Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,343)

Search Parameters:
Keywords = driver evaluation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 2219 KiB  
Review
The Role of the Industrial IoT in Advancing Electric Vehicle Technology: A Review
by Obaida AlHousrya, Aseel Bennagi, Petru A. Cotfas and Daniel T. Cotfas
Appl. Sci. 2025, 15(17), 9290; https://doi.org/10.3390/app15179290 (registering DOI) - 24 Aug 2025
Abstract
The use of the Industrial Internet of Things within the domain of electric vehicles signifies a paradigm shift toward advanced, integrated, and optimized transport systems. This study thoroughly investigates the pivotal role of the Industrial Internet of Things in elevating various features of [...] Read more.
The use of the Industrial Internet of Things within the domain of electric vehicles signifies a paradigm shift toward advanced, integrated, and optimized transport systems. This study thoroughly investigates the pivotal role of the Industrial Internet of Things in elevating various features of electric vehicle technology, comprising predictive maintenance, vehicle connectivity, personalized user management, energy and fleet optimization, and independent functionalities. Key IIoT applications, such as Vehicle-to-Grid integration and advanced driver-assistance systems, are examined alongside case studies highlighting real-world implementations. The findings demonstrate that IIoT-enabled advanced charging stations lower charging time, while grid stabilization lowers electricity demand, boosting functional sustainability. Battery Management Systems (BMSs) prolong battery lifespan and minimize maintenance intervals. The integration of the IIoT with artificial intelligence (AI) optimizes route planning, driving behavior, and energy consumption, resulting in safer and more efficient autonomous EV operations. Various issues, such as cybersecurity, connectivity, and integration with outdated systems, are also tackled in this study, while emerging trends powered by artificial intelligence, machine learning, and emerging IIoT technologies are also deliberated. This study emphasizes the capacity for IIoT to speed up the worldwide shift to eco-friendly and smart transportation solutions by evaluating the overlap of IIoT and EVs. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

17 pages, 660 KiB  
Review
Multi-Scale Drought Resilience in Terrestrial Plants: From Molecular Mechanisms to Ecosystem Sustainability
by Weiwei Lu, Bo Wu, Lili Wang and Ying Gao
Water 2025, 17(17), 2516; https://doi.org/10.3390/w17172516 (registering DOI) - 23 Aug 2025
Abstract
Global climate change has intensified the frequency, intensity, and spatial heterogeneity of drought events, posing severe threats to the stability of terrestrial ecosystems. Plant drought resilience, which encompasses a plant’s capacity for drought resistance, post-stress recovery, and long-term adaptation and transformation to sustain [...] Read more.
Global climate change has intensified the frequency, intensity, and spatial heterogeneity of drought events, posing severe threats to the stability of terrestrial ecosystems. Plant drought resilience, which encompasses a plant’s capacity for drought resistance, post-stress recovery, and long-term adaptation and transformation to sustain ecosystem functionality, has emerged as a central focus in botanical and ecological research. This review synthesizes the conceptual evolution of plant drought resilience, from early emphasis on resistance and recovery to the current multi-dimensional framework integrating adaptation and transformation, and synthesizes advances in understanding multi-scale drought resilience in terrestrial plants—spanning molecular, physiological, individual, community, and ecosystem levels. Key mechanisms include molecular/physiological adaptations (osmotic adjustment, antioxidant defense, hydraulic regulation, carbon–water reallocation via gene networks and aquaporins), morpho-anatomical traits (root architectural plasticity, leaf structural modifications, and hydraulic vulnerability segmentation), community/ecosystem drivers (biodiversity effects, microbial symbioses, and soil–plant–feedback dynamics). We critically evaluate quantitative metrics and expose critical gaps, including neglect of stress legacy effects, oversimplified spatiotemporal heterogeneity, and limited integration of concurrent stressors. Future research should prioritize multi-scale and multi-dimensional integrated analysis, long-term multi-scenario simulations with field validation, and harnessing plant–microbe interactions to enhance drought resilience, providing a theoretical basis for ecosystem sustainability and agricultural production under climate change. Full article
(This article belongs to the Special Issue Wetland Conservation and Ecological Restoration)
25 pages, 5177 KiB  
Article
Impact of Government Investment in Human Capital on Labor Force Participation and Income Growth Across Economic Tiers in Southeast Asian Countries
by Pathairat Pastpipatkul, Htwe Ko and George Randolph Dirth
Economies 2025, 13(9), 249; https://doi.org/10.3390/economies13090249 (registering DOI) - 23 Aug 2025
Abstract
Prior economic research emphasized land, labor and physical capital as the primary drivers of growth, but contemporary work highlights the pivotal role of human capital. Investments in education, health and governance are now regarded as central to sustainable development; yet important questions remain [...] Read more.
Prior economic research emphasized land, labor and physical capital as the primary drivers of growth, but contemporary work highlights the pivotal role of human capital. Investments in education, health and governance are now regarded as central to sustainable development; yet important questions remain regarding their effectiveness and context-specific impact. This study investigates how human capital investment influences labor force participation and income growth within the ASEAN nine economies for the period from 2000 to 2022 which provides a rich example of contrast in economic and governance outcomes within a single geographic region. Impacted units of measurement of labor force participation and income growth are evaluated using the Bayesian Additive Regression Trees model to select the most important variables, the Bayesian Dynamic Nonlinear Multivariate panel model to estimate regional effects, and the Time-varying Seemingly Unrelated Regression Equations model to evaluate country-specific dynamics, which considers not just the influence of investments in health and education but also the context of rule, law, and governance. The findings indicate that human capital investments exhibit heterogenous effects across economic tiers and the need for strategies and future study of preconditions to improve returns particularly in low-tier economies. Accordingly, mid-tier, emerging economies exhibit the greatest benefit from human capital investments while top-tier exhibit the probable impact of the law of diminishing returns as their human capital development is already well underway. Despite the limited scope, this study still has the potential to draw constructive theoretical and practical implications. Full article
(This article belongs to the Special Issue The Asian Economy: Constraints and Opportunities)
Show Figures

