechanically activated chalcopyrite is more readily reduced, releasing Fe2+ and leading to a higher surface concentration of Fe2+, which consequently increases the diffusion coefficient at the solid–liquid interface. Mott–Schottky analysis revealed a decrease in flat band potentials (from 261.7 mV to 131.2 mV in 0.1 mol/L Fe3+ after 1.0 h of activation) and an elevation in Fermi levels. As a result, mechanical activation markedly accelerates the corrosion rate of chalcopyrite in ferric solutions—the corrosion current increased from 40.27 µA to 70.71 µA in 0.1 mol/L Fe3+ after 1.0 h of activation. These findings provide valuable insights for developing strategies to enhance mineral dissolution, and advance the hydrometallurgical processing of chalcopyrite. Full article
(This article belongs to the Section Extractive Metallurgy)
Show Figures

Graphical abstract

13 pages, 2641 KB  
Article
Frilled Lizard Optimization Control Strategy of Dynamic Voltage Restorer-Based Power Quality Enhancement
by C. Pearline Kamalini and M. V. Suganyadevi
Sustainability 2025, 17(19), 8573; https://doi.org/10.3390/su17198573 - 24 Sep 2025
Viewed by 76
Abstract
In the current energy landscape, power quality (PQ) emerges as a critical concern. Even when there is no fault on a line, PQ issues are common in all power networks since 90% of power systems’ loads are variable or inductive in nature. Variable [...] Read more.
In the current energy landscape, power quality (PQ) emerges as a critical concern. Even when there is no fault on a line, PQ issues are common in all power networks since 90% of power systems’ loads are variable or inductive in nature. Variable loads cannot be avoided; hence, PQ concerns such as voltage swelling and sag will always arise. Voltage sag is one of the main issues within a distribution network, resulting in financial losses for the utility company and the customer. The Dynamic Voltage Restorer (DVR) effectively addresses voltage sags and minimizes total harmonic distortion (THD) in the distribution network. This paper proposed a novel control strategy to increase the PQ in a system. A Frilled Lizard Optimization-optimized fuzzy PI controller is proposed in this work to control the inverter. This proposed method improves the DVR’s ability to correct voltage sag and reduce total harmonic distortion as soon as possible. The PI control scheme is utilized initially to reduce the oscillations and remove the steady-state error. To increase the tendency rate of the error to zero, the PI method is applied to a fuzzy logic-based compensatory stage. The proposed approach is validated using pro-type models, as well as mathematical and Simulink modelling. In the Results Section, the performance of the proposed controllers with the DVR is tabulated and compared with other DVR controller schemes described in other research papers. Full article
Show Figures

Figure 1

19 pages, 15200 KB  
Article
Integrated FCS-MPC with Synchronous Optimal Pulse-Width Modulation for Enhanced Dynamic Performance in Two-Level Voltage-Source Inverters
by Aathira Karuvaril Vijayan, Pedro F. da Costa Gonçalves, Battur Batkhishig, Babak Nahid-Mobarakeh and Ali Emadi
Electronics 2025, 14(19), 3757; https://doi.org/10.3390/electronics14193757 - 23 Sep 2025
Viewed by 107
Abstract
The adoption of synchronous optimal pulse-width modulation (SOPWM) in two-level voltage-source inverters (2L-VSIs) offers low switching-to-fundamental-frequency ratio (SFR) operation while maintaining reduced current total harmonic distortion (THD). Despite these advantages, the performance of SOPWM is highly sensitive to signal noise in the modulation [...] Read more.
The adoption of synchronous optimal pulse-width modulation (SOPWM) in two-level voltage-source inverters (2L-VSIs) offers low switching-to-fundamental-frequency ratio (SFR) operation while maintaining reduced current total harmonic distortion (THD). Despite these advantages, the performance of SOPWM is highly sensitive to signal noise in the modulation index and reference voltage angle. To prevent degradation, conventional PI controllers are conservatively tuned with slow dynamic response, which limits overall system performance. Finite control set model predictive control (FCS-MPC) integrated with SOPWM offers a promising solution, combining the fast dynamic response of FCS-MPC with the optimal steady-state performance of SOPWM. Nevertheless, the intricate tuning of weighting factors in FCS-MPC presents a significant challenge, particularly in balancing between enhanced harmonic performance and fast dynamic response. This paper introduces a simplified FCS-MPC approach that eliminates the need for complex weighting factor tuning while retaining the excellent dynamic performance of FCS-MPC and ensuring the low current THD achieved by SOPWM under steady-state conditions. The efficacy of the proposed method is validated through MATLAB/Simulink (R2023b) simulations and experimental results. Full article
Show Figures

