Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,652)

Search Parameters:
Keywords = distribution transformers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
916 KB  
Article
Two-Way Carbon Options Game Model of Construction Supply Chain with Cap-And-Trade
by Wen Jiang, Zhaoyi Tong, Yifan Yuan, Qingqing Yang, Jiangyan Wu and Ruixiang Li
Sustainability 2025, 17(17), 8089; https://doi.org/10.3390/su17178089 (registering DOI) - 8 Sep 2025
Abstract
As one of the main sources of global greenhouse gas emissions, the low-carbon transformation and emission reduction in the construction industry are inevitable requirements for addressing climate change. Under cap-and-trade regulations, Carbon emission rights have become a key production factor. However, the price [...] Read more.
As one of the main sources of global greenhouse gas emissions, the low-carbon transformation and emission reduction in the construction industry are inevitable requirements for addressing climate change. Under cap-and-trade regulations, Carbon emission rights have become a key production factor. However, the price of carbon emission rights is highly random. Taking the EU carbon market in 2024 as an example, the carbon price fluctuated by more than 35%, soaring from 65 euros per ton to 80 euros per ton and then falling back. Such sharp fluctuations not only increase the cost uncertainty of enterprises but also complicate the investment decisions for emission reduction. Therefore, enterprises can enhance the flexibility of carbon emission rights trading decisions through option strategies, helping them hedge against the risks of carbon price fluctuations, and at the same time improve market liquidity and risk management capabilities. Against this background, based on the carbon cap-and-trade policy, this paper introduces the two-way option strategy into the construction supply chain game model composed of general contractors and subcontractors, and studies to obtain the optimal carbon reduction volume, carbon option purchase volume, maximum expected profit of general contractors, subcontractors and profit distribution ratio. This study shows that two-way options play a crucial role in optimizing supply decision-making and emission reduction strategies. Under the decentralized model, emission reduction responsibilities are often shifted to subcontractors by the general contractor, resulting in a decline in overall mitigation effectiveness. Furthermore, appropriately lowering the carbon emission benchmark can strengthen enterprises’ incentives for emission reduction and significantly enhance the profitability of the supply chain. The study further suggests that general contractors should enhance their competitiveness by developing environmentally friendly technologies and improving their ability to reduce emissions on their own. Meanwhile, subcontractors need to actively participate in the collaborative efforts through revenue-sharing contracts. This study reveals the strategic value of two-way carbon options in construction supply chain carbon trading and provides theoretical support for the formulation of carbon market policies, contributing to the low-carbon transition of the construction supply chain. Full article
(This article belongs to the Special Issue Application of Data-Driven in Sustainable Logistics and Supply Chain)
Show Figures