Graphical abstract

16 pages, 1085 KiB  
Article
The Innovativeness–Optimism Nexus in Autonomous Bus Adoption: A UTAUT-Based Analysis of Chinese Users’ Behavioral Intention
by Qiao Liang, Qianling Jiang and Wei Wei
Vehicles 2025, 7(3), 87; https://doi.org/10.3390/vehicles7030087 - 22 Aug 2025
Abstract
This study extended the Unified Theory of Acceptance and Use of Technology (UTAUT) by incorporating affective constructs (innovativeness, optimism, and hedonic motivation) to examine user adoption of autonomous bus (AB) in China, where government-supported deployment creates unique adoption dynamics. Analyzing 313 responses, collected [...] Read more.
This study extended the Unified Theory of Acceptance and Use of Technology (UTAUT) by incorporating affective constructs (innovativeness, optimism, and hedonic motivation) to examine user adoption of autonomous bus (AB) in China, where government-supported deployment creates unique adoption dynamics. Analyzing 313 responses, collected via stratified sampling using SmartPLS 4.0, we identified innovativeness as the dominant driver (total effect, β = 0.347), directly influencing behavioral intention (β = 0.164*) and indirectly shaping optimism (β = 0.692*), effort expectancy (β = 0.347*), and hedonic motivation (β = 0.681*). Our findings highlight contextual influences in public service systems. Performance expectancy (β = 0.153*) exerts a stronger effect than hedonic or social factors (H6/H3 rejected), while optimism demonstrates a dual scaffolding effect (OPT→EE, β = 0.189*; OPT→PE, β = 0.401*), reflecting a “calculative optimism” pattern where users balance technological interest with pragmatic utility evaluation in policy-supported deployment contexts. From a practical perspective, these findings suggest targeting high-innovativeness users through incentive programs, emphasizing system reliability over ease of use, and implementing adapted designs. This study contributes to the literature both theoretically, by validating the hierarchical role of innovativeness in UTAUT, and practically, by offering actionable strategies for China’s ongoing AB deployment initiative, including ISO-standardized UX and policy tools such as municipal Innovator Badges. Full article
19 pages, 3503 KiB  
Article
Discovery of Small Molecules That Inhibit MYC mRNA Translation Through hnRNPK and Induction of Stress Granule-Mediated mRNA Relocalization
by Yoni Sheinberger, Rina Wassermann, Jasmine Khier, Ephrem Kassa, Linoy Vaturi, Naama Slonim, Artem Tverskoi, Aviad Mandaby, Alik Demishtein, Mordehay Klepfish, Inbal Shapira-Lots and Iris Alroy
Int. J. Mol. Sci. 2025, 26(17), 8139; https://doi.org/10.3390/ijms26178139 - 22 Aug 2025
Viewed by 40
Abstract
MYC is a key oncogenic driver frequently overexpressed in non-small cell lung carcinoma (NSCLC) and other cancers, where its protein levels often exceed what would be expected from MYC mRNA levels alone, suggesting post-transcriptional regulation. Strategies to inhibit MYC function by targeting mRNA [...] Read more.
MYC is a key oncogenic driver frequently overexpressed in non-small cell lung carcinoma (NSCLC) and other cancers, where its protein levels often exceed what would be expected from MYC mRNA levels alone, suggesting post-transcriptional regulation. Strategies to inhibit MYC function by targeting mRNA translation hold potential for therapeutics utility in Myc-dependent cancers. We developed TranslationLight, a high-content imaging platform which detects MYC mRNA translation in human cells. Using this system, we conducted a high-throughput screen of ~100,000 compounds to identify small molecules that selectively modulate MYC translation. Candidate compounds were evaluated by immunofluorescence, ribosome profiling, RNA sequencing, cellular thermal shift assays (CETSA), and subcellular localization studies of mRNA and RNA-binding proteins. We identified a lead compound, CMP76, that potently reduces Myc protein without substantially decreasing its mRNA abundance. Mechanistic investigations showed that the compound induces relocalization of MYC mRNA into stress granules, accompanied by translational silencing. CETSA identified hnRNPK as a primary protein target, and compound treatment triggered its cytoplasmic relocalization together with formation of hnRNPK-containing granules colocalizing with MYC mRNA. Analysis across cancer cell lines revealed that sensitivity to CMP76 was significantly associated with RBM42 dependency. This work establishes a novel therapeutic strategy to inhibit MYC translation mediated by hnRNPK, offering a translationally targeted approach to cancer therapy. Full article
(This article belongs to the Special Issue RNA Editing/Modification in Health and Disease)
Show Figures

