Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,511)

Search Parameters:
Keywords = dose-dependent effects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2868 KB  
Article
Targeting PON2 with Vutiglabridin Restores Mitochondrial Integrity and Attenuates Oxidative Stress-Induced Senescence
by Jin-Woong Heo, Hyeong Hwan Kim, Jae Ho Lee, Hyeong Min Lee, Hyung Soon Park and Chang-Hoon Nam
Antioxidants 2025, 14(11), 1288; https://doi.org/10.3390/antiox14111288 (registering DOI) - 27 Oct 2025
Abstract
Oxidative stress-induced mitochondrial dysfunction has been identified as a central driver of cellular senescence and age-related degeneration. The present study investigated the potential of vutiglabridin, a paraoxonase 2 (PON2) agonist, to mitigate reactive oxygen species (ROS)-induced senescence in human LO2 hepatocytes. The process [...] Read more.
Oxidative stress-induced mitochondrial dysfunction has been identified as a central driver of cellular senescence and age-related degeneration. The present study investigated the potential of vutiglabridin, a paraoxonase 2 (PON2) agonist, to mitigate reactive oxygen species (ROS)-induced senescence in human LO2 hepatocytes. The process of senescence was induced by the administration of hydrogen peroxide, followed by the recovery of the cells in fresh medium. The levels of intracellular ROS, the senescence-associated β-galactosidase staining, the p16/p21 expression, and the mitochondrial morphology were the focus of a comprehensive assessment utilizing a range of analytical techniques, including microscopy, quantitative PCR, and Western blotting. The present study demonstrated that the administration of vutiglabridin resulted in a dose-dependent reduction in attenuation of the expression of senescence markers. Transmission electron microscopy (TEM) and stimulated emission depletion (STED) imaging revealed the preservation of mitochondrial structure and network connectivity in cells treated with vutiglabridin. These effects were absent in PON2 knockout cells, confirming that vutiglabridin’s action requires functional PON2. The present study demonstrates that vutiglabridin alleviates oxidative stress-induced cellular senescence by preserving mitochondrial integrity and redox balance via a PON2-dependent mechanism. This study lends further support to the investigation of the PON2 pathway as a therapeutic target in age-related cellular dysfunction. Full article
34 pages, 4427 KB  
Article
Mechanisms Underlying the Cognitive Benefits of Solanum macrocarpon Leaf n-Butanol Extract: Acetylcholinesterase Inhibition and Oxidative Stress Modulation
by Ion Brinza, Ibukun Oluwabukola Oresanya, Ilkay Erdogan Orhan, Hasya Nazlı Gök, Lucian Hritcu and Razvan Stefan Boiangiu
Plants 2025, 14(21), 3283; https://doi.org/10.3390/plants14213283 (registering DOI) - 27 Oct 2025
Abstract
This study investigates the neuroprotective and anxiolytic effects of Solanum macrocarpon L. leaf n-butanol extract (SMB) in a zebrafish model of scopolamine (SCOP; 100 μM)-induced cognitive and behavioral impairments. SCOP, a muscarinic receptor antagonist, is commonly used to mimic memory deficits and anxiety-like [...] Read more.
This study investigates the neuroprotective and anxiolytic effects of Solanum macrocarpon L. leaf n-butanol extract (SMB) in a zebrafish model of scopolamine (SCOP; 100 μM)-induced cognitive and behavioral impairments. SCOP, a muscarinic receptor antagonist, is commonly used to mimic memory deficits and anxiety-like behaviors associated with neurodegenerative conditions. Zebrafish were chronically exposed to SMB at concentrations of 1, 3, and 6 mg/L. Behavioral assessments included anxiety-related paradigms, such as novel tank diving (NTT), novel approach (NA), and light–dark transition (LD) tests, as well as cognitive assays, including the Y-maze and novel object recognition (NOR) tests. SMB significantly mitigated SCOP-induced anxiety-like