Figure 1

18 pages, 1367 KB  
Article
Torque Smoothness for a Modified W-Type Inverter-Fed Three-Phase Induction Motor with Finite Set Model Predictive Control for Electric Vehicles
by Muhammad Ayyaz Tariq, Syed Abdul Rahman Kashif, Akhtar Rasool and Ahmed Ali
World Electr. Veh. J. 2025, 16(9), 539; https://doi.org/10.3390/wevj16090539 - 22 Sep 2025
Viewed by 288
Abstract
Ripples in the electromagnetic torque of electric vehicle (EV) motors due to poor stator voltage and control cause jerky movements, equipment failure, discomfort for passengers and drivers, and damage to the associated civil works. This paper presents the implementation of Finite Control Set [...] Read more.
Ripples in the electromagnetic torque of electric vehicle (EV) motors due to poor stator voltage and control cause jerky movements, equipment failure, discomfort for passengers and drivers, and damage to the associated civil works. This paper presents the implementation of Finite Control Set Model Predictive Control (FCSMPC) for a high-level modified W-type inverter (MWI) driving a three-phase induction motor (IM), along with validation of its performance. The proposed control strategy aims to minimize motor torque ripples and has been tested under various driving torque patterns. The results demonstrate a significant reduction in torque ripples—down to less than 1%—and acceptable levels of total harmonic distortion (THD), as verified through quality analysis of the stator currents. Moreover, a comparative assessment of voltage profiles for the electromagnetic torque and rotor speed curves has been presented for nine cases of simultaneous variations in multiple motor parameters; the results indicate that the MWI-fed motor has the best performance and the lowest sensitivity to the variations. Full article
Show Figures

Figure 1

41 pages, 1026 KB  
Review
Fibrosis in Immune-Mediated and Autoimmune Disorders
by Magdalena Żurawek, Iwona Ziółkowska-Suchanek and Katarzyna Iżykowska
J. Clin. Med. 2025, 14(18), 6636; https://doi.org/10.3390/jcm14186636 - 20 Sep 2025
Viewed by 198
Abstract
Fibrosis is a pathological process characterized by the excessive accumulation of extracellular matrix (ECM), particularly collagen, leading to tissue scarring, architectural distortion, and organ dysfunction. While fibrosis is a physiological component of wound healing, its persistence and dysregulation can drive chronic tissue damage [...] Read more.
Fibrosis is a pathological process characterized by the excessive accumulation of extracellular matrix (ECM), particularly collagen, leading to tissue scarring, architectural distortion, and organ dysfunction. While fibrosis is a physiological component of wound healing, its persistence and dysregulation can drive chronic tissue damage and organ dysfunction. In autoimmune diseases, fibrosis arises from prolonged inflammation and immune system dysregulation, creating a vicious cycle that exacerbates tissue injury and promotes disease progression. This review provides a comprehensive overview of the fibrotic processes across a range of immune-mediated and autoimmune conditions, including systemic sclerosis (SSc), morphea, autoimmune hepatitis (AIH), systemic lupus erythematosus (SLE), Sjögren’s syndrome (SS), inflammatory bowel disease (IBD), and rheumatoid arthritis (RA), Finally, we discuss current and emerging antifibrotic strategies aimed at interrupting pathological ECM remodeling and restoring tissue homeostasis. Full article
(This article belongs to the Section Immunology & Rheumatology)
Show Figures

Figure 1

23 pages, 20427 KB  
Article
Analysis of Geometric Distortion in Sentinel-1 Images and Multi-Dimensional Spatiotemporal Evolution Characteristics of Surface Deformation Along the Central Yunnan Water Diversion Project
by Xiaona Gu, Yongfa Li, Xiaoqing Zuo, Cheng Huang, Mingzei Xing, Zhuopei Ruan, Yeyang Yu, Chao Shi, Jingsong Xiao and Qinheng Zou
Remote Sens. 2025, 17(18), 3250; https://doi.org/10.3390/rs17183250 - 20 Sep 2025
Viewed by 276
Abstract
The Central Yunnan Water Diversion Project (CYWDP) is currently under construction and represents China’s most extensive and geologically challenging water transfer infrastructure, facing significant geohazard risks induced by intensive engineering activities, posing severe threats to its entire lifecycle safety. Therefore, monitoring and spatiotemporal [...] Read more.
The Central Yunnan Water Diversion Project (CYWDP) is currently under construction and represents China’s most extensive and geologically challenging water transfer infrastructure, facing significant geohazard risks induced by intensive engineering activities, posing severe threats to its entire lifecycle safety. Therefore, monitoring and spatiotemporal evolution analysis of surface deformation along the CYWDP is critically important. This study presents the first integrated analysis of geometric distortions and multi-dimensional spatiotemporal deformation characteristics along the CYWDP, utilizing both ascending and descending orbit data from Sentinel-1. First, by integrating the Layover-Shadow Mask (LSM) model and R-Index method, we identified geometric distortion types in SAR imagery and evaluated their suitability for deformation monitoring. Subsequently, SBAS-InSAR technology was employed to derive line-of-sight (LOS) deformation information from 124 images (ascending) and 90 images (descending) acquisitions (2022–2024), enabling the identification of significant deformation zones and analyzing their spatial distribution characteristics. Finally, two-dimensional (2D) deformation fields were obtained through the joint inversion of ascending and descending orbit data in typical deformation zones. The results reveal that geometric distortions in Sentinel-1 imagery along the CYWDP are dominated by foreshortening effects, accounting for 35.3% of the study area in the ascending-orbit data and 37.9% in the descending-orbit data. A total of 10 significant deformation-prone areas were detected, and the most pronounced subsidence, amounting to −164 mm/y, was observed in the northern Jinning District (Luoci-Qujiang section), showing expansion trends toward water conveyance infrastructure. This study reveals surface deformation’s multi-dimensional spatiotemporal evolution patterns along the CYWDP. The findings support geohazard mitigation and provide a methodological reference for safety monitoring of major water conservancy projects in complex geological environments. Full article
Show Figures