Figure 1

1066 KB  
Article
Distributionally Robust Chance-Constrained Task Assignment for Heterogeneous UAVs with Time Windows Under Uncertain Fuel Consumption
by Zhichao Gao, Mingfa Zheng, Yu Mei, Aoyu Zheng and Haitao Zhong
Drones 2025, 9(9), 633; https://doi.org/10.3390/drones9090633 (registering DOI) - 8 Sep 2025
Abstract
This paper addresses the cooperative task assignment problem for heterogeneous unmanned aerial vehicles with time windows considering uncertain fuel consumption. In the scenario where probabilistic fuel consumption exists and its distribution needs to be estimated from historical data samples, we first formulate the [...] Read more.
This paper addresses the cooperative task assignment problem for heterogeneous unmanned aerial vehicles with time windows considering uncertain fuel consumption. In the scenario where probabilistic fuel consumption exists and its distribution needs to be estimated from historical data samples, we first formulate the problem as a chance-constrained combinatorial optimization problem and utilize the sample average approximation method to solve it. Further, to address the issue of ambiguous distribution, we introduce distributionally robust chance constraints, which consider a set of probability distributions that are contained within a 1-Wasserstein ball centered around the empirical distribution of field data. We approximate the distributionally robust chance-constrained cooperative task assignment problem by applying a CVaR-based tractable approximation such that the problem can be transformed into a deterministic mixed-integer linear programming problem, which can be efficiently solved by state-of-the-art optimization solvers. Finally, we conduct a series of numerical experiments, which not only verify the computational efficiency of the distributionally robust chance-constrainted models but also reduce the degree of constraint violation in out-of-sample tests compared with a sample average approximation method. Full article
24 pages, 3481 KB  
Article
Power System Modeling and Simulation for Distributed Generation Integration: Honduras Power System as a Case Study
by Jhonny Ismael Ramos-Gómez, Angel Molina-García and Jonathan Muñoz-Tabora
Energies 2025, 18(17), 4777; https://doi.org/10.3390/en18174777 (registering DOI) - 8 Sep 2025
Abstract
This paper presents a case study of the Honduran electricity system and evaluates the technical impact of integrating distributed generation through modeling and simulation using Pandapower, (version 3.1.0) an open-source Python tool. A multi-criteria methodology was applied to select connection nodes considering the [...] Read more.
This paper presents a case study of the Honduran electricity system and evaluates the technical impact of integrating distributed generation through modeling and simulation using Pandapower, (version 3.1.0) an open-source Python tool. A multi-criteria methodology was applied to select connection nodes considering the voltage sensitivity (∆V/MW), loss factor, available thermal capacity (headroom), and hosting capacity. The analysis focused on voltage stability, power losses, and line loading under various distributed generation scenarios. This methodology prioritized buses with critical voltages and significant loads. The case study model included official data from the Honduran National Dispatch Center. The simulations included a redispatch scheme for conventional generators to maintain power balance in all scenarios (20–100% distributed generation profiles), using GEN (controllable output) and SGEN (fixed output) components. The results show that with 50% distributed generation relative to local demand, voltages at critical buses improved by up to 0.14 p.u. Total active losses decreased by 9%, and reactive losses decreased by 44%. Additionally, indirect improvements were observed in non-intervened buses, as well as load relief in lines and transformers. These results confirm that strategic distributed generation injections combined with redispatch can improve supply quality and operational efficiency in weak and radial network topologies. The proposed methodology is scalable and able to be replicated in other power systems, providing technical input for energy planning and renewable energy integration in developing countries. Full article
17 pages, 3935 KB  
Article
Markerless Force Estimation via SuperPoint-SIFT Fusion and Finite Element Analysis: A Sensorless Solution for Deformable Object Manipulation
by Qingqing Xu, Ruoyang Lai and Junqing Yin
Biomimetics 2025, 10(9), 600; https://doi.org/10.3390/biomimetics10090600 - 8 Sep 2025
Abstract
Contact-force perception is a critical component of safe robotic grasping. With the rapid advances in embodied intelligence technology, humanoid robots have enhanced their multimodal perception capabilities. Conventional force sensors face limitations, such as complex spatial arrangements, installation challenges at multiple nodes, and potential [...] Read more.
Contact-force perception is a critical component of safe robotic grasping. With the rapid advances in embodied intelligence technology, humanoid robots have enhanced their multimodal perception capabilities. Conventional force sensors face limitations, such as complex spatial arrangements, installation challenges at multiple nodes, and potential interference with robotic flexibility. Consequently, these conventional sensors are unsuitable for biomimetic robot requirements in object perception, natural interaction, and agile movement. Therefore, this study proposes a sensorless external force detection method that integrates SuperPoint-Scale Invariant Feature Transform (SIFT) feature extraction with finite element analysis to address force perception challenges. A visual analysis method based on the SuperPoint-SIFT feature fusion algorithm was implemented to reconstruct a three-dimensional displacement field of the target object. Subsequently, the displacement field was mapped to the contact force distribution using finite element modeling. Experimental results demonstrate a mean force estimation error of 7.60% (isotropic) and 8.15% (anisotropic), with RMSE < 8%, validated by flexible pressure sensors. To enhance the model’s reliability, a dual-channel video comparison framework was developed. By analyzing the consistency of the deformation patterns and mechanical responses between the actual compression and finite element simulation video keyframes, the proposed approach provides a novel solution for real-time force perception in robotic interactions. The proposed solution is suitable for applications such as precision assembly and medical robotics, where sensorless force feedback is crucial. Full article
(This article belongs to the Special Issue Bio-Inspired Intelligent Robot)
Show Figures