behaviors and cognitive deficits in a dose-dependent manner. Biochemical analyses demonstrated that SMB inhibited acetylcholinesterase (AChE) overactivity, indicating restoration of cholinergic function. Furthermore, SMB enhanced the activity of endogenous antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) and significantly reduced oxidative stress biomarkers, including malondialdehyde (MDA) and protein carbonyls. These findings suggest that SMB may exert neuroprotective effects through modulation of cholinergic signaling and oxidative stress. Overall, SMB represents a promising phytotherapeutic candidate for mitigating cognitive and anxiety-related symptoms linked to oxidative damage. Further investigations are warranted to characterize its active constituents and assess long-term efficacy and safety in models of neurodegeneration. Full article
(This article belongs to the Special Issue Phytochemical Compounds and Antioxidant Properties of Plants)
46 pages, 7647 KB  
Article
Harnessing Nature for Breast Cancer Management: Effects of Fisetin-Loaded Nigellasomes Embedded in Microneedles Improve Tumor Suppression and Reduce Oxidative Stress
by Sammar Fathy Elhabal, Eman Mohammed Ali, Sandra Hababeh, Fatma E. Hassan, Suzan Awad AbdelGhany Morsy, Dalia Ahmed Elbahy, Sahar K. Ali, Khaled M. Allam, Ibrahim Mousa, Marwa A. Fouad and Ahmed Mohsen Elsaid Hamdan
Pharmaceutics 2025, 17(11), 1392; https://doi.org/10.3390/pharmaceutics17111392 (registering DOI) - 27 Oct 2025
Abstract
Background: Natural compounds such as fisetin have promising in breast cancer treatment, but their poor pharmacokinetics limit their therapeutic application. This study utilized a synergistic approach by combining fisetin-loaded Nigella sativa (N.S.) oil nanovesicles (FIS-NSs) and carbohydrate-based microneedles (FIS-NSs-MNs) to improve breast [...] Read more.
Background: Natural compounds such as fisetin have promising in breast cancer treatment, but their poor pharmacokinetics limit their therapeutic application. This study utilized a synergistic approach by combining fisetin-loaded Nigella sativa (N.S.) oil nanovesicles (FIS-NSs) and carbohydrate-based microneedles (FIS-NSs-MNs) to improve breast cancer management. Methods: Chemical composition of NS petroleum ether extract using gas chromatography–mass spectrometry (GC/MS). FIS-NSs were prepared and characterized for particle size, polydispersity, zeta potential, encapsulation efficiency, and stability. These vesicles were embedded into gelatin, hyaluronic acid, and carboxymethyl cellulose microneedles. In vitro drug release, ex vivo permeation, cytotoxicity against breast cancer cells, and in vivo antitumor efficacy in Ehrlich tumor models were evaluated. Results: Optimized FIS-NSs displayed nanoscale size (190 ± 0.74 nm), low P.D.I (0.25 ± 0.07), high surface charge (+37 ± 0.57 mV), and high encapsulation (88 ± 0.77%). In vitro investigations showed sustained FIS release (~85% over 72 h), while ex vivo permeation showed higher absorption than free fisetin. Both FIS-NSs and FIS-NSs-MNs showed dose-dependent cytotoxicity against breast cancer cells, with lower IC50 than free fisetin (24.7 µM). In vivo, FIS-NSs-MNs and tumor burden inhibition (~77%), reduced oxidative stress (54%), restored antioxidant defenses, and decreased inflammatory markers. Immunohistochemical analysis for caspase-3 showed apoptosis activation within tumor tissues. Conclusions: These findings demonstrate that FIS administration via NS-MNs improves drug stability, penetration, and apoptotic activity, resulting in enhanced anticancer effects. This innovative nanovesicle–microneedle platform provides a non-invasive, effective, and patient-friendly approach for the effective treatment of breast cancer, with potential for broader applications in oncological nanomedicine. Full article
(This article belongs to the Special Issue Advanced Drug Delivery Systems for Natural Products)
Show Figures