Figure 1

11 pages, 418 KiB  
Article
Healthcare Expenditures and Reimbursement Patterns in Idiopathic Pulmonary Fibrosis: A 10-Year Single-Center Retrospective Cohort Study in Turkey
by Kerem Ensarioğlu, Berna Akıncı Özyürek, Metin Dinçer, Tuğçe Şahin Özdemirel and Hızır Ali Gümüşler
Healthcare 2025, 13(17), 2084; https://doi.org/10.3390/healthcare13172084 - 22 Aug 2025
Viewed by 58
Abstract
Background/Objectives: Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive fibrosing interstitial disease that incurs significant healthcare costs due to diagnostic and treatment needs. This study aimed to estimate healthcare expenses related to IPF diagnosis, treatment, and follow-up, including factors affecting overall expenditure. [...] Read more.
Background/Objectives: Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive fibrosing interstitial disease that incurs significant healthcare costs due to diagnostic and treatment needs. This study aimed to estimate healthcare expenses related to IPF diagnosis, treatment, and follow-up, including factors affecting overall expenditure. Methods: This retrospective cohort study included 276 IPF patients from a tertiary hospital (2013–2022). Diagnostic and treatment costs were analyzed, including antifibrotic medications (pirfenidone and nintedanib), diagnostic tests (pulmonary function tests and performance evaluation tests), and interventions (fiberoptic bronchoscopy, imaging modalities). Costs in Turkish Lira were converted to United States dollars. Statistical analysis was performed using non-parametric tests to evaluate expenditure correlations with demographic, clinical, and treatment parameters, which included the Mann–Whitney and Spearman Rank Correlation tests when appropriate. Results: The median healthcare expenditure was USD 429.1 (9.13–21,024.57). Inpatient costs (USD 582.67; USD 250.22 to USD 1751, 25th and 75th percentile, respectively) were higher than outpatient costs (USD 192.36; USD 85.75 to USD 407.47, 25th and 75th percentile, respectively). Antifibrotic regimens did not differ significantly in cost or duration (Z = 0.657; p = 0.511) (mean pirfenidone duration: 1.1 ± 1.0 years; mean nintedanib duration: 0.6 ± 0.9 years). Diagnostic tests, particularly pulmonary function tests (PFT) (p: 0.001, Rho: 0.337), diffusing capacity of the lungs for carbon monoxide (DLCO) (p: 0.001, Rho: 0.516), and high-resolution computed tomography (HRCT) (p: 0.001, Rho: 0.327), were the primary drivers of costs. Longer treatment duration was positively correlated with expenditure (Rho: 0.264, p: 0.001 and Rho: 0.247, p: 0.006 for pirfenidone and nintedanib, respectively) while age showed a weak negative correlation (Rho = −0.184, p = 0.002). Gender and type of antifibrotic regimen did not show any significant effect on costs. Discussion: Diagnostic and follow-up testing were the main contributors to costs, driven by reimbursement requirements and the progressive nature of IPF. Antifibrotic medications, although expensive, provided clinical stability, potentially reducing hospitalization needs but increasing long-term care expenses. Variations in healthcare systems affect expenditures, with Turkey’s universal coverage lowering costs compared to Western countries. The study’s main limitations include being a single-center, retrospective study and its inability to include comorbidities and disease severity in the statistical analysis. Conclusions: IPF management is resource-intensive, with diagnostic tests and follow-up driving costs independent of demographics and treatment modality. Anticipating higher expenditures with prolonged survival and evolving treatment options is crucial for healthcare budget planning. Preparation of healthcare policies accordingly to these observations, which must include an overall increase in cost due to treatment duration and survival, remains a crucial aspect of budget control. Full article
Show Figures