Figure 1

19 pages, 6881 KB  
Article
Electrochemical Reduction of CO2 to C2 Hydrocarbons Using Cu 3D Nanostructures
by Birutė Serapinienė, Evaldas Naujalis, Algirdas Selskis, Jurga Juodkazytė and Rimantas Ramanauskas
Materials 2025, 18(17), 4210; https://doi.org/10.3390/ma18174210 - 8 Sep 2025
Abstract
Although Cu 3D structures are widely used in electrocatalytic practice, this electrode has not been studied enough in relation to the electrochemical transformation of CO2 to C2 products. Cu foam samples were deposited from acidic solutions with varying concentrations of primary components [...] Read more.
Although Cu 3D structures are widely used in electrocatalytic practice, this electrode has not been studied enough in relation to the electrochemical transformation of CO2 to C2 products. Cu foam samples were deposited from acidic solutions with varying concentrations of primary components (H2SO4, CuSO4, and Cl ions) with the aim of determining the relationship between catalyst structure and activity/selectivity in producing C2 gaseous compounds during CO2 electrochemical reduction. The deposited samples were characterized using SEM and electrochemical techniques, including Pb underpotential deposition (UPD), to determine the contribution of crystal facets. The most efficient electrodes were found to be those deposited in a solution without Cl additives. Their effectiveness was related to the shape and size of the crystallites forming the branches. These crystallites create a spatial structure that supports C-C coupling and C2 gaseous compound formation. The higher catalytic activity and selectivity of this electrode may also be related to its lower Cu(111) facet input to the overall facet distribution and its higher number of structural defects. Despite the higher electrochemically active surface area of samples deposited in the presence of Cl ions, their lower activity is related to structural characteristics that cause possible mass transfer limitations. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

30 pages, 19792 KB  
Article
The Solvothermal Method: An Efficient Tool for the Preparation of Ni-Based Catalysts with High Activity in CO2 Methanation
by Arkadii Bikbashev, Tomáš Stryšovský, Martina Kajabová, Zuzana Kovářová, Arati Prakash Tibe, Karolína Simkovičová, Robert Prucek, Aleš Panáček, Josef Kašlík, Patrizia Frontera, Kouřil Roman, Arian Grainca, Carlo Pirola, Libor Brabec, Zdeněk Bastl, Štefan Vajda and Libor Kvítek
Nanomaterials 2025, 15(17), 1379; https://doi.org/10.3390/nano15171379 - 6 Sep 2025
Viewed by 90
Abstract
Nickel and nickel oxide are widely used as heterogeneous catalysts in various processes involving the hydrogenation or reduction of organic compounds, and also as excellent methanation catalysts in the hydrogenation of CO2. As heterogeneous catalysis is a surface-dependent process, nickel compounds [...] Read more.
Nickel and nickel oxide are widely used as heterogeneous catalysts in various processes involving the hydrogenation or reduction of organic compounds, and also as excellent methanation catalysts in the hydrogenation of CO2. As heterogeneous catalysis is a surface-dependent process, nickel compounds in the form of microparticles (MPs), and particularly nanoparticles (NPs), improve the catalytic activity of Ni-based catalysts due to their high specific surface area. Solvothermal synthesis, which has so far been neglected for the synthesis of Ni-based methanation catalysts, was used in this study to synthesize nickel and nickel oxide MPs and NPs with a narrow size distribution. Solvothermal synthesis allows for the control of both the chemical composition of the resulting Ni catalysts and their physical structure by simply changing the reaction conditions (solvent, temperature, or concentration of reactants). Only non-toxic substances were used for synthesis in this study, meaning that the whole synthesis process can be described as environmentally friendly. Solvothermally prepared Ni compounds were subsequently transformed into nickel oxide by means of high-temperature decomposition, and all of the prepared Ni-based compounds were tested as catalysts for CO2 methanation. The best catalysts prepared in this study exhibited a CO2 conversion rate of nearly 95% and a selectivity for methane close to 100%, which represent thermodynamic limits for this reaction at the used temperature. These results are commonly achieved with much more complex catalytic composites containing precious metals, while here we worked with pure nickel and its oxides, in the form of micro- or nanoparticles, only. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Graphical abstract