Graphical abstract

23 pages, 6060 KB  
Article
Duloxetine, an SNRI, Targets pSTAT3 Signaling: In-Silico, RNA-Seq and In-Vitro Evidence for a Pleiotropic Mechanism of Pain Relief
by Sayed Aliul Hasan Abdi, Gohar Azhar, Xiaomin Zhang and Jeanne Y. Wei
Int. J. Mol. Sci. 2025, 26(21), 10432; https://doi.org/10.3390/ijms262110432 (registering DOI) - 27 Oct 2025
Abstract
Chronic pain is a serious health issue, often irrationally managed by conventional analgesics. Duloxetine, a serotonin–norepinephrine reuptake inhibitor (SNRI), also effective in neuropathic and musculoskeletal pain, but the molecular mechanism of its analgesic action is still unclear. Here, we examined whether Duloxetine exerts [...] Read more.
Chronic pain is a serious health issue, often irrationally managed by conventional analgesics. Duloxetine, a serotonin–norepinephrine reuptake inhibitor (SNRI), also effective in neuropathic and musculoskeletal pain, but the molecular mechanism of its analgesic action is still unclear. Here, we examined whether Duloxetine exerts pleiotropic effects by directly targeting phosphorylated STAT3 (pSTAT3), a key regulator of neuroinflammation and pain sensitization. Molecular docking showed that Duloxetine binds with pSTAT3 with binding energy −5.83 kcal/mol. Ruxolitinib, a JAK/STAT inhibitor used as reference, showed binding energy of −6.19 kcal/mol. Molecular dynamics (MD) simulations confirmed stable Duloxetine–pSTAT3 complexes, while MM-PBSA free energy analysis revealed more favorable binding for Duloxetine (ΔG = −15.17 kJ·mol−1) than Ruxolitinib (ΔG = −12.98 kJ·mol−1) for pSTAT3. In-vitro analyses, Western blot showed that Duloxetine significantly reduced IL-6–induced STAT3 and pSTAT3 expression in C2C12 cells in a dose-dependent manner (6.4 and 12.8 μM, *** p < 0.0001), although Ruxolitinib produced a stronger suppression. Transcriptomic analysis revealed Duloxetine-specific enrichment of mitochondrial, oxidative phosphorylation, and synaptic pathways, distinct from the immune-suppressive influence of Ruxolitinib. RNA-seq further revealed that STAT3 transcript abundance remains constant under all treatment conditions, indicating that post-transcriptional or post-translational mechanisms, such as phosphorylation-dependent activation, may be involved rather than transcriptional modulation of STAT3 in action of Ruxolitinib and Duloxetine and the formation of novel STAT3 indicating enhanced transcript diversity. The rMATS splicing analysis confirmed dose-dependent modulation, with Duloxetine promoting mild exon skipping at 6.4 μM (IncLevel 0.90 → 0.80) and recovery at 12.8 μM (0.85 → 0.86), while Ruxolitinib induced stronger exon inclusion (0.85 → 1.00,0.94), with broader transcript suppression at 6.4 μM and 12.8 μM, respectively. These findings establish Duloxetine as a dual-action therapeutic that combines neurotransmitter reuptake inhibition with pSTAT3 suppression and isoform-level transcriptomic modulation. This pleiotropic mechanism provides a rationale for its durable analgesic effects and supports repurposing in STAT3-associated disorders. Full article
(This article belongs to the Special Issue Drug Repurposing: Emerging Approaches to Drug Discovery (2nd Edition))
Show Figures

Figure 1

19 pages, 2273 KB  
Article
Prenatal Exposure to Imidacloprid Affects Cognition and Anxiety-Related Behaviors in Male and Female CD-1 Mice
by Colin Lee, Jessica Quito, Truman Poteat, Vasiliki E. Mourikes, Jodi A. Flaws and Megan M. Mahoney
Toxics 2025, 13(11), 918; https://doi.org/10.3390/toxics13110918 (registering DOI) - 27 Oct 2025
Abstract
Neonicotinoid pesticides, including imidacloprid (IMI), are widely used in agriculture and as household insecticides. IMI displays strong affinity for insect nicotinic acetylcholine receptors (nAChRs); however, neonicotinoids still partially bind to mammalian nAChRs. Relatively little is known about how neonicotinoid exposure alters learning, memory [...] Read more.
Neonicotinoid pesticides, including imidacloprid (IMI), are widely used in agriculture and as household insecticides. IMI displays strong affinity for insect nicotinic acetylcholine receptors (nAChRs); however, neonicotinoids still partially bind to mammalian nAChRs. Relatively little is known about how neonicotinoid exposure alters learning, memory or mood, even though nAChRs play a role in these mechanisms. We tested the hypothesis that developmental exposure to IMI impairs performance on memory tasks, and anxiety- and depressive-like behavior. We orally dosed pregnant CD-1 mice from gestation day 10 to birth with vehicle or IMI at 0.5 mg/kg/day or 5.7 mg/kg/day. When exposed animals were adults, we examined cognitive and emotional behaviors and we examined the effect of IMI on α7 and α4 nAChR subunit mRNA expression using qPCR. For both sexes, IMI exposure was associated with impaired striatal-dependent procedural learning task and hippocampal-dependent spatial learning but had no effect on hippocampal-dependent working memory. Males, but not females, displayed increased anxiety-like behavior, with low dose subjects displaying more pronounced effects, suggesting a non-linear dose response. In males, we found lower α7 subunit mRNA expression in the hippocampus and amygdala and lower α4 mRNA expression in the striatum compared to controls. Thus, exposure to IMI during a critical period is associated with disruptions to cognitive and anxiety-like behaviors. Additionally, in males, IMI exposure is associated with reduced expression of nAChR subunits in relevant brain regions. Full article
(This article belongs to the Section Neurotoxicity)
Show Figures