Figure 1

20 pages, 5304 KiB  
Article
Deep Learning with UAV Imagery for Subtropical Sphagnum Peatland Vegetation Mapping
by Zhengshun Liu and Xianyu Huang
Remote Sens. 2025, 17(17), 2920; https://doi.org/10.3390/rs17172920 - 22 Aug 2025
Viewed by 64
Abstract
Peatlands are vital for global carbon cycling, and their ecological functions are influenced by vegetation composition. Accurate vegetation mapping is crucial for peatland management and conservation, but traditional methods face limitations such as low spatial resolution and labor-intensive fieldwork. We used ultra-high-resolution UAV [...] Read more.
Peatlands are vital for global carbon cycling, and their ecological functions are influenced by vegetation composition. Accurate vegetation mapping is crucial for peatland management and conservation, but traditional methods face limitations such as low spatial resolution and labor-intensive fieldwork. We used ultra-high-resolution UAV imagery captured across seasonal and topographic gradients and assessed the impact of phenology and topography on classification accuracy. Additionally, this study evaluated the performance of four deep learning models (ResNet, Swin Transformer, ConvNeXt, and EfficientNet) for mapping vegetation in a subtropical Sphagnum peatland. ConvNeXt achieved peak accuracy at 87% during non-growing seasons through its large-kernel feature extraction capability, while ResNet served as the optimal efficient alternative for growing-season applications. Non-growing seasons facilitated superior identification of Sphagnum and monocotyledons, whereas growing seasons enhanced dicotyledon distinction through clearer morphological features. Overall accuracy in low-lying humid areas was 12–15% lower than in elevated terrain due to severe spectral confusion among vegetation. SHapley Additive exPlanations (SHAP) of the ConvNeXt model identified key vegetation indices, the digital surface model, and select textural features as primary performance drivers. This study concludes that the combination of deep learning and UAV imagery presents a powerful tool for peatland vegetation mapping, highlighting the importance of considering phenological and topographical factors. Full article
Show Figures

Figure 1

14 pages, 5518 KiB  
Article
NOD2 Promotes Glioblastoma Progression Through Effects on Epithelial–Mesenchymal Transition and Cancer Stemness
by Eshrat Jahan, Shubhash Chandra Chaudhary, S M Abdus Salam, Eun-Jung Ahn, Nah Ihm Kim, Tae-Young Jung, Jong-Hwan Park, Sung Sun Kim, Ji Young Lee, Kyung-Hwa Lee and Kyung-Sub Moon
Biomedicines 2025, 13(8), 2041; https://doi.org/10.3390/biomedicines13082041 - 21 Aug 2025
Viewed by 321
Abstract
Background: Glioblastoma multiforme (GBM) represents one of the most aggressive and lethal primary brain malignancies, characterized by rapid proliferation, extensive invasiveness, and a dismal prognosis. Emerging evidence implicates nucleotide-binding oligomerization domain-containing protein 2 (NOD2), an intracellular pattern recognition receptor, as [...] Read more.
Background: Glioblastoma multiforme (GBM) represents one of the most aggressive and lethal primary brain malignancies, characterized by rapid proliferation, extensive invasiveness, and a dismal prognosis. Emerging evidence implicates nucleotide-binding oligomerization domain-containing protein 2 (NOD2), an intracellular pattern recognition receptor, as a potential driver of GBM progression. This study investigates NOD2’s role in promoting glioblastoma through its effects on the epithelial–mesenchymal transition (EMT) and cancer stem cell (CSC) markers. Methods: NOD2 expression levels and survival outcomes were assessed using TCGA data from GBM tumor samples (n = 153) and normal brain tissues (n = 5). NOD2 protein expression was validated in glioma cell lines using Western blot and immunofluorescence analyses. Functional studies employed siRNA-mediated NOD2 knockdown to evaluate effects on cellular proliferation, migration, invasion, and colony formation, while correlations between NOD2 and EMT/CSC markers were assessed. Results: The analysis of TCGA data revealed a significantly elevated NOD2 expression in GBM tumors compared to normal brain tissue, with a high NOD2 expression correlating with a reduced disease-free survival in GBM patients. All tested glioma cell lines demonstrated robust NOD2 expression. Functional analyses demonstrated that NOD2 depletion substantially impaired cellular proliferation, migration, invasion, and the colony-forming capacity. Mechanistically, siRNA-mediated NOD2 knockdown significantly decreased the expression of EMT (Snail, SLUG, Vimentin) and CSC markers (CD44, CD133) at both protein and mRNA levels. Conclusions: Our results indicate that NOD2 contributes to GBM progression by influencing EMT and CSC pathways. These findings suggest NOD2’s potential as a therapeutic target in glioblastoma, highlighting the need for further mechanistic studies and therapeutic exploration. Full article
(This article belongs to the Special Issue Mechanisms and Novel Therapeutic Approaches for Gliomas)
Show Figures