55 pages, 3448 KB  
Article
MSAPO: A Multi-Strategy Fusion Artificial Protozoa Optimizer for Solving Real-World Problems
by Hanyu Bo, Jiajia Wu and Gang Hu
Mathematics 2025, 13(17), 2888; https://doi.org/10.3390/math13172888 - 6 Sep 2025
Viewed by 55
Abstract
Artificial protozoa optimizer (APO), as a newly proposed meta-heuristic algorithm, is inspired by the foraging, dormancy, and reproduction behaviors of protozoa in nature. Compared with traditional optimization algorithms, APO demonstrates strong competitive advantages; nevertheless, it is not without inherent limitations, such as slow [...] Read more.
Artificial protozoa optimizer (APO), as a newly proposed meta-heuristic algorithm, is inspired by the foraging, dormancy, and reproduction behaviors of protozoa in nature. Compared with traditional optimization algorithms, APO demonstrates strong competitive advantages; nevertheless, it is not without inherent limitations, such as slow convergence and a proclivity towards local optimization. In order to enhance the efficacy of the algorithm, this paper puts forth a multi-strategy fusion artificial protozoa optimizer, referred to as MSAPO. In the initialization stage, MSAPO employs the piecewise chaotic opposition-based learning strategy, which results in a uniform population distribution, circumvents initialization bias, and enhances the global exploration capability of the algorithm. Subsequently, cyclone foraging strategy is implemented during the heterotrophic foraging phase. enabling the algorithm to identify the optimal search direction with greater precision, guided by the globally optimal individuals. This reduces random wandering, significantly accelerating the optimization search and enhancing the ability to jump out of the local optimal solutions. Furthermore, the incorporation of hybrid mutation strategy in the reproduction stage enables the algorithm to adaptively transform the mutation patterns during the iteration process, facilitating a strategic balance between rapid escape from local optima in the initial stages and precise convergence in the subsequent stages. Ultimately, crisscross strategy is incorporated at the conclusion of the algorithm’s iteration. This not only enhances the algorithm’s global search capacity but also augments its capability to circumvent local optima through the integrated application of horizontal and vertical crossover techniques. This paper presents a comparative analysis of MSAPO with other prominent optimization algorithms on the three-dimensional CEC2017 and the highest-dimensional CEC2022 test sets, and the results of numerical experiments show that MSAPO outperforms the compared algorithms, and ranks first in the performance evaluation in a comprehensive way. In addition, in eight real-world engineering design problem experiments, MSAPO almost always achieves the theoretical optimal value, which fully confirms its high efficiency and applicability, thus verifying the great potential of MSAPO in solving complex optimization problems. Full article
(This article belongs to the Special Issue Advances in Metaheuristic Optimization Algorithms)
34 pages, 31211 KB  
Article
Statistical Evaluation of Alpha-Powering Exponential Generalized Progressive Hybrid Censoring and Its Modeling for Medical and Engineering Sciences with Optimization Plans
by Heba S. Mohammed, Osama E. Abo-Kasem and Ahmed Elshahhat
Symmetry 2025, 17(9), 1473; https://doi.org/10.3390/sym17091473 - 6 Sep 2025
Viewed by 114
Abstract
This study explores advanced methods for analyzing the two-parameter alpha-power exponential (APE) distribution using data from a novel generalized progressive hybrid censoring scheme. The APE model is inherently asymmetric, exhibiting positive skewness across all valid parameter values due to its right-skewed exponential base, [...] Read more.
This study explores advanced methods for analyzing the two-parameter alpha-power exponential (APE) distribution using data from a novel generalized progressive hybrid censoring scheme. The APE model is inherently asymmetric, exhibiting positive skewness across all valid parameter values due to its right-skewed exponential base, with the alpha-power transformation amplifying or dampening this skewness depending on the power parameter. The proposed censoring design offers new insights into modeling lifetime data that exhibit non-monotonic hazard behaviors. It enhances testing efficiency by simultaneously imposing fixed-time constraints and ensuring a minimum number of failures, thereby improving inference quality over traditional censoring methods. We derive maximum likelihood and Bayesian estimates for the APE distribution parameters and key reliability measures, such as the reliability and hazard rate functions. Bayesian analysis is performed using independent gamma priors under a symmetric squared error loss, implemented via the Metropolis–Hastings algorithm. Interval estimation is addressed using two normality-based asymptotic confidence intervals and two credible intervals obtained through a simulated Markov Chain Monte Carlo procedure. Monte Carlo simulations across various censoring scenarios demonstrate the stable and superior precision of the proposed methods. Optimal censoring patterns are identified based on the observed Fisher information and its inverse. Two real-world case studies—breast cancer remission times and global oil reserve data—illustrate the practical utility of the APE model within the proposed censoring framework. These applications underscore the model’s capability to effectively analyze diverse reliability phenomena, bridging theoretical innovation with empirical relevance in lifetime data analysis. Full article
(This article belongs to the Special Issue Unlocking the Power of Probability and Statistics for Symmetry)
Show Figures