Figure 1

15 pages, 618 KB  
Article
Investigation of the Deformation Dependence of Polymer Films on Various Physical Factors
by Anatoliy I. Kupchishin, Marat N. Niyazov and Sergey A. Ghyngazov
Polymers 2025, 17(21), 2853; https://doi.org/10.3390/polym17212853 (registering DOI) - 26 Oct 2025
Abstract
In this work, models of the deformation behavior of polymer films of polyethylene and polyvinyl chloride are developed and analyzed, taking into account the influence of thickness, mechanical stress, temperature, time and dose of electron and ion irradiation. Experimental studies included tensile tests [...] Read more.
In this work, models of the deformation behavior of polymer films of polyethylene and polyvinyl chloride are developed and analyzed, taking into account the influence of thickness, mechanical stress, temperature, time and dose of electron and ion irradiation. Experimental studies included tensile tests of polyethylene films of different thicknesses irradiated with krypton ions and electrons, as well as measuring the return deformation and its rate. It is shown that the quadratic and exponential models best describe the dependences of deformation on stress. Analytical formulas for the rate and acceleration of deformation are obtained, taking into account the influence of temperature and radiation dose. The results demonstrate a significant increase in the elastic properties and return deformation of irradiated samples, which is explained by the cross-linking of macromolecules and changes in the molecular structure under the influence of radiation. The proposed models and formulas can be effectively used in the development of devices and systems for monitoring the deformation of polymeric materials under radiation exposure in the aerospace, nuclear and electronic industries. Using the statistical analysis method, it was shown that the exponential model describes the dynamics of polyethylene deformation with a determination coefficient R2 = 0.985, which significantly exceeds the accuracy of the linear model (R2 = 0.85). Full article
(This article belongs to the Special Issue Computational Modeling of Polymer Composites and Nanocomposites)
20 pages, 6961 KB  
Article
Antibiotics Impact the Cytotoxicity and Cytopathic Effect of Helicobacter pylori Extracellular Vesicles Against Gastric Cells
by Paweł Krzyżek, Mateusz Chmielarz, Edyta Bożemska, Agnieszka Opalińska, Mateusz Olbromski, Michał Małaszczuk, Barbara Krzyżanowska, Katarzyna Haczkiewicz-Leśniak, Marzenna Podhorska-Okołów, Piotr Dzięgiel and Beata Sobieszczańska
Int. J. Mol. Sci. 2025, 26(21), 10399; https://doi.org/10.3390/ijms262110399 (registering DOI) - 26 Oct 2025
Abstract
Helicobacter pylori is a spiral microorganism capable of inducing a range of gastric diseases. Among different virulence determinants produced by this bacterium, VacA and CagA are of critical importance for the development of these conditions. Taking into account the ability to chronically colonize [...] Read more.
Helicobacter pylori is a spiral microorganism capable of inducing a range of gastric diseases. Among different virulence determinants produced by this bacterium, VacA and CagA are of critical importance for the development of these conditions. Taking into account the ability to chronically colonize the stomach, drug-resistant strains of this pathogen can be repeatedly exposed to subinhibitory antibiotic concentrations, which in turn may reduce or enhance their extracellular vesicles (EVs)-derived virulence towards gastric cells. With the use of different experimental techniques, we were the first to demonstrate that subinhibitory antibiotic concentrations modify both the cytotoxicity and cytopathic effect induced by EVs of H. pylori in gastric cells. The ability to induce vacuolization and the hummingbird phenotype in gastric cells presented an antibiotic-specific pattern. At the highest doses tested, all EV types induced phenotypic changes and cytotoxicity in gastric cells; however, the highest lethal effect was observed for EVs isolated from native (antibiotic-unexposed) cells. This suggests that short-term exposure of H. pylori to subinhibitory antibiotic concentrations does not translate into exacerbation of its EVs-dependent virulence. Nevertheless, extensive research in this area is undoubtedly needed to confirm these observations. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