Figure 1

19 pages, 4023 KiB  
Article
Ferroptosis as a Therapeutic Avenue in Triple-Negative Breast Cancer: Mechanistic Insights and Prognostic Potential
by Taimoor Riaz, Muhammad Ali Saleem, Muhammad Umar Muzafar Khan, Muhammad Abdul Rehman Rashid and Muhammad Zubair
Biomedicines 2025, 13(8), 2037; https://doi.org/10.3390/biomedicines13082037 - 21 Aug 2025
Viewed by 198
Abstract
Background and Aims: Triple-negative breast cancer (TNBC) is a clinically aggressive malignancy marked by rapid disease progression, limited therapeutic avenues, and high recurrence risk. Ferroptosis an iron-dependent, lipid peroxidation-driven form of regulated cell death that has emerged as a promising therapeutic vulnerability in [...] Read more.
Background and Aims: Triple-negative breast cancer (TNBC) is a clinically aggressive malignancy marked by rapid disease progression, limited therapeutic avenues, and high recurrence risk. Ferroptosis an iron-dependent, lipid peroxidation-driven form of regulated cell death that has emerged as a promising therapeutic vulnerability in oncology. This study delineates the ferroptosis-associated molecular architecture of TNBC to identify key regulatory genes with prognostic and translational significance. Methods: Transcriptomic profiles from the GSE103091 dataset (130 TNBC and 30 normal breast tissue samples) were analyzed to identify ferroptosis-related differentially expressed genes (DEGs) using GEO2R. Protein–protein interaction (PPI) networks were constructed via STRING and GeneMANIA, with functional enrichment performed through Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome analyses. Prognostic relevance was evaluated using GEPIA, BC-GenExMiner, and Kaplan–Meier Plotter survival analyses. Results: Six ferroptosis drivers (MAPK1, TLR4, IFNG, ATM, ULK2, and ATF3) and five suppressors (NFS1, GCLC, TP63, CD44, and SRC) were identified alongside HMOX1, a bifunctional regulator with context-dependent pro- and anti-ferroptotic activity. Enrichment analyses revealed significant associations with oxidative stress regulation, autophagy, immune modulation, and tumor progression pathways. Elevated IFNG expression was consistently linked to improve overall, disease-free, and distant metastasis-free survival, underscoring its dual function in antitumor immunity and ferroptosis sensitization. Conclusions: Ferroptosis represents a critical axis in TNBC pathophysiology, with IFNG emerging as both a prognostic biomarker and a viable therapeutic target. These insights provide a mechanistic foundation for integrating ferroptosis-inducing agents with immunotherapeutic modalities to enhance clinical outcomes and overcome therapeutic resistance in TNBC. Full article
Show Figures