Figure 1

18 pages, 6076 KB  
Article
Probabilistic Analysis of Soil Moisture Variability of Engineered Turf Cover Using High-Frequency Field Monitoring
by Robi Sonkor Mozumder, Maalvika Aggarwal, Md Jobair Bin Alam and Naima Rahman
Geotechnics 2025, 5(3), 64; https://doi.org/10.3390/geotechnics5030064 (registering DOI) - 6 Sep 2025
Viewed by 40
Abstract
Soil moisture is one of the key hydrologic components indicating the performance of landfill final covers. Conventional compacted clay (CC) covers and evapotranspiration (ET) covers often suffer from moisture-induced stresses, such as desiccation cracking and irreversible hydraulic conductivity. Engineered turf (EnT) cover systems [...] Read more.
Soil moisture is one of the key hydrologic components indicating the performance of landfill final covers. Conventional compacted clay (CC) covers and evapotranspiration (ET) covers often suffer from moisture-induced stresses, such as desiccation cracking and irreversible hydraulic conductivity. Engineered turf (EnT) cover systems have been introduced recently as an alternative; however, their field-scale moisture distribution behavior remains unexplored. This study investigates and compares the soil moisture distribution characteristics of EnT, ET, and CC landfill covers at a shallow depth using one year of field-monitored data in a humid subtropical region. Three full-scale test Sections (3 m × 3 m × 1.2 m) were constructed side by side and instrumented with moisture sensors at a depth of 0.3 m. Distributional characteristics of moisture were evaluated with descriptive statistics, goodness-of-fit tests such as Shapiro–Wilk (SW) and Anderson–Darling (AD), Gaussian probability density functions, Q–Q plots, and standard-normal transformations. Results revealed that Shapiro–Wilk (W = 0.75–0.92, p < 0.001) and Anderson–Darling (A2=1.63×103to6.31×103,p<0.001) tests rejected normality for every cover, while Levene’s test showed unequal variances between EnT and the other covers (F>5.4×104,p<0.001) but equivalence between CC and ET (F = 0.23, p = 0.628). EnT cover exhibited the narrowest moisture envelope (95%range=0.156to0.240m3/m3;CV=10.6%), whereas ET and CC covers showed markedly broader distributions (CV = 38.6 % and 33.3 %, respectively). These findings demonstrated that EnT cover maintains a more stable shallow soil moisture profile under dynamic weather conditions. Full article
16 pages, 1481 KB  
Article
Inequality in China’s Food and Nutrition Production and the Decomposition of Contributing Sources
by Wenli Qiang, Jiayi Liu, Baowen Zhang, Die Huang and Yue Xiang
Foods 2025, 14(17), 3126; https://doi.org/10.3390/foods14173126 - 6 Sep 2025
Viewed by 80
Abstract
Food and nutrition production play a pivotal role in China’s transition toward a nutrition-sensitive food system. Alongside rapid urbanization and dietary shifts, substantial transformations have occurred in food production patterns. This study investigates inequality in China’s food and nutrition sectors from 1991 to [...] Read more.
Food and nutrition production play a pivotal role in China’s transition toward a nutrition-sensitive food system. Alongside rapid urbanization and dietary shifts, substantial transformations have occurred in food production patterns. This study investigates inequality in China’s food and nutrition sectors from 1991 to 2021 by employing the Theil index and Gini coefficient, analyzing its drivers from both regional and categorical perspectives. The findings reveal significant disparities in food production concentration across different categories, with notable shifts over the study period. Land-intensive agricultural products—including cereals, oil crops, sugar crops, pulses, roots, tubers, and livestock—exhibited increasing inequality, as indicated by rising Gini coefficients and Theil indices, suggesting greater spatial concentration. In contrast, labor-intensive categories such as fruits and aquatic products showed declining inequality, reflecting broader distribution. Notably, inequality within specific food types (e.g., wheat, beet, and rapeseed production) exceeded disparities among broader food categories. Nutrition inequality, measured by both indices, also increased between 1991 and 2021. However, variations across different nutrients were relatively minor, as diversified nutrition sources mitigated inequality within food categories. Geospatial analysis further highlighted distinct patterns: cereals were the primary contributors to disparities in energy, protein, and mineral supply; oil crops and livestock products drove fat inequality; while vegetables and fruits predominantly influenced vitamin inequality. These findings offer critical insights for optimizing China’s food and nutrition distribution strategies, supporting more equitable and sustainable food system development. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