Figure 1

27 pages, 15513 KB  
Article
Detection of Small-Scale Potential Landslides in Vegetation-Covered Areas of the Hengduan Mountains Using LT-1 Imagery: A Case Study of the Luding Seismic Zone
by Hang Jiang, Xianhua Yang, Hui Wen, Xiaogang Wang, Chuanyang Lei and Rui Zhang
Remote Sens. 2025, 17(18), 3225; https://doi.org/10.3390/rs17183225 - 18 Sep 2025
Viewed by 303
Abstract
The rugged terrain and dense vegetation in the mountainous area of Luding after the strong earthquake have made geologic hazards hidden and difficult to verify, and there are limitations in the fine-resolution monitoring of small-scale landslides, especially in the area covered by high [...] Read more.
The rugged terrain and dense vegetation in the mountainous area of Luding after the strong earthquake have made geologic hazards hidden and difficult to verify, and there are limitations in the fine-resolution monitoring of small-scale landslides, especially in the area covered by high vegetation. Currently, there is a lack of research on the application of L-band LuTan-1 (LT-1) for landslide detection in the dense vegetation-covered area of the Luding strong earthquake zone, and it is necessary to carry out the analysis of the detection capability of LT-1 for small-scale landslide hazards under the complex terrain and dense vegetation area. In this study, the Stacking-InSAR method was employed using LT-1 and Sentinel-1 satellites to conduct deformation monitoring and landslide detection in the Luding seismic area and to investigate the small-scale landslide detection capability of LT-1 in vegetation-covered areas. The results show that LT-1 and Sentinel-1 identified 23 landslide hazards, and their obvious deformation and landslide characteristics indicate that they are still in an unstable state with a continuous deformation trend. At the same time, through the detection analysis of LT-1’s landslide detection capability under high vegetation cover and small-scale landslide detection capability, the results show that the long wavelength LT-1 can be more effective in landslide hazard identification and monitoring than the short wavelength, and LT-1 with high spatial resolution can be more refined to depict the landslide deformation characteristics in space, which demonstrates the great potential of LT-1 in the refinement of landslide detection. It shows the significant potential of the LT-1 satellite data in landslide detection. Finally, the effects of geometric distortion on landslide detection under different satellite orbits are analyzed, and it is necessary to adopt the combined monitoring method of elevating and lowering orbits for landslide detection to ensure the integrity and reliability of landslide detection. This study highlights the capability of the LT-1 satellite in monitoring landslides in complex mountainous terrain and underscores its potential for detecting small-scale landslides. The findings also offer valuable insights for future research on landslide detection using LT-1 data in similar challenging environments. Full article
Show Figures

Figure 1

17 pages, 3798 KB  
Article
Using the Injection System as a Sensor to Analyze the State of the Electronic Automotive System
by Matej Kucera, Miroslav Gutten, Daniel Korenciak, Michal Prazenica and Tomasz N. Koltunowicz
Sensors 2025, 25(18), 5814; https://doi.org/10.3390/s25185814 - 18 Sep 2025
Viewed by 300
Abstract
This paper presents a novel diagnostic method that employs the fuel injection system as a sensor for monitoring internal combustion engine pressure, analysing series resistance to detect connector degradation, and evaluating needle movement within the injector’s magnetic core. Experimental results showed that reducing [...] Read more.
This paper presents a novel diagnostic method that employs the fuel injection system as a sensor for monitoring internal combustion engine pressure, analysing series resistance to detect connector degradation, and evaluating needle movement within the injector’s magnetic core. Experimental results showed that reducing the injector needle opening from 100% to 20% of its maximum displacement caused up to a 35% reduction in peak current amplitude and a 0.2 ms delay in coil charging. Increasing fuel pressure from 0.3 bar to 2.5 bar resulted in a rise in peak current by approximately 35% and an extension of coil charging delay by 0.4 ms. Furthermore, increasing the series resistance from 0.2 Ω to 2.0 Ω reduced the current amplitude by nearly 50% and significantly distorted the waveform, simulating connector oxidation or wear. Comparative analysis of reference and fault current waveforms confirmed that variations in electrical parameters correlate with injector needle displacement, fuel pressure, and resistance changes. Finally, an automated diagnostic system was developed that achieved over 90% accuracy in independently detecting injector faults based on current waveform characteristics. Full article
Show Figures

Figure 1

Back to TopTop