Figure 1

19 pages, 1721 KiB  
Review
Systematic Review of Crop Pests in the Diets of Four Bat Species Found as Wind Turbine Fatalities
by Amanda M. Hale, Cecily Foo, John Lloyd and Jennifer Stucker
Diversity 2025, 17(8), 590; https://doi.org/10.3390/d17080590 - 21 Aug 2025
Viewed by 196
Abstract
Although the ultimate drivers of bat fatalities at wind turbines are still not well understood, the foraging behavior of insectivorous bats puts them at increased risk of collision with rotating blades. Wind energy facilities are commonly located in agriculture fields where bats can [...] Read more.
Although the ultimate drivers of bat fatalities at wind turbines are still not well understood, the foraging behavior of insectivorous bats puts them at increased risk of collision with rotating blades. Wind energy facilities are commonly located in agriculture fields where bats can exploit periodic superabundant insect emergence events in the late summer and early autumn. Thermal imaging, acoustic monitoring, and bat carcass stomach content analyses show that bats prey upon insects on and near wind turbine towers. Studies have shown a positive association between insect abundance and bat activity, including in agricultural systems. We conducted a systematic review of bat diets for four common bat species in the Midwest and northern Great Plains to synthesize existing knowledge across species, assess the extent to which these bat focal species consume crop pests, and evaluate the potential for crop pest emergence models to predict temporal and spatial patterns of bat fatalities in this region. Big brown bats and eastern red bats consumed a variety of crop pests, including some for which emergence models may be available. In contrast, there were few studies for hoary bats or silver-haired bats, and the dietary evidence available has insufficient taxonomic resolution to conclude that crop pests were consumed. To augment existing data and illuminate relationships, we recommend that genetic diet analyses for bats, specifically hoary and silver-haired, be conducted in the late summer and autumn in this region. The results of these studies may provide additional candidate insect models to evaluate for predicting bat fatalities at wind turbines and clarify if the superabundant insect emergence hypothesis warrants further investigation. Full article
(This article belongs to the Section Biodiversity Conservation)
Show Figures

Graphical abstract

19 pages, 2846 KiB  
Article
Synovial Fluid Biomarker Profile After Intra-Articular Administration of Neosaxitoxin in Horses: A Feasibility Study
by Cristóbal Dörner, Néstor Lagos, Lissette Oyaneder, Bruno C. Menarim and Galia Ramírez-Toloza
Animals 2025, 15(16), 2453; https://doi.org/10.3390/ani15162453 - 21 Aug 2025
Viewed by 179
Abstract
Osteoarthritis (OA) is an inflammatory joint disease and the leading cause of musculoskeletal disability affecting human and veterinary patients. New therapeutics halting inflammation while preserving joint homeostasis remain a critical need. Voltage-gated sodium (NaV) channels regulate the pro-inflammatory response of macrophages in the [...] Read more.
Osteoarthritis (OA) is an inflammatory joint disease and the leading cause of musculoskeletal disability affecting human and veterinary patients. New therapeutics halting inflammation while preserving joint homeostasis remain a critical need. Voltage-gated sodium (NaV) channels regulate the pro-inflammatory response of macrophages in the synovium, the central driver of joint homeostasis. Neosaxitoxin (NeoSTX) is a phycotoxin that blocks NaV channels, conferring a unique potential to regulate joint inflammation. This study evaluated the safety of intra-articular administration of NeoSTX in horses. Sixteen horses were allocated into two groups (n = 8/each). One group received one intraarticular dose (20 µg/2 mL of saline) of NeoSTX into one tarsocrural joint, while the control group received 2 mL of saline (0.9% NaCl). No differences were observed between groups for systemic or local signs of inflammation, including objective measures of surface temperature and joint effusion. Concentrations of synovial fluid total nucleated and differential cell counts, total protein, glucose, calcium, and 23 cytokines/chemokines measured throughout this study did not differ between treatment groups. In this short-term study, intra-articular NeoSTX injection was shown to be well tolerated and likely safe. Ongoing studies should elucidate the role of NeoSTX in modulating synovial mechanisms of inflammation and its endogenous resolution. Full article
(This article belongs to the Section Equids)
Show Figures

