Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (106)

Search Parameters:
Keywords = driverless vehicles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 44072 KB  
Article
Interface Design of VR Driverless Vehicle System on User-Prioritized Experience Requirements
by Haibin Xia, Yu Zhang, Xuan Li, Dixin Liu and Wanting Wang
Sensors 2025, 25(17), 5341; https://doi.org/10.3390/s25175341 - 28 Aug 2025
Viewed by 388
Abstract
The prioritization of user requirements is neglected in most existing interface designs for driverless vehicle systems, which may incur safety risks, fragmented user experiences, development resource wastage, and weakened market competitiveness. Accordingly, this paper proposes a hybrid interface design method for a virtual [...] Read more.
The prioritization of user requirements is neglected in most existing interface designs for driverless vehicle systems, which may incur safety risks, fragmented user experiences, development resource wastage, and weakened market competitiveness. Accordingly, this paper proposes a hybrid interface design method for a virtual reality (VR) driverless vehicle system by combining a A-KANO model and system usability scale (SUS). Firstly, we obtain key words, and a total of 23 demand points are collected through word frequency analysis via combining with user interview and observation method; secondly, 21 demand points are derived from A-KANO model analysis and prioritized for function development; and finally, design practice is carried out according to the ranking results, and virtual reality technology is used to build a VR unmanned vehicle system in order to simulate the interface interaction of a driverless vehicle system. Then, the VR driverless vehicle system is used as a test experimental environment for user evaluation, and combined with the SUS scale to evaluate the user-prioritized experience requirements for practical verification. Empirical results demonstrate that this method effectively categorizes multifaceted user needs, providing actionable solutions to enhance passenger experience and optimize service system design in future autonomous driving scenarios. Full article
Show Figures

Figure 1

17 pages, 1118 KB  
Article
SMA-YOLO: A Novel Approach to Real-Time Vehicle Detection on Edge Devices
by Haixia Liu, Yingkun Song, Yongxing Lin and Zhixin Tie
Sensors 2025, 25(16), 5072; https://doi.org/10.3390/s25165072 - 15 Aug 2025
Viewed by 552
Abstract
Vehicle detection plays a pivotal role in traffic management as a key technology for intelligent traffic management and driverless driving. However, current deep learning-based vehicle detection models face several challenges in practical applications. These include slow detection speeds, large computational and parametric quantities, [...] Read more.
Vehicle detection plays a pivotal role in traffic management as a key technology for intelligent traffic management and driverless driving. However, current deep learning-based vehicle detection models face several challenges in practical applications. These include slow detection speeds, large computational and parametric quantities, high leakage and misdetection rates in target-intensive environments, and difficulties in deploying them on edge devices with limited computing power and memory. To address these issues, this paper proposes an improved vehicle detection method called SMA-YOLO, based on the YOLOv7 model. Firstly, MobileNetV3 is adopted as the new backbone network to lighten the model. Secondly, the SimAM attention mechanism is incorporated to suppress background interference and enhance small-target detection capability. Additionally, the ACON activation function is substituted for the original SiLU activation function in the YOLOv7 model to improve detection accuracy. Lastly, SIoU is used to replace CIoU to optimize the loss of function and accelerate model convergence. Experiments on the UA-DETRAC dataset demonstrate that the proposed SMA-YOLO model achieves a lightweight effect, significantly reducing model size, computational requirements, and the number of parameters. It not only greatly improves detection speed but also maintains higher detection accuracy. This provides a feasible solution for deploying a vehicle detection model on embedded devices for real-time detection. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