22 pages, 7463 KB  
Article
Exploring the Anticancer Potential of the Multistrain Probiotic Formulation OxxySlab in Bladder Cancer Cell Lines
by Valeria Ciummo, Alessia Ciafarone, Serena Altamura, Francesca Lombardi, Marcella Reale, Maria Grazia Cifone, Benedetta Cinque and Paola Palumbo
Antioxidants 2025, 14(11), 1282; https://doi.org/10.3390/antiox14111282 (registering DOI) - 26 Oct 2025
Abstract
Bladder cancer (BC), particularly its muscle-invasive subtype (MIBC), remains a clinical challenge due to high recurrence and limited therapeutic options. Emerging evidence suggests that probiotics may offer selective anticancer effects while preserving healthy tissue. In this study, we evaluated the antitumor potential of [...] Read more.
Bladder cancer (BC), particularly its muscle-invasive subtype (MIBC), remains a clinical challenge due to high recurrence and limited therapeutic options. Emerging evidence suggests that probiotics may offer selective anticancer effects while preserving healthy tissue. In this study, we evaluated the antitumor potential of OxxySlab, a multistrain probiotic formulation, in two BC cell lines (T24 and 5637) and a non-tumorigenic urothelial cell line (SV-HUC1). OxxySlab lysate dose-dependently inhibited BC cell proliferation, clonogenicity, and migration, while sparing normal cells. Mechanistically, the treatment suppressed epithelial–mesenchymal transition (EMT), induced senescence, and disrupted redox homeostasis in malignant cells. These effects were associated with the induction of oxidative stress and impaired antioxidant defenses. Co-treatment with vitamin C attenuated ROS accumulation and senescence, implicating oxidative stress as a key mediator. Notably, SV-HUC1 cells retained viability and phenotype, confirming the formulation’s selectivity. Overall, these findings support OxxySlab as a promising adjunctive strategy in BC therapy, capable of reducing tumor aggressiveness through redox-mediated senescence and EMT inhibition without harming normal urothelial cells. Full article
Show Figures

Graphical abstract

22 pages, 11428 KB  
Article
Cold Atmospheric Plasma Selectively Targets Neuroblastoma: Mechanistic Insights and In Vivo Validation
by Ligi Milesh, Bindu Nair, Ha M. Nguyen, Taylor Aiken, J. Leon Shohet and Hau D. Le
Cancers 2025, 17(21), 3432; https://doi.org/10.3390/cancers17213432 (registering DOI) - 25 Oct 2025
Viewed by 35
Abstract
Background: Neuroblastoma (NB) presents significant challenges in pediatric oncology, particularly in high-risk cases where local recurrence occurs in ~35% of patients. Cold Atmospheric Plasma (CAP) has emerged as a promising treatment due to its selective cytotoxicity toward cancer cells while sparing normal cells. [...] Read more.
Background: Neuroblastoma (NB) presents significant challenges in pediatric oncology, particularly in high-risk cases where local recurrence occurs in ~35% of patients. Cold Atmospheric Plasma (CAP) has emerged as a promising treatment due to its selective cytotoxicity toward cancer cells while sparing normal cells. Methods: This study assessed CAP efficacy using in vitro NB cell lines (SK-N-AS and LAN-5) and in vivo xenograft murine models. In vitro, CAP was applied via a helium jet, and cellular responses were evaluated for viability, reactive oxygen species (ROS), lipid peroxidation, DNA damage, and cell cycle, while apoptosis was measured by Annexin V/PI flow cytometry. In vivo, CAP was applied to unresected tumors and residual tumors after incomplete resection. Tumor regrowth was monitored, and histological analysis was performed. Results: CAP reduced NB cell viability in a dose- and time-dependent manner by increasing intracellular ROS and lipid peroxidation. CAP-treated NB cells showed a 50% rise in oxidative DNA damage, a two-fold increase in apoptosis, and alterations in cell-cycle progression, while normal fibroblasts showed modest effects. CAP predominantly induced apoptosis, though secondary necrosis appeared with prolonged exposures, consistent with caspase-3 and PARP pathways. In xenografts, CAP reduced tumor diameter by 60% and increased caspase-3-positive cells, with minimal effects on normal tissue. Conclusions: CAP demonstrates strong therapeutic potential as a targeted, non-invasive NB treatment, particularly for residual tumors near vascular structures with consistent exposure times (60–300 s). Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