Figure 1

24 pages, 1779 KiB  
Article
Unraveling Elevation-Driven Variations in Forest Structure and Composition in Western Nepal
by Sagar Acharya, Rajeev Joshi, Tek Narayan Maraseni and Prakash Bhattarai
Diversity 2025, 17(8), 588; https://doi.org/10.3390/d17080588 - 20 Aug 2025
Viewed by 199
Abstract
Understanding how elevation influences forest structure and species composition is crucial for effective conservation in mountainous regions like Nepal, where ecosystems change dramatically over short distances. This study assessed forest dynamics along an elevational gradient (600–3200 m) in Nepal’s mid-hills, incorporating elevational zonation [...] Read more.
Understanding how elevation influences forest structure and species composition is crucial for effective conservation in mountainous regions like Nepal, where ecosystems change dramatically over short distances. This study assessed forest dynamics along an elevational gradient (600–3200 m) in Nepal’s mid-hills, incorporating elevational zonation (Tropical, Subtropical, Lower Temperate, and Upper Temperate) and aspect-driven variations. We established 27 square plots (20 × 20 m) at 100 m elevation intervals along a trekking route from Tallo Dungeshwor near the Karnali River to Mahabu Lek, recording all tree species with a diameter at breast height (DBH) ≥ 5 cm. Tree density across the elevational gradient ranged from 250 to 800 trees/ha. Basal area varied between 7.46 and 82.43 m2/ha, while mean tree height ranged from 6.89 to 16.62 m. Species diversity was assessed using the Shannon diversity index, and species dominance was evaluated through the Importance Value Index (IVI). Diversity peaked at mid-elevations, with Shorea robusta and Quercus semicarpifolia identified as dominant species. While minor variations occurred across topographic aspects, statistical analysis confirmed elevation as the dominant driver of forest structure and composition. Correlation analysis revealed a significant positive relationship between elevation and Simpson’s diversity index (r = 0.45, p < 0.05), indicating increased dominance diversity at higher elevations. These findings highlight the critical role of elevation and aspect in shaping forest ecosystems and offer valuable baseline data for climate-resilient management. We recommend conservation planning that is sensitive to topographic gradients, integrates long-term, climate-adaptive monitoring, and engages local communities to anticipate ecological shifts and address mounting anthropogenic pressures in vulnerable montane zones. Full article
(This article belongs to the Special Issue Canopy Ecology—Biodiversity, Functions, and Conservation)
Show Figures

Figure 1

22 pages, 10627 KiB  
Article
The Impact of Climate and Land Use Change on Greek Centipede Biodiversity and Conservation
by Elisavet Georgopoulou, Konstantinos Kougioumoutzis and Stylianos M. Simaiakis
Land 2025, 14(8), 1685; https://doi.org/10.3390/land14081685 - 20 Aug 2025
Viewed by 334
Abstract
Centipedes (Chilopoda, Myriapoda) are crucial soil predators, yet their vulnerability to climate and land use change remains unexplored. We assess the impact of these drivers on Greek centipedes, identify current and future biodiversity hotspots, and evaluate the effectiveness of the Natura 2000 Network [...] Read more.
Centipedes (Chilopoda, Myriapoda) are crucial soil predators, yet their vulnerability to climate and land use change remains unexplored. We assess the impact of these drivers on Greek centipedes, identify current and future biodiversity hotspots, and evaluate the effectiveness of the Natura 2000 Network of protected areas for their conservation. We used an updated species occurrence database of Greek centipedes, derived from literature reviews and museum collections, and evaluated database completeness and geographic sampling biases. Species Distribution Models were employed to predict future distribution shifts under climate and land use change scenarios. Biodiversity hotspots were identified based on species richness (SR) and corrected-weighted endemism (CWE) metrics. We overlapped SR and CWE metrics against the Natura 2000 Network to assess its effectiveness. We found that sampling effort is highly heterogeneous across Greece. All species are projected to experience range contractions, particularly in the 2080s, with variation across scenarios and taxa. Current biodiversity hotspots are concentrated in the south Aegean islands and mainland mountain ranges, where areas of persistent high biodiversity are also projected to occur. The Natura 2000 Network currently covers 52% of SR and 44% of CWE hotspots, with projected decreases in SR coverage but increases in CWE coverage. Our work highlights the vulnerability of Greek centipedes to climate and land use change and reveals conservation shortfalls within protected areas. We identify priority areas for future field surveys, based on sampling bias and survey completeness assessments, and highlight the need for further research into mechanisms driving centipede responses to global change. Full article
(This article belongs to the Special Issue Species Vulnerability and Habitat Loss (Third Edition))
Show Figures