18 pages, 1543 KB  
Article
Research on Trajectory Tracking Control of Driverless Electric Formula Racing Cars Based on Prescribed Performance and Fuzzy Logic Systems
by Xinyu Liu, Gang Li, Hao Qiao and Wanbo Cui
World Electr. Veh. J. 2025, 16(8), 424; https://doi.org/10.3390/wevj16080424 - 28 Jul 2025
Viewed by 270
Abstract
Driverless electric formula racing cars are affected by nonlinear vehicle characteristics, perturbations, and parameter uncertainties during races, which can cause problems such as low accuracy and instability in trajectory tracking. Aiming to address such problems, this paper proposes a control method combining a [...] Read more.
Driverless electric formula racing cars are affected by nonlinear vehicle characteristics, perturbations, and parameter uncertainties during races, which can cause problems such as low accuracy and instability in trajectory tracking. Aiming to address such problems, this paper proposes a control method combining a prescribed performance control with adaptive backstepping fuzzy control (PPC-ABFC) to solve the aforementioned issues and improve the trajectory tracking accuracy and stability of racing cars. This control method is achieved by constructing a combined error model and confining the error within a prescribed performance function. The nonlinear terms, disturbances, and unknown parameters of the model are approximated by a fuzzy logic system (FLS). An adaptive parameter update law is designed to update the learning parameters in real time. The virtual control law and the real control law were designed by using the backstepping method. The stability of the PPC-ABFC closed-loop system was rigorously proved by applying the Lyapunov stability theory. Finally, simulations were conducted to compare the proposed PPC-ABFC method with other algorithms at different speeds. The results demonstrated that the PPC-ABFC method effectively enhances the trajectory tracking performance of driverless electric formula racing cars. Full article
Show Figures

Figure 1

29 pages, 1270 KB  
Article
Understanding Consumers’ Adoption Behavior of Driverless Delivery Vehicles: Insights from the Combined Use of NCA and PLS-SEM
by Wei Zhou, Shervin Espahbod, Victor Shi and Emmanuel Nketiah
Sustainability 2025, 17(13), 5730; https://doi.org/10.3390/su17135730 - 21 Jun 2025
Viewed by 904
Abstract
The rapid development of autonomous driving technology has been a key driver for the emergence of driverless delivery vehicles. To promote wider adoption, it is essential to address consumers’ concerns about safety and reliability, leverage psychological factors, and implement supportive policies that encourage [...] Read more.
The rapid development of autonomous driving technology has been a key driver for the emergence of driverless delivery vehicles. To promote wider adoption, it is essential to address consumers’ concerns about safety and reliability, leverage psychological factors, and implement supportive policies that encourage technology adoption while ensuring public safety and privacy. Therefore, it is necessary to explain and predict consumers’ behavior and intention to adopt driverless delivery vehicles. To this end, this study extends the Technology Acceptance Model (TAM) to include technological complexity and perceived trust. This study evaluates the model by applying necessary condition analysis (NCA) and partial least squares structural equation modeling (PLS-SEM) to analyze data from 579 respondents from Jiangsu Province, China. This study explores the sustainability implications of autonomous delivery vehicles, highlighting their potential to reduce environmental impact and promote a more sustainable transportation system. The outcomes indicate that perceived ease of use (PEU), attitude, perceived trust, technological complexity (TECOM), and perceived usefulness (PU) are significant determinants and necessary conditions of consumers’ intention to adopt driverless delivery vehicles. Perceived trust and TECOM had a significant and indirect influence on consumers’ intention to adopt driverless delivery vehicles via PU and PEU. Perceived trust and technological complexity had a substantial impact on consumers’ adoption intention of driverless delivery vehicles. The study recommends that managers work closely with regulators to ensure their technologies meet all local standards and regulations. It also recommends its potential to reduce carbon emissions, improve energy efficiency, and contribute to a more sustainable transportation system. Full article
Show Figures