9 pages, 1322 KB  
Article
Heparin Provides Antiviral Activity Against Rhinovirus-16 via an Heparan Sulfate Proteoglycan-Independent Mechanism
by Leanne C. Helgers, Killian E. Vlaming, Tanja M. Kaptein, Julia Eder, Jan Willem Duitman and Teunis B. H. Geijtenbeek
Int. J. Mol. Sci. 2025, 26(21), 10393; https://doi.org/10.3390/ijms262110393 (registering DOI) - 25 Oct 2025
Viewed by 54
Abstract
Human rhinovirus 16 (HRV-16) is a major cause of common colds and can exacerbate asthma and COPD, yet no approved antiviral treatments exist. Heparin, a highly sulfated polysaccharide, is known to block viral infection of many viruses that require attachment to heparan sulfate [...] Read more.
Human rhinovirus 16 (HRV-16) is a major cause of common colds and can exacerbate asthma and COPD, yet no approved antiviral treatments exist. Heparin, a highly sulfated polysaccharide, is known to block viral infection of many viruses that require attachment to heparan sulfate proteoglycans (HSPGs). Here, we investigated whether heparin inhibits HRV-16 infection. HRV-16 uses ICAM-1 as its attachment receptor and lacks a confirmed HSPG-binding mechanism. Notably, heparin inhibited HRV-16 infection in vitro in a dose- and time-dependent manner. Pre-treatment of either cells or virus particles with unfractionated heparin significantly reduced HRV-16 RNA expression at 24 and 48 h post-infection. In contrast, low-molecular-weight heparins blocked infection of HRV-16 significantly less effectively compared to unfractionated heparins. Our findings suggest that the inhibitory effect of unfractionated heparin on HRV-16 infection is likely independent of specific HSPGs interactions and may be mediated by the size and highly negative charge of unfractionated heparin. Importantly, the ability of unfractionated heparin to block viruses that do not require HSPGs for attachment implies a broader antiviral potential as a prophylactic or therapeutic agent against a variety of respiratory viruses. Full article
(This article belongs to the Special Issue Respiratory Virus Infection)
20 pages, 2684 KB  
Article
Mito-Genipin, a Novel Mitochondria-Targeted Genipin Derivative Modulates Oxidative Stress and Inflammation in Macrophages
by Beatrice Angi, Daria Di Molfetta, Diana Pendin, Giuseppe Antoniazzi, Carlo Alberto Flora, Francesco De Leonardis, Martina Buono, Giuseppe Fiermonte, Ildiko Szabo, Andrea Mattarei and Tatiana Varanita
Antioxidants 2025, 14(11), 1281; https://doi.org/10.3390/antiox14111281 (registering DOI) - 25 Oct 2025
Viewed by 68
Abstract
Genipin, a natural compound derived from Gardenia jasminoides, is widely used as an inhibitor of uncoupling protein 2 (UCP2), a protein located in the inner mitochondrial membrane (IMM) that plays a crucial role in regulating oxidative stress and cellular metabolism. Pharmacological inhibition [...] Read more.
Genipin, a natural compound derived from Gardenia jasminoides, is widely used as an inhibitor of uncoupling protein 2 (UCP2), a protein located in the inner mitochondrial membrane (IMM) that plays a crucial role in regulating oxidative stress and cellular metabolism. Pharmacological inhibition of UCP2 has been explored as a strategy to modulate reactive oxygen species (ROS) and inflammatory responses. However, the utility of genipin is limited by its relatively low bioavailability and dose-dependent toxicity. To address these limitations, we developed mito-genipin, a mitochondria-targeted genipin derivative incorporating a triphenylphosphonium (TPP+) moiety, designed to enhance mitochondrial accumulation and thereby increase efficacy. In macrophages, mito-genipin induced mitochondrial hyperpolarization, elevated ROS production, and amplified pro-inflammatory cytokine expression compared with control or genipin treatment. In cells lacking UCP2, mito-genipin did not enhance ROS production. Our data identify mito-genipin as an effective modulator of oxidative stress and inflammation, supporting a putative link to UCP2 inhibition and highlighting potential implications in redox biology and immunomodulation. Full article
(This article belongs to the Section ROS, RNS and RSS)
Show Figures