Figure 1

27 pages, 6327 KiB  
Article
Impact of Organic and Conventional Agricultural Management on Subsurface Soil Microbiota in Mediterranean Vineyards
by Marc Viñas, Joan Marull, Miriam Guivernau, Enric Tello, Yolanda Lucas, Mar Carreras-Sempere, Xavier Giol-Casanova, Immaculada Funes, Elisenda Sánchez-Costa, Robert Savé and Felicidad de Herralde
Agronomy 2025, 15(8), 2001; https://doi.org/10.3390/agronomy15082001 - 20 Aug 2025
Viewed by 257
Abstract
The impact of long-term organic (ECO) versus conventional (CON) agricultural management on subsurface soil microbiota diversity and soil physicochemical properties remains unclear in Mediterranean vineyards. This study evaluated long-term ECO and CON effects in the Alt Penedès terroir (Spain), focusing on subsurface soil [...] Read more.
The impact of long-term organic (ECO) versus conventional (CON) agricultural management on subsurface soil microbiota diversity and soil physicochemical properties remains unclear in Mediterranean vineyards. This study evaluated long-term ECO and CON effects in the Alt Penedès terroir (Spain), focusing on subsurface soil microbial diversity and soil characteristics. ECO increased the fungal-to-bacterial ratio and ammonium-oxidizing bacteria but reduced total subsurface soil bacterial populations and soil organic carbon. While ECO did not enhance annual yield production in the vineyard, fungal abundance, and ammonium-oxidizing archaea, it slightly increased the overall alpha diversity (Shannon and Inverse Simpson indexes) and significantly altered taxa composition in subsurface soil with a more robust and modular community. Crop management, soil texture, training system, and rootstock, but not vine variety, significantly influenced beta diversity in subsurface soil. The Mantel test revealed subsurface soil texture, Ca2+/Mg2+ ratio, and salinity as the main key soil drivers shifting the microbial community (beta diversity), while C/N and topsoil organic matter significantly correlated with bacterial abundance; NH4+ correlated with fungal abundance; and N-Kjeldahl, pH, and Mg2+/K+ correlated with alpha diversity. Integrating soil microbiota and physicochemical monitoring allowed us to confirm the positive effect of long-term agroecological practices on subsurface soil health and to identify the critical factors shaping their microbial communities in Mediterranean vineyards. Full article
Show Figures

Figure 1

18 pages, 1967 KiB  
Article
Optimizing Growth Regulator Concentrations for Cannabis sativa L. Micropropagation
by Gabrielle A. Johnson, Carissa L. Jackson, Antonio Timoteo, Papaiah Sardaru, Michael H. Foland, Purushothaman Natarajan and Sadanand A. Dhekney
Plants 2025, 14(16), 2586; https://doi.org/10.3390/plants14162586 - 20 Aug 2025
Viewed by 250
Abstract
In this study, the effect of growth regulators on shoot proliferation and rooting were evaluated to develop an efficient micropropagation protocol for the Cannabis sativa L. cultivars ‘Cherry Soda’ and ‘Purple’. Apical meristems were isolated from actively growing shoots of stock plants and [...] Read more.
In this study, the effect of growth regulators on shoot proliferation and rooting were evaluated to develop an efficient micropropagation protocol for the Cannabis sativa L. cultivars ‘Cherry Soda’ and ‘Purple’. Apical meristems were isolated from actively growing shoots of stock plants and transferred to Driver and Kuniyuki Walnut (DKW) culture medium containing either 0.0, 0.5, 1.0, 2.0, or 5.0 μM meta-Topolin to study their shoot proliferation response. Resulting shoot cultures were transferred to medium containing varying levels of Indole Acetic Acid (IAA), Indole Butyric Acid (IBA), or Naphthalene Acetic Acid (NAA), solely or in combination, and were subjected to a 10-day dark incubation followed by a 16 h/8 h light/dark period to identify the best treatment for root production. Among the different shoot proliferation treatments studied, the maximum number of shoots was produced on the control medium that was devoid of any meta-Topolin. Cultures grown on medium containing 5.0 μM meta-Topolin exhibited hyperhydricity, where shoots appeared translucent and pale green in color; were characterized by water-soaked lesions; and leaves appeared curled and brittle in contrast to healthy looking cultures. Among the various rooting treatments studied, shoots grown in the dark for 10 days exhibited the highest frequency of rooting on medium containing 4.0 μM NAA or 6.0 μM IBA + 1.0 μM NAA. Full developed plants with a robust shoot and root system were transferred to soil, acclimatized under conditions for high humidity, and then transferred to ambient conditions in 4 weeks. The micropropagation protocol developed here allows for rapid multiplication of disease-free plants in C. sativa cultivars. Full article
(This article belongs to the Special Issue Plant Tissue Culture and Plant Regeneration—2nd Edition)
Show Figures

Figure 1

Back to TopTop