Figure 1

36 pages, 25977 KB  
Article
How to Win Bosch Future Mobility Challenge: Design and Implementation of the VROOM Autonomous Scaled Vehicle
by Theodoros Papafotiou, Emmanouil Tsardoulias, Alexandros Nikolaou, Aikaterini Papagiannitsi, Despoina Christodoulou, Ioannis Gkountras and Andreas L. Symeonidis
Machines 2025, 13(6), 514; https://doi.org/10.3390/machines13060514 - 12 Jun 2025
Viewed by 1999
Abstract
Over the last decade, a transformation in the automotive industry has been witnessed, as advancements in artificial intelligence and sensor technology have continued to accelerate the development of driverless vehicles. These systems are expected to significantly reduce traffic accidents and associated costs, making [...] Read more.
Over the last decade, a transformation in the automotive industry has been witnessed, as advancements in artificial intelligence and sensor technology have continued to accelerate the development of driverless vehicles. These systems are expected to significantly reduce traffic accidents and associated costs, making their integration into future transportation systems highly impactful. To explore this field in a controlled and flexible manner, scaled autonomous vehicle platforms are increasingly adopted for experimentation. In this work, we propose a set of methodologies to perform autonomous driving tasks through a software–hardware co-design approach. The developed system focuses on deploying a modular and reconfigurable software stack tailored to run efficiently on constrained embedded hardware, demonstrating a balance between real-time capability and computational resource usage. The proposed platform was implemented on a 1:10 scale vehicle that participated in the Bosch Future Mobility Challenge (BFMC) 2024. It integrates a high-performance embedded computing unit and a heterogeneous sensor suite to achieve reliable perception, decision-making, and control. The architecture is structured across four interconnected layers—Input, Perception, Control, and Output—allowing flexible module integration and reusability. The effectiveness of the system was validated throughout the competition scenarios, leading the team to secure first place. Although the platform was evaluated on a scaled vehicle, its underlying software–hardware principles are broadly applicable and scalable to larger autonomous systems. Full article
(This article belongs to the Special Issue Emerging Approaches to Intelligent and Autonomous Systems)
Show Figures

Figure 1

27 pages, 2292 KB  
Article
Security First, Safety Next: The Next-Generation Embedded Sensors for Autonomous Vehicles
by Luís Cunha, João Sousa, José Azevedo, Sandro Pinto and Tiago Gomes
Electronics 2025, 14(11), 2172; https://doi.org/10.3390/electronics14112172 - 27 May 2025
Viewed by 1718
Abstract
The automotive industry is fully shifting towards autonomous connected vehicles. By advancing vehicles’ intelligence and connectivity, the industry has enabled innovative functions such as advanced driver assistance systems (ADAS) in the direction of driverless cars. Such functions are often referred to as cyber-physical [...] Read more.
The automotive industry is fully shifting towards autonomous connected vehicles. By advancing vehicles’ intelligence and connectivity, the industry has enabled innovative functions such as advanced driver assistance systems (ADAS) in the direction of driverless cars. Such functions are often referred to as cyber-physical features, since almost all of them require collecting data from the physical environment to make automotive operation decisions and properly actuate in the physical world. However, increased functionalities result in increased complexity, which causes serious security vulnerabilities that are typically a result of mushrooming functionality and hence complexity. In a world where we keep seeing traditional mechanical systems shifting to x-by-wire solutions, the number of connected sensors, processing systems, and communication buses inside the car exponentially increases, raising several safety and security concerns. Because there is no safety without security, car manufacturers start struggling in making lightweight sensor and processing systems while keeping the security aspects a major priority. This article surveys the current technological challenges in securing autonomous vehicles and contributes a cross-layer analysis bridging hardware security primitives, real-world side-channel threats, and redundancy-based fault tolerance in automotive electronic control units (ECUs). It combines architectural insights with an evaluation of commercial support for TrustZone, trusted platform modules (TPMs), and lockstep platforms, offering both academic and industry audiences a grounded perspective on gaps in current hardware capabilities. Finally, it outlines future directions and presents a forward-looking vision for securing sensors and processing systems in the path toward fully safe and connected autonomous vehicles. Full article
Show Figures

Figure 1

23 pages, 4463 KB  
Article
Dual-Priority Delayed Deep Double Q-Network (DPD3QN): A Dueling Double Deep Q-Network with Dual-Priority Experience Replay for Autonomous Driving Behavior Decision-Making
by Shuai Li, Peicheng Shi, Aixi Yang, Heng Qi and Xinlong Dong
Algorithms 2025, 18(5), 291; https://doi.org/10.3390/a18050291 - 19 May 2025
Cited by 1 | Viewed by 585
Abstract
The behavior decision control of autonomous vehicles is a critical aspect of advancing autonomous driving technology. However, current behavior decision algorithms based on deep reinforcement learning still face several challenges, such as insufficient safety and sparse reward mechanisms. To solve these problems, this [...] Read more.
The behavior decision control of autonomous vehicles is a critical aspect of advancing autonomous driving technology. However, current behavior decision algorithms based on deep reinforcement learning still face several challenges, such as insufficient safety and sparse reward mechanisms. To solve these problems, this paper proposes a dueling double deep Q-network based on dual-priority experience replay—DPD3QN. Initially, the dueling network is integrated with the double deep Q-network, and the original network’s output layer is restructured to enhance the precision of action value estimation. Subsequently, dual-priority experience replay is incorporated to facilitate the model’s ability to swiftly recognize and leverage critical experiences. Ultimately, the training and evaluation are conducted on the OpenAI Gym simulation platform. The test results show that DPD3QN helps to improve the convergence speed of driverless vehicle behavior decision-making. Compared with the currently popular DQN and DDQN algorithms, this algorithm achieves higher success rates in challenging scenarios. Test scenario I increases by 11.8 and 25.8 percentage points, respectively, while the success rates in test scenarios I and II rise by 8.8 and 22.2 percentage points, respectively, indicating a more secure and efficient autonomous driving decision-making capability. Full article
(This article belongs to the Section Evolutionary Algorithms and Machine Learning)
Show Figures