Figure 1

16 pages, 1813 KB  
Article
The Effect of IL-17A and Combined Mechanical Injury on Meniscal Tissue Integrity In Vitro
by Greta Ahrens, Florian Gellhaus, Jan-Tobias Weitkamp, Peter Behrendt, François Cossais, Bernd Rolauffs, Alan J. Grodzinsky and Bodo Kurz
J. Clin. Med. 2025, 14(21), 7573; https://doi.org/10.3390/jcm14217573 (registering DOI) - 25 Oct 2025
Viewed by 86
Abstract
Objectives: Meniscal integrity is crucial for knee joint stability and the prevention of osteoarthritis (OA) development. Recent studies suggested that mechanical overload and interleukin (IL)-17A may be important intertwined players in meniscal degeneration, but a direct impact of IL-17A on the meniscus [...] Read more.
Objectives: Meniscal integrity is crucial for knee joint stability and the prevention of osteoarthritis (OA) development. Recent studies suggested that mechanical overload and interleukin (IL)-17A may be important intertwined players in meniscal degeneration, but a direct impact of IL-17A on the meniscus has not been investigated. Therefore, the aim of this study was to analyze the effect of IL-17A on meniscal tissue with and without combined mechanical injury (MI). Methods: Meniscal explant disks (1 mm height, 3 mm diameter) were isolated from bovine menisci (preserving the native tibial superficial zone) and exposed to IL-17A [0–100 ng/mL] and/or MI (single compression, 50% strain, strain rate 1 mm/sec). After three days of incubation in a serum-free medium, the proteoglycan release (sGAG; DMMB assay), mRNA level of matrix-degrading enzymes (qRT-PCR), aggrecan degradation (NITEGE immunostaining), and cell death (histomorphometry of nuclear blebbing/apoptosis and condensed nuclei/unspecified cell death) were determined. Statistics: one- and two-way ANOVA with Tukey’s multiple comparisons or Kruskal–Wallis with post hoc testing. Results: IL-17A increased sGAG release in a dose-dependent significant manner. MI also induced the release of sGAG significantly, but the combination with IL-17A showed the highest levels. Both IL-17A and MI individually affected the mRNA levels for ADAMTS4 and MMP-13 slightly, but the combination of both particularly induced a significant increase in mRNA levels. Signals for the ADAMTS4-related aggrecan neoepitope NITEGE were elevated by IL-17A in superficial areas of the excised tissue and by MI in superficial and deeper areas. The combination of both stimuli intensified this signal further. MI increased the number of cells with condensed nuclei significantly and induced apoptosis in a small proportion of cells. IL-17A had no significant impact on the amount of condensed or apoptotic nuclei. Conclusions: Our findings emphasize an interaction between inflammatory cytokine IL-17A signaling and mechanical stress since IL-17A induced matrix degeneration in meniscal tissue, which intensified in combination with a trauma. The latter might create a post-traumatic environment that promotes meniscal degeneration and subsequently osteoarthritis progression. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

17 pages, 3957 KB  
Article
The Oral Transfection of Spodoptera exigua (Lepidoptera: Noctuidae) Larvae via an Artificial Diet as a Strategy for Recombinant Protein Production
by María Isabel Sáez, Alba Galafat, Pablo Barranco, María Dolores Suárez, Francisco Javier Alarcón and Tomás Francisco Martínez
Insects 2025, 16(11), 1095; https://doi.org/10.3390/insects16111095 (registering DOI) - 25 Oct 2025
Viewed by 102
Abstract
Insects present extraordinary potential for obtaining recombinant proteins, both in terms of the quantity and quality of the synthesized product. This work proposes the use of artificial diets including pDNA as an oral transfection system for the Lepidoptera Spodoptera exigua. It is [...] Read more.
Insects present extraordinary potential for obtaining recombinant proteins, both in terms of the quantity and quality of the synthesized product. This work proposes the use of artificial diets including pDNA as an oral transfection system for the Lepidoptera Spodoptera exigua. It is hypothesized that oral transfection can lead to the effective expression of the reporter genes carried in plasmids. Prior to their incorporation into the artificial diet, plasmids (pCMVβ and pEGFP-N2) were protected from inactivation in the digestive tract by chitosan nanoparticulation. The survival of plasmids and their oral uptake by larvae was evaluated, as well as the persistence of pDNA in larvae throughout their ontogeny. The results confirmed that transfection occurred and that pDNA persisted during the ontogeny, even after discontinuing plasmid administration. The transcription of reporter genes was quantified by qRT-PCR, and the results indicate a dose-dependent synthesis of mRNA as the inclusion level of pDNA in diets increased. Moreover, the measurement of the biological activity of the recombinant proteins (β-galactosidase activity and green fluorescence) paralleled the results obtained for gene transcription, also dose-dependently. Therefore, effective oral transfection is feasible in S. exigua, provided that pDNA is protected against gut inactivation prior to its incorporation in artificial diets. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Graphical abstract