19 pages, 6013 KB  
Article
A Comprehensive Nonlinear Multiaxial Life Prediction Model
by Zegang Tian, Yongbao Liu, Ge Xia and Xing He
Materials 2025, 18(17), 4185; https://doi.org/10.3390/ma18174185 (registering DOI) - 5 Sep 2025
Viewed by 191
Abstract
Compressor blades are subjected to multiaxial loads during operation. Using uniaxial life prediction formulas to predict their fatigue life can result in significant errors. Therefore, by analyzing the loading conditions of the blades, a fatigue life prediction model suitable for compressor blades was [...] Read more.
Compressor blades are subjected to multiaxial loads during operation. Using uniaxial life prediction formulas to predict their fatigue life can result in significant errors. Therefore, by analyzing the loading conditions of the blades, a fatigue life prediction model suitable for compressor blades was developed. This model was established by applying the load of a specific engine type to a notched bar specimen and considering the gradient and strengthening effects. Firstly, the parameters of the SWT model were used as the damage parameters to determine the critical plane location based on the principle of coordinate transformation, and these results were compared with the actual fracture angles. Additionally, the physical mechanisms of multiaxial fatigue crack initiation and propagation were investigated at the microscopic level. Secondly, the non-uniform stress field on the critical plane was obtained using the finite element method. The stress distribution from the critical point to the specimen’s principal axis was extracted and normalized to calculate the equivalent stress gradient factor. Finally, the results of the comprehensive fatigue life prediction model were computed. Comparisons between the calculated results of the proposed model, the SWT model, and the Shang model with the experimental fatigue life showed that the prediction accuracy of the proposed model is higher than that of the SWT model and the Shang Deguang model. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