Figure 1

22 pages, 3608 KB  
Article
Scheduling Model and Algorithm for Transportation and Vehicle Charging of Multiple Autonomous Electric Vehicles
by Xiaoli Wang, Zhiyu Zhang, Mengmeng Jiang, Yifan Wang and Yuping Wang
Mathematics 2025, 13(1), 145; https://doi.org/10.3390/math13010145 - 2 Jan 2025
Viewed by 1374
Abstract
Autonomous electric vehicle (AEV) services leverage advanced autonomous driving and electric vehicle technologies to provide innovative, driverless transportation solutions. The biggest challenge faced by AEVs is the limited number of charging stations and long charging times. A critical challenge is maximizing passenger travel [...] Read more.
Autonomous electric vehicle (AEV) services leverage advanced autonomous driving and electric vehicle technologies to provide innovative, driverless transportation solutions. The biggest challenge faced by AEVs is the limited number of charging stations and long charging times. A critical challenge is maximizing passenger travel satisfaction while reducing the AEV idle time. This involves coordinating passenger transport and charging tasks via leveraging the information from charging stations, passenger transport, and AEV data. There are four important contributions in this paper. Firstly, we introduce an integrated scheduling model that considers both passenger transport and charging tasks. Secondly, we propose a multi-level differentiated charging threshold strategy, which dynamically adjusts the charging threshold based on both AEV battery levels and the availability of charging stations, reducing competition among vehicles and minimizing waiting times. Thirdly, we develop a rapid strategy to optimize the selection of charging stations by combining geographic and deviation distance. Fourthly, we design a new evolutionary algorithm to solve the proposed model, in which a buffer space is introduced to promote diversity within the population. Finally, experimental results show that compared to the existing state-of-the-art scheduling algorithms, the proposed algorithm shortens the running time of scheduling algorithms by 6.72% and reduces the idle driving time of AEVs by 6.53%, which proves the effectiveness and efficiency of the proposed model and algorithm. Full article
Show Figures

Figure 1

38 pages, 6505 KB  
Review
A Survey of Computer Vision Detection, Visual SLAM Algorithms, and Their Applications in Energy-Efficient Autonomous Systems
by Lu Chen, Gun Li, Weisi Xie, Jie Tan, Yang Li, Junfeng Pu, Lizhu Chen, Decheng Gan and Weimin Shi
Energies 2024, 17(20), 5177; https://doi.org/10.3390/en17205177 - 17 Oct 2024
Cited by 9 | Viewed by 3900
Abstract
Within the area of environmental perception, automatic navigation, object detection, and computer vision are crucial and demanding fields with many applications in modern industries, such as multi-target long-term visual tracking in automated production, defect detection, and driverless robotic vehicles. The performance of computer [...] Read more.
Within the area of environmental perception, automatic navigation, object detection, and computer vision are crucial and demanding fields with many applications in modern industries, such as multi-target long-term visual tracking in automated production, defect detection, and driverless robotic vehicles. The performance of computer vision has greatly improved recently thanks to developments in deep learning algorithms and hardware computing capabilities, which have spawned the creation of a large number of related applications. At the same time, with the rapid increase in autonomous systems in the market, energy consumption has become an increasingly critical issue in computer vision and SLAM (Simultaneous Localization and Mapping) algorithms. This paper presents the results of a detailed review of over 100 papers published over the course of two decades (1999–2024), with a primary focus on the technical advancement in computer vision. To elucidate the foundational principles, an examination of typical visual algorithms based on traditional correlation filtering was initially conducted. Subsequently, a comprehensive overview of the state-of-the-art advancements in deep learning-based computer vision techniques was compiled. Furthermore, a comparative analysis of conventional and novel algorithms was undertaken to discuss the future trends and directions of computer vision. Lastly, the feasibility of employing visual SLAM algorithms in the context of autonomous vehicles was explored. Additionally, in the context of intelligent robots for low-carbon, unmanned factories, we discussed model optimization techniques such as pruning and quantization, highlighting their importance in enhancing energy efficiency. We conducted a comprehensive comparison of the performance and energy consumption of various computer vision algorithms, with a detailed exploration of how to balance these factors and a discussion of potential future development trends. Full article
(This article belongs to the Section K: State-of-the-Art Energy Related Technologies)
Show Figures

