Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = dopamine transporter knockout mutation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2932 KB  
Article
Stable Dopamine-Signaling mRNA Co-Expression in the Substantia Nigra Is Deregulated in Pathological Conditions, but Not in Dopamine Transporter Knockout Rats
by Anastasia N. Vaganova, Zoia S. Fesenko, Anna B. Volnova and Raul R. Gainetdinov
Biomolecules 2025, 15(8), 1117; https://doi.org/10.3390/biom15081117 - 3 Aug 2025
Viewed by 840
Abstract
Dopamine transporter (DAT) mutations are associated with neurological and psychiatric diseases, and DAT gene knockout in rats (DAT-KO) provides an opportunity to evaluate the DAT role in pathological conditions. We analyzed DAT expression and co-expression with other genes in the substantia nigra and [...] Read more.
Dopamine transporter (DAT) mutations are associated with neurological and psychiatric diseases, and DAT gene knockout in rats (DAT-KO) provides an opportunity to evaluate the DAT role in pathological conditions. We analyzed DAT expression and co-expression with other genes in the substantia nigra and striatum in public transcriptomic data represented in the GEO repository and then estimated the identified DAT co-expression pattern in DAT-KO rats by RT-PCR. In silico analysis confirmed DAT expression in the substantia nigra and absence of DAT mRNA in the striatum. Also, DAT is co-expressed with genes involved in dopamine signaling, but these associations are disrupted in dopamine neuron-damaging conditions. To estimate this co-expression pattern when DAT expression is lost, we evaluate it in the substantia nigra of DAT-KO rats. However, in DAT-KO rats the associations between genes involved in dopamine signaling were not disturbed compared to wild-type littermates, and tyrosine hydroxylase expression upregulation in the substantia nigra of these animals may be considered as compensation for the loss of dopamine reuptake. Further studies of expression regulation in dopamine neurons of DAT-KO rats may provide valuable information for compensatory mechanisms in substantia nigra dopaminergic neurons. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

17 pages, 4451 KB  
Article
Phenotype Differences Between ATP13A2 Heterozygous and Knockout Mice Across Aging
by Kristina Croucher, Josephine K. Lepp, Jennifer Bechtold, Edward J. Hamad, Sophia Scott, Christian Bittner, Sara Rogers, Christian Ong, Shannon Boehme, Zhuo Wang, Li Lin, Xinwen Wang and Sheila M. Fleming
Int. J. Mol. Sci. 2025, 26(15), 7030; https://doi.org/10.3390/ijms26157030 - 22 Jul 2025
Viewed by 706
Abstract
ATP13A2 is a lysosomal polyamine transporter with loss of function mutations linked to multiple neurodegenerative disorders including Parkinson’s disease (PD). Knockout of ATP13A2 in mice leads to age-related sensorimotor impairments and in the brain lipofuscinosis, gliosis, and modest alpha-synuclein (αSyn) pathology. However, few [...] Read more.
ATP13A2 is a lysosomal polyamine transporter with loss of function mutations linked to multiple neurodegenerative disorders including Parkinson’s disease (PD). Knockout of ATP13A2 in mice leads to age-related sensorimotor impairments and in the brain lipofuscinosis, gliosis, and modest alpha-synuclein (αSyn) pathology. However, few studies have included ATP13A2 heterozygous mice as a comparison. In the present study, the effect of reduced or complete loss of ATP13A2 function on behavior, αSyn, gliosis, dopamine, and polyamines were determined in mice. Male and female ATP13A2 wildtype (WT), heterozygous (Het), and knockout (KO) mice were assessed behaviorally at 3, 12, and 18 months of age. In the brain, αSyn, phosphorylated αSyn, and GFAP were measured in the prefrontal cortex, striatum, ventral midbrain, and cerebellum. Polyamine and neurotransmitter analyses were performed in the same brain regions. Similar to previous studies, KO mice developed motor impairments and widespread gliosis in the brain. In addition, polyamine content was altered in Het and KO mice. In contrast, Het mice showed impairments in cognitive function and an age-related increase in αSyn in the brain. These results indicate potentially different pathological mechanisms when ATP13A2 is reduced compared to when it is knocked out and may have important implications for disease modification in synucleinopathies including PD. Full article
(This article belongs to the Special Issue Optimizing Mechanistic Rationale for Parkinson’s Disease Treatment)
Show Figures