42 pages, 7520 KB  
Article
Modification Mechanism of Multipolymer Granulated Modifiers and Their Effect on the Physical, Rheological, and Viscoelastic Properties of Bitumen
by Yao Li, Ke Chao, Qikai Li, Kefeng Bi, Yuanyuan Li, Dongliang Kuang, Gangping Jiang and Haowen Ji
Materials 2025, 18(17), 4182; https://doi.org/10.3390/ma18174182 - 5 Sep 2025
Viewed by 179
Abstract
Polymer-modified bitumen is difficult to produce and often separates during storage and transport. In contrast, granular bitumen modifiers offer wide applicability, construction flexibility, and ease of transport and storage. This study involved preparing a multipolymer granulated bitumen modifier with a styrene–butadiene–styrene block copolymer, [...] Read more.
Polymer-modified bitumen is difficult to produce and often separates during storage and transport. In contrast, granular bitumen modifiers offer wide applicability, construction flexibility, and ease of transport and storage. This study involved preparing a multipolymer granulated bitumen modifier with a styrene–butadiene–styrene block copolymer, polyethylene, and aromatic oil. To elucidate the modification mechanism of a multipolymer granulated bitumen modifier on bitumen, the elemental composition of bitumen A and B, the micro-morphology of the modifiers, the changes in functional groups, and the distribution state of the polymers in the bitumen were investigated using an elemental analyzer, a scanning electron microscope, Fourier-transform infrared spectroscopy, and fluorescence microscopy. The effects of the multipolymer granulated bitumen modifier on the physical, rheological, and viscoelastic properties of two types of base bituminous binders were investigated at various dosages. The test results show that the ZH/C ratio of base bitumen A is smaller than that of base bitumen B and that the cross-linking effect with the polymer is optimal. Therefore, the direct-feed modified asphalt of A performs better than the direct-feed modified asphalt of B under the same multipolymer granulated bitumen modifier content. The loose, porous surface structure of styrene–butadiene–styrene block copolymer promotes the adsorption of light components in bitumen, and the microstructure of the multipolymer granulated bitumen modifier is highly coherent. When the multipolymer granulated bitumen modifier content is 20%, the physical, rheological, and viscoelastic properties of the direct-feed modified asphalt of A/direct-feed modified asphalt of B and the commodity styrene–butadiene–styrene block copolymer are essentially identical. While the multipolymer granulated bitumen modifier did not significantly improve the performance of bitumen A/B at contents greater than 20%, the mass loss rate of the direct-feed modified asphalt of A to aggregate stabilized, and the adhesion effect reached stability. Image processing determined the optimum mixing temperature and time for multipolymer granulated bitumen modifier and aggregate to be 185–195 °C and 80–100 s, respectively, at which point the dispersion homogeneity of the multipolymer granulated bitumen modifier in the mixture was at its best. The dynamic stability, fracture energy, freeze–thaw splitting strength ratio, and immersion residual stability of bitumen mixtures were similar to those of commodity styrene–butadiene–styrene block copolymers with a 20% multipolymer granulated bitumen modifier mixing amount, which was equivalent to the wet method. The styrene–butadiene–styrene block copolymer bitumen mixture reached the same technical level. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

17 pages, 4743 KB  
Article
Climate-Driven Vegetation Distribution and Wetland Expansion at the Edge of Jiangjiadian Grassland, Northeastern China
by Xiaodong Wang, Xiaoqiang Li, Long Fei, Xiaohui Liu and Mei Zhang
Plants 2025, 14(17), 2785; https://doi.org/10.3390/plants14172785 - 5 Sep 2025
Viewed by 193
Abstract
There is a close relationship between vegetation distribution and climate pattern in grassland areas, and offering insights into the climate–vegetation relationship may provide significant references for in-depth research on the response of plant community dynamics to climate change. In this study, we took [...] Read more.
There is a close relationship between vegetation distribution and climate pattern in grassland areas, and offering insights into the climate–vegetation relationship may provide significant references for in-depth research on the response of plant community dynamics to climate change. In this study, we took the edge of the Jiangjiadian grassland in China as the research area. Using plant plots and climate data, the climate–vegetation relationship was revealed in relation to climate change on the grassland edge. The research results show that the relative frequency (RF), density (RD), height (RH), and coverage (RC) of Phragmites australis, a typical wetland plant, are the highest among the 10 common species tested. The path coefficient of mean temperature in October (MMTO) to the RD is 0.06 (p < 0.01), and the path coefficient of precipitation in October (POct) to the relative height (RH) is 0.62 (p < 0.05), indicating that the spatial pattern of climate has a significant impact on plant distribution. The temperature and the precipitation increases are associated with the trend regarding the transformation from grassland to wetland. Overall, 34 of the 360 correlation coefficients between climate indices and plant indices reached a significant level (p < 0.05), indicating that the relationship between wetland trends and the climate spatial pattern is very complex in relation to climate change in the past 25 years. Full article
Show Figures