17 pages, 1347 KB  
Article
Repellent, Lethal Activity, and Synergism of Cannabis sativa Extracts with Terpenes Against a Laboratory Colony of Triatoma infestans
by Martín M. Dadé, Martín R. Daniele, Sergio Rodriguez, Pilar Díaz, Maria Pía Silvestrini, Guillermo R. Schinella, Gustavo H. Marin, Daniel Barrio and Jose M. Prieto Garcia
Plants 2025, 14(21), 3258; https://doi.org/10.3390/plants14213258 (registering DOI) - 24 Oct 2025
Viewed by 77
Abstract
Triatoma infestans is one of the primary vectors of Chagas disease. This vector has developed increasing resistance to pyrethroids, the main insecticides used for its control. Recent studies have highlighted the repellent and lethal effects of Cannabis sativa on insects, suggesting its potential [...] Read more.
Triatoma infestans is one of the primary vectors of Chagas disease. This vector has developed increasing resistance to pyrethroids, the main insecticides used for its control. Recent studies have highlighted the repellent and lethal effects of Cannabis sativa on insects, suggesting its potential use in pest management. Based on this, we hypothesize that C. sativa could be a viable bioactive for controlling T. infestans. To test this hypothesis, acetone and ethanol extracts were obtained from the inflorescences of C. sativa L. (Deep Mandarine variety) using sonication. These extracts were analyzed through gas chromatography and high-performance liquid chromatography. The repellent and lethal effects of the extracts were evaluated on fifth-instar nymphs of T. infestans from a laboratory colony, as well as on the beneficial non-target species, Apis mellifera. The most abundant terpenes identified were β-caryophyllene and β-pinene, with concentrations exceeding 100 ppm in both extracts. Cannabidiol and Δ9-tetrahydrocannabinol were the predominant cannabinoids. Both extracts exhibited maximum lethal activity 48 h after insect contact, with the acetone extract demonstrating a potency five times greater than the ethanolic extract. Binary combinations of C. sativa extracts with major terpenes showed dose-dependent interactions against T. infestans, ranging from strong synergy (e.g., AE + β-caryophyllene, CI = 0.06–0.17) to marked antagonism (e.g., AE + E-ocimene, CI = 1.60–4.80). Furthermore, the acetone extract showed a more effective repellent action compared to the ethanol extract, even outperforming N,N-Diethyl-meta-toluamide (DEET, positive control). At a concentration of 25 µg/cm2 for 60 min, the acetone extract achieved a 100% repellent effect, whereas DEET required a concentration of 50 µg/cm2 to achieve the same effect. Unlike imidacloprid (positive control), neither extract showed toxicity to adult A. mellifera at the evaluated doses. Full article
(This article belongs to the Special Issue Recent Advances in Essential Oils and Plant Extracts)
Show Figures

Figure 1

10 pages, 717 KB  
Case Report
Cannabis and Sudden Cardiac Death: A Case Series with Narrative Literature Review
by Vito Maria Goffredo, Michela Ferrara, Mariagrazia Calvano, Natascha Pascale, Aldo Di Fazio and Giuseppe Bertozzi
Forensic Sci. 2025, 5(4), 52; https://doi.org/10.3390/forensicsci5040052 (registering DOI) - 24 Oct 2025
Viewed by 73
Abstract
Background/Objectives: Cannabis is the most widely used illicit substance worldwide, particularly among young adults, with growing acceptance following medical and recreational legalization. Although generally perceived as a drug with low acute toxicity, an expanding body of evidence indicates that cannabinoids can exert [...] Read more.
Background/Objectives: Cannabis is the most widely used illicit substance worldwide, particularly among young adults, with growing acceptance following medical and recreational legalization. Although generally perceived as a drug with low acute toxicity, an expanding body of evidence indicates that cannabinoids can exert relevant cardiovascular effects, including arrhythmias, myocardial ischemia, and sudden cardiac death (SCD). These mechanisms are mediated through complex, dose-dependent interactions among CB1 and CB2 receptors, autonomic imbalance, and endothelial dysfunction. Nevertheless, cannabis-related fatalities remain underestimated in both clinical and forensic settings. Case presentation: Three cases of sudden unexpected death in previously healthy men aged 28, 37, and 37 years are described. All were found deceased at home under non-suspicious circumstances. Forensic autopsies ruled out trauma, coronary atherosclerosis, congenital malformations, or cardiomyopathy. Histological analyses consistently revealed polymorphic myocardial alterations, including interstitial edema, fiber disruption, and focal myocytolysis, without inflammatory infiltrates or necrosis. Toxicological examinations demonstrated the presence of Δ9-tetrahydrocannabinol (THC) and metabolites in peripheral blood and urine, while alcohol and other illicit drugs tested negative. In each case, the cause of death was attributed to arrhythmic sudden cardiac death in temporal association with cannabis use. Conclusions: This case series, integrated with a narrative review of current literature, supports the hypothesis that cannabis consumption can contribute to fatal arrhythmias even in young adults without conventional cardiovascular risk factors. The convergence of autopsy, histopathological, and toxicological findings suggests a potential causal link between THC exposure and sudden unexpected death. These results highlight the importance of systematic postmortem investigations in suspected drug-related fatalities and underscore the need for greater awareness among clinicians, forensic pathologists, and policymakers regarding the underestimated cardiovascular toxicity of cannabis. Full article
Show Figures

Figure 1

Back to TopTop