Figure 1

17 pages, 6392 KB  
Article
L-Glutamate Biosensor for In Vitro Investigations: Application in Brain Extracts
by Julija Razumiene, Damiana Leo, Vidute Gureviciene, Dalius Ratautas, Justina Gaidukevic and Ieva Sakinyte-Urbikiene
Chemosensors 2023, 11(8), 418; https://doi.org/10.3390/chemosensors11080418 - 25 Jul 2023
Cited by 4 | Viewed by 2631
Abstract
Investigations of L-glutamate release in living organisms can help to identify novel L-glutamate-related pathophysiological pathways, since abnormal transmission of L-glutamate can cause many neurological diseases. For the first time, a nitrogen-modified graphene oxide (GO) sample (RGO) is prepared through a simple and facile [...] Read more.
Investigations of L-glutamate release in living organisms can help to identify novel L-glutamate-related pathophysiological pathways, since abnormal transmission of L-glutamate can cause many neurological diseases. For the first time, a nitrogen-modified graphene oxide (GO) sample (RGO) is prepared through a simple and facile one-pot hydrothermal reduction of GO in the presence of 20 wt.% of the dye malachite green and is used for amperometric biosensing. The biosensor demonstrates adequate stability and is easy to prepare and calibrate. The biosensor detects the current generated during the electrooxidation of hydrogen peroxide released in the L-glutamate that is converted to the alpha-ketoglutarate catalyzed by L-glutamate oxidase. The biosensor consists of a semipermeable membrane, with L-glutamate oxidase (EC 1.4.3.11) immobilized in albumin and RGO and the working Pt electrode. First, the basic version of the L-glutamate biosensor is examined in PBS to investigate its sensitivity, reliability, and stability. To demonstrate the applicability of the L-glutamate biosensor in the analysis of complex real samples, quantification of L-glutamate in bovine brain extract is performed and the accuracy of the biosensor is confirmed by alternative methods. The enhanced version of the L-glutamate biosensor is applied for L-glutamate release investigations in a newly developed strain of rats (DAT-knockout, DAT-KO). Full article
(This article belongs to the Special Issue Electrochemical Biosensors and Bioassays Based on Nanomaterials)
Show Figures

Graphical abstract

10 pages, 736 KB  
Brief Report
Dopamine Transporter Knockout Rats Display Epigenetic Alterations in Response to Cocaine Exposure
by Samara Vilca, Claes Wahlestedt, Sari Izenwasser, Raul R. Gainetdinov and Marta Pardo
Biomolecules 2023, 13(7), 1107; https://doi.org/10.3390/biom13071107 - 12 Jul 2023
Viewed by 2130
Abstract
(1) Background: There is an urgent need for effective treatments for cocaine use disorder (CUD), and new pharmacological approaches targeting epigenetic mechanisms appear to be promising options for the treatment of this disease. Dopamine Transporter (DAT) transgenic rats recently have been proposed as [...] Read more.
(1) Background: There is an urgent need for effective treatments for cocaine use disorder (CUD), and new pharmacological approaches targeting epigenetic mechanisms appear to be promising options for the treatment of this disease. Dopamine Transporter (DAT) transgenic rats recently have been proposed as a new animal model for studying susceptibility to CUD. (2) Methods: DAT transgenic rats were treated chronically with cocaine (10 mg/kg) for 8 days, and the expression of epigenetic modulators, Lysine Demethylase 6B (KDM6B) and Bromodomain-containing protein 4 (BRD4), was examined in the prefrontal cortex (PFC). (3) Results: We show that only full knockout (KO) of DAT impacts basal levels of KDM6B in females. Additionally, cocaine altered the expression of both epigenetic markers in a sex- and genotype-dependent manner. In response to chronic cocaine, KDM6B expression was decreased in male rats with partial DAT mutation (HET), while no changes were observed in wild-type (WT) or KO rats. Indeed, while HET male rats have reduced KDM6B and BRD4 expression, HET female rats showed increased KDM6B and BRD4 expression levels, highlighting the impact of sex on epigenetic mechanisms in response to cocaine. Finally, both male and female KO rats showed increased expression of BRD4, but only KO females exhibited significantly increased KDM6B expression in response to cocaine. Additionally, the magnitude of these effects was bigger in females when compared to males for both epigenetic enzymes. (4) Conclusions: This preliminary study provides additional support that targeting KDM6B and/or BRD4 may potentially be therapeutic in treating addiction-related behaviors in a sex-dependent manner. Full article
(This article belongs to the Section Biological Factors)
Show Figures