Figure 1

20 pages, 11264 KB  
Article
Clay Mineral Characteristics and Smectite-to-Illite Transformation in the Chang-7 Shale, Ordos Basin: Processes and Controlling Factors
by Kun Ling, Ziyi Wang, Yaqi Cao, Yifei Liu and Lin Dong
Minerals 2025, 15(9), 951; https://doi.org/10.3390/min15090951 - 5 Sep 2025
Viewed by 200
Abstract
As critical components in continental shale systems, the composition and evolution of clay minerals are fundamental to their diagenetic processes and petrophysical properties. The Chang-7 shales in the Ordos Basin exhibit abundant clay mineral content, offering a valuable case study for clay mineral [...] Read more.
As critical components in continental shale systems, the composition and evolution of clay minerals are fundamental to their diagenetic processes and petrophysical properties. The Chang-7 shales in the Ordos Basin exhibit abundant clay mineral content, offering a valuable case study for clay mineral research under moderate diagenetic conditions. This study employed XRD analysis to determine the whole-rock mineralogy, clay mineral composition, and the evolution characteristics of illite-smectite mixed-layer minerals (I/S). Comprehensive clay mineral datasets compiled from 13 newly analyzed wells and existing literature revealed distinct lateral distribution patterns. Total Organic Carbon (TOC) analysis and vitrinite reflectance (Ro) measurements provided systematic quantification of organic matter abundance and thermal maturation parameters in the studied samples. The results reveal that the Chang-7 shale exhibits a characteristic clay mineral assemblage, with I/S (average 44.2%) predominating over illite (34.7%), followed by chlorite (15.6%) and limited kaolinite (5.4%). Frequent volcanic activities provided substantial precursor materials for smectite formation, which actively participated in subsequent illitization processes, while chlorite and kaolinite distributions were predominantly controlled by provenance inputs and sedimentary facies, respectively. Inconsistencies exist between diagenetic stages inferred from I/S mixed-layer ratios and Ro values, particularly in low-maturity samples exhibiting accelerated illitization. The observed negative correlation between TOC content and mixed-layer ratios in Well YY1 and YSC Section samples demonstrates the catalytic role of organic matter in facilitating smectite-to-illite transformation. These results systematically clarify the coupled effects of sedimentary-diagenetic processes, offering new insights into the mutual interactions between inorganic and organic phases during illitization under natural geological conditions. The findings advance the understanding of Chang-7 shale oil and gas systems and offer practical guidance for future exploration. Full article
Show Figures

Figure 1

31 pages, 8391 KB  
Article
Evaluating Key Spatial Indicators for Shared Autonomous Vehicle Integration in Old Town Spaces
by Sucheng Yao, Kanjanee Budthimedhee, Sakol Teeravarunyou, Xinhao Chen and Ziqiang Zhang
World Electr. Veh. J. 2025, 16(9), 501; https://doi.org/10.3390/wevj16090501 - 5 Sep 2025
Viewed by 180
Abstract
As Shared Autonomous Vehicles (SAVs) emerge as a transformative force in urban mobility, integrating them into dense, historic urban environments presents distinct spatial and planning challenges—such as narrow street patterns, irregular road networks, and the need to protect cultural heritage. This study investigates [...] Read more.
As Shared Autonomous Vehicles (SAVs) emerge as a transformative force in urban mobility, integrating them into dense, historic urban environments presents distinct spatial and planning challenges—such as narrow street patterns, irregular road networks, and the need to protect cultural heritage. This study investigates the spatial adaptability of SAVs in Suzhou old town, a representative example of East Asian heritage cities. To assess spatial readiness, a hybrid weighting approach combining the Analytic Hierarchy Process (AHP) and the Entropy Weight Method (EWM) is used to evaluate 22 spatial indicators across livability, mobility, and spatial quality. These weighted indicators are mapped using a spatial density analysis based on Point of Interest (POI) data, revealing urban service distribution patterns and spatial mismatches. Results show that “Accessibility to Transportation Hubs” receives the highest composite weight, emphasizing the priority of linking SAVs with existing subway and bus networks. Environmental comfort factors—such as air quality, noise reduction, and access to green and recreational spaces—also rank highly, reflecting a growing emphasis on urban livability. Drawing on these findings, this study proposes four strategic directions for SAV integration that focus on network flexibility, public service redistribution, ecological enhancement, and cultural preservation. The proposed framework provides a transferable planning reference for historic urban areas transitioning toward intelligent, human-centered mobility systems. Full article
Show Figures

Figure 1

Back to TopTop