Figure 1

18 pages, 8113 KB  
Article
Research on Improved Algorithms for Cone Bucket Detection in Formula Unmanned Competition
by Xu Li, Gang Li, Zhe Zhang and Haosen Sun
Sensors 2024, 24(18), 5945; https://doi.org/10.3390/s24185945 - 13 Sep 2024
Cited by 5 | Viewed by 1263
Abstract
The model network based on YOLOv8 for detecting race cones and buckets in the Formula Unmanned Competition for Chinese university students needs help with problems with complex structure, redundant number of parameters, and computation, significantly affecting detection efficiency. A lightweight detection model based [...] Read more.
The model network based on YOLOv8 for detecting race cones and buckets in the Formula Unmanned Competition for Chinese university students needs help with problems with complex structure, redundant number of parameters, and computation, significantly affecting detection efficiency. A lightweight detection model based on YOLOv8 is proposed to address these problems. The model includes improving the backbone network, neck network, and detection head, as well as introducing knowledge distillation and other techniques to construct a lightweight model. The specific improvements are as follows: firstly, the backbone network for extracting features is improved by introducing the ADown module in YOLOv9 to replace the convolution module used for downsampling in the YOLOv8 network, and secondly, the FasterBlock in FasterNet network was introduced to replace the fusion module in YOLOv8 C2f, and then the self-developed lightweight detection head was introduced to improve the detection performance while achieving lightweight. Finally, the detection performance was further improved by knowledge distillation. The experimental results on the public dataset FSACOCO show that the improved model’s accuracy, recall, and average precision are 92.7%, 84.6%, and 91%, respectively. Compared with the original YOLOv8n detection model, the recall and average precision increase by 2.7 and 1.2 percentage points, the memory is half the original, and the model computation is 51%. The model significantly reduces the misdetection and leakage of conical buckets in real-vehicle tests and, at the same time, ensures the detection speed to satisfy the deployment requirements on tiny devices. Satisfies all the requirements for deployment of tiny devices in the race car of the China University Student Driverless Formula Competition. The improved method in this paper can be applied to conebucket detection in complex scenarios, and the improved idea can be carried over to the detection of other small targets. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