Figure 1

22 pages, 4207 KB  
Article
Heterozygote Dopamine Transporter Knockout Rats Display Enhanced Cocaine Locomotion in Adolescent Females
by Marta Pardo, Michele Martin, Raul R. Gainetdinov, Deborah C Mash and Sari Izenwasser
Int. J. Mol. Sci. 2022, 23(23), 15414; https://doi.org/10.3390/ijms232315414 - 6 Dec 2022
Cited by 5 | Viewed by 2847
Abstract
Cocaine is a powerful psychostimulant that is one of the most widely used illicit addictive. The dopamine transporter (DAT) plays a major role in mediating cocaine’s reward effect. Decreases in DAT expression increase rates of drug abuse and vulnerability to comorbid psychiatric disorders. [...] Read more.
Cocaine is a powerful psychostimulant that is one of the most widely used illicit addictive. The dopamine transporter (DAT) plays a major role in mediating cocaine’s reward effect. Decreases in DAT expression increase rates of drug abuse and vulnerability to comorbid psychiatric disorders. We used the novel DAT transgenic rat model to study the effects of cocaine on locomotor behaviors in adolescent rats, with an emphasis on sex. Female rats showed higher response rates to cocaine at lower acute and chronic doses, highlighting a higher vulnerability and perceived gender effects. In contrast, locomotor responses to an acute high dose of cocaine were more marked and sustained in male DAT heterozygous (HET) adolescents. The results demonstrate the augmented effects of chronic cocaine in HET DAT adolescent female rats. Knockout (KO) DAT led to a level of hyperdopaminergia which caused a marked basal hyperactivity that was unchanged, consistent with a possible ceiling effect. We suggest a role of alpha synuclein (α-syn) and PICK 1 protein expressions to the increased vulnerability in female rats. These proteins showed a lower expression in female HET and KO rats. This study highlights gender differences associated with mutations which affect DAT expression and can increase susceptibility to cocaine abuse in adolescence. Full article
(This article belongs to the Special Issue Role of Dopamine in Health and Disease—Biological Aspect)
Show Figures

Figure 1

16 pages, 3680 KB  
Article
Dopamine Transporter, PhosphoSerine129 α-Synuclein and α-Synuclein Levels in Aged LRRK2 G2019S Knock-In and Knock-Out Mice
by Chiara Domenicale, Daniela Mercatelli, Federica Albanese, Salvatore Novello, Fabrizio Vincenzi, Katia Varani and Michele Morari
Biomedicines 2022, 10(4), 881; https://doi.org/10.3390/biomedicines10040881 - 12 Apr 2022
Cited by 9 | Viewed by 3548
Abstract
The G2019S mutation in leucine rich-repeat kinase 2 (LRRK2) is a major cause of familial Parkinson’s disease. We previously reported that G2019S knock-in mice manifest dopamine transporter dysfunction and phosphoSerine129 α-synuclein (pSer129 α-syn) immunoreactivity elevation at 12 months of age, which might represent [...] Read more.
The G2019S mutation in leucine rich-repeat kinase 2 (LRRK2) is a major cause of familial Parkinson’s disease. We previously reported that G2019S knock-in mice manifest dopamine transporter dysfunction and phosphoSerine129 α-synuclein (pSer129 α-syn) immunoreactivity elevation at 12 months of age, which might represent pathological events leading to neuronal degeneration. Here, the time-dependence of these changes was monitored in the striatum of 6, 9, 12, 18 and 23-month-old G2019S KI mice and wild-type controls using DA uptake assay, Western analysis and immunohistochemistry. Western analysis showed elevation of membrane dopamine transporter (DAT) levels at 9 and 12 months of age, along with a reduction of vesicular monoamine transporter 2 (VMAT2) levels at 12 months. DAT uptake was abnormally elevated from 9 to up to 18 months. DAT and VMAT2 level changes were specific to the G2019S mutation since they were not observed in LRRK2 kinase-dead or knock-out mice. Nonetheless, dysfunctional DAT uptake was not normalized by acute pharmacological inhibition of LRRK2 kinase activity with MLi-2. Immunoblot analysis showed elevation of pSer129 α-syn levels in the striatum of 12-month-old G2019S KI mice, which, however, was not confirmed by immunohistochemical analysis. Instead, total α-syn immunoreactivity was found elevated in the striatum of 23-month-old LRRK2 knock-out mice. These data indicate mild changes in DA transporters and α-syn metabolism in the striatum of 12-month-old G2019S KI mice whose pathological relevance remains to be established. Full article
(This article belongs to the Special Issue Animal Models of Parkinson's Disease)
Show Figures

Figure 1

Back to TopTop