17 pages, 6523 KB  
Article
Lightweight Model Development for Forest Region Unstructured Road Recognition Based on Tightly Coupled Multisource Information
by Guannan Lei, Peng Guan, Yili Zheng, Jinjie Zhou and Xingquan Shen
Forests 2024, 15(9), 1559; https://doi.org/10.3390/f15091559 - 4 Sep 2024
Cited by 2 | Viewed by 1227
Abstract
Promoting the deployment and application of embedded systems in complex forest scenarios is an inevitable developmental trend in advanced intelligent forestry equipment. Unstructured roads, which lack effective artificial traffic signs and reference objects, pose significant challenges for driverless technology in forest scenarios, owing [...] Read more.
Promoting the deployment and application of embedded systems in complex forest scenarios is an inevitable developmental trend in advanced intelligent forestry equipment. Unstructured roads, which lack effective artificial traffic signs and reference objects, pose significant challenges for driverless technology in forest scenarios, owing to their high nonlinearity and uncertainty. In this research, an unstructured road parameterization construction method, “DeepLab-Road”, based on tight coupling of multisource information is proposed, which aims to provide a new segmented architecture scheme for the embedded deployment of a forestry engineering vehicle driving assistance system. DeepLab-Road utilizes MobileNetV2 as the backbone network that improves the completeness of feature extraction through the inverse residual strategy. Then, it integrates pluggable modules including DenseASPP and strip-pooling mechanisms. They can connect the dilated convolutions in a denser manner to improve feature resolution without significantly increasing the model size. The boundary pixel tensor expansion is then completed through a cascade of two-dimensional Lidar point cloud information. Combined with the coordinate transformation, a quasi-structured road parameterization model in the vehicle coordinate system is established. The strategy is trained on a self-built Unstructured Road Scene Dataset and transplanted into our intelligent experimental platform to verify its effectiveness. Experimental results show that the system can meet real-time data processing requirements (≥12 frames/s) under low-speed conditions (≤1.5 m/s). For the trackable road centerline, the average matching error between the image and the Lidar was 0.11 m. This study offers valuable technical support for the rejection of satellite signals and autonomous navigation in unstructured environments devoid of high-precision maps, such as forest product transportation, agricultural and forestry management, autonomous inspection and spraying, nursery stock harvesting, skidding, and transportation. Full article
(This article belongs to the Special Issue Modeling of Vehicle Mobility in Forests and Rugged Terrain)
Show Figures

Figure 1

13 pages, 527 KB  
Systematic Review
Backcasting Analysis of Autonomous Vehicle Implementation: A Systematic Review
by Fabricio Esteban Espinoza-Molina, Juan Diego Valladolid, Pablo Barbecho Bautista, Emilio Quinde, Ruffo Villa Uvidia, Javier Stalin Vazquez Salazar and Gustavo Javier Aguilar Miranda
World Electr. Veh. J. 2024, 15(9), 393; https://doi.org/10.3390/wevj15090393 - 28 Aug 2024
Cited by 1 | Viewed by 2097
Abstract
The introduction of autonomous vehicles (AVs) has the potential to drastically change society, planning, design, and development strategies. This study uses the PRISMA protocol to carry out a systematic literature review, focusing on the backcasting method as an analytic tool. By examining. 21 [...] Read more.
The introduction of autonomous vehicles (AVs) has the potential to drastically change society, planning, design, and development strategies. This study uses the PRISMA protocol to carry out a systematic literature review, focusing on the backcasting method as an analytic tool. By examining. 21 studies published between 2003 and 2024, this paper highlights the phases of backcasting: visioning, policy packaging, and appraisal, and identifies critical factors necessary for the successful integration of AVs. Visioning for future driverless cities includes high-quality urban areas, active mobility, and innovative developments. Policies and Packaging suggested a focus on restricting vehicular access, transit-oriented development, and encouraging public transportation. Appraisal reveals skepticism about the positive impacts of AVs, urging policies that limit access to urban areas and promote sustainable modes of transportation. The main contribution of this study lies in its comprehensive application of backcasting to AV implementation, offering a structured approach to envisioning future urban scenarios, formulating supportive policies, and evaluating their impact. This analysis provides a solid foundation for future research, urging us to explore the intersection between AVs, citizen participation, and environmental sustainability to achieve more efficient and sustainable cities. Full article
Show Figures

Figure 1

20 pages, 4847 KB  
Article
A Small-Object-Detection Algorithm Based on LiDAR Point-Cloud Clustering for Autonomous Vehicles
by Zhibing Duan, Jinju Shao, Meng Zhang, Jinlei Zhang and Zhipeng Zhai
Sensors 2024, 24(16), 5423; https://doi.org/10.3390/s24165423 - 22 Aug 2024
Cited by 4 | Viewed by 4237
Abstract
3D object-detection based on LiDAR point clouds can help driverless vehicles detect obstacles. However, the existing point-cloud-based object-detection methods are generally ineffective in detecting small objects such as pedestrians and cyclists. Therefore, a small-object-detection algorithm based on clustering is proposed. Firstly, a new [...] Read more.
3D object-detection based on LiDAR point clouds can help driverless vehicles detect obstacles. However, the existing point-cloud-based object-detection methods are generally ineffective in detecting small objects such as pedestrians and cyclists. Therefore, a small-object-detection algorithm based on clustering is proposed. Firstly, a new segmented ground-point clouds segmentation algorithm is proposed, which filters out the object point clouds according to the heuristic rules and realizes the ground segmentation by multi-region plane-fitting. Then, the small-object point cloud is clustered using an improved DBSCAN clustering algorithm. The K-means++ algorithm for pre-clustering is used, the neighborhood radius is adaptively adjusted according to the distance, and the core point search method of the original algorithm is improved. Finally, the detection of small objects is completed using the directional wraparound box model. After extensive experiments, it was shown that the precision and recall of our proposed ground-segmentation algorithm reached 91.86% and 92.70%, respectively, and the improved DBSCAN clustering algorithm improved the recall of pedestrians and cyclists by 15.89% and 9.50%, respectively. In addition, visualization experiments confirmed that our proposed small-object-detection algorithm based on the point-cloud clustering method can realize the accurate detection of small objects. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Graphical abstract

29 pages, 2692 KB  
Review
Novel Directions for Neuromorphic Machine Intelligence Guided by Functional Connectivity: A Review
by Mindula Illeperuma, Rafael Pina, Varuna De Silva and Xiaolan Liu
Machines 2024, 12(8), 574; https://doi.org/10.3390/machines12080574 - 20 Aug 2024
Viewed by 2386
Abstract
As we move into the next stages of the technological revolution, artificial intelligence (AI) that is explainable and sustainable is becoming a key goal for researchers across multiple domains. Leveraging the concept of functional connectivity (FC) in the human brain, this paper provides [...] Read more.
As we move into the next stages of the technological revolution, artificial intelligence (AI) that is explainable and sustainable is becoming a key goal for researchers across multiple domains. Leveraging the concept of functional connectivity (FC) in the human brain, this paper provides novel research directions for neuromorphic machine intelligence (NMI) systems that are energy-efficient and human-compatible. This review serves as an accessible review for multidisciplinary researchers introducing a range of concepts inspired by neuroscience and analogous machine learning research. These include possibilities to facilitate network integration and segregation in artificial architectures, a novel learning representation framework inspired by two FC networks utilised in human learning, and we explore the functional connectivity underlying task prioritisation in humans and propose a framework for neuromorphic machines to improve their task-prioritisation and decision-making capabilities. Finally, we provide directions for key application domains such as autonomous driverless vehicles, swarm intelligence, and human augmentation, to name a few. Guided by how regional brain networks interact to facilitate cognition and behaviour such as the ones discussed in this review, we move toward a blueprint for creating NMI that mirrors these processes. Full article
(This article belongs to the Special Issue Application of Deep Learning in Intelligent Machines)
Show Figures

Figure 1

14 pages, 2331 KB  
Article
Enhancing Weather Scene Identification Using Vision Transformer
by Christine Dewi, Muhammad Asad Arshed, Henoch Juli Christanto, Hafiz Abdul Rehman, Amgad Muneer and Shahzad Mumtaz
World Electr. Veh. J. 2024, 15(8), 373; https://doi.org/10.3390/wevj15080373 - 16 Aug 2024
Viewed by 2605
Abstract
The accuracy of weather scene recognition is critical in a world where weather affects every aspect of our everyday lives, particularly in areas like intelligent transportation networks, autonomous vehicles, and outdoor vision systems. The importance of weather in many aspects of our life [...] Read more.
The accuracy of weather scene recognition is critical in a world where weather affects every aspect of our everyday lives, particularly in areas like intelligent transportation networks, autonomous vehicles, and outdoor vision systems. The importance of weather in many aspects of our life highlights the vital necessity for accurate information. Precise weather detection is especially crucial for industries like intelligent transportation, outside vision systems, and driverless cars. The outdated, unreliable, and time-consuming manual identification techniques are no longer adequate. Unmatched accuracy is required for local weather scene forecasting in real time. This work utilizes the capabilities of computer vision to address these important issues. Specifically, we employ the advanced Vision Transformer model to distinguish between 11 different weather scenarios. The development of this model results in a remarkable performance, achieving an accuracy rate of 93.54%, surpassing industry standards such as MobileNetV2 and VGG19. These findings advance computer vision techniques into new domains and pave the way for reliable weather scene recognition systems, promising extensive real-world applications across various industries. Full article
Show Figures

Figure 1

Back to TopTop