Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (317)

Search Parameters:
Keywords = dual crosslinking

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3539 KB  
Article
Biocompatible Interpenetrating Network Hydrogels with Dually Cross-Linked Polyol
by Ulygbek B. Tuleuov, Alexander L. Kwiatkowski, Akerke T. Kazhmuratova, Lyazzat Zh. Zhaparova, Yermauyt Nassikhatuly, Miroslav Šlouf, Andrey V. Shibaev, Viktor I. Petrenko, Senentxu Lanceros-Méndez and Yerkeblan M. Tazhbayev
Polymers 2025, 17(20), 2737; https://doi.org/10.3390/polym17202737 - 13 Oct 2025
Abstract
Modern tissue regeneration strategies rely on soft biocompatible materials with adequate mechanical properties to support the growing tissues. Polymer hydrogels have been shown to be available for this purpose, as their mechanical properties can be controllably tuned. In this work, we introduce interpenetrating [...] Read more.
Modern tissue regeneration strategies rely on soft biocompatible materials with adequate mechanical properties to support the growing tissues. Polymer hydrogels have been shown to be available for this purpose, as their mechanical properties can be controllably tuned. In this work, we introduce interpenetrating polymer networks (IPN) hydrogels with improved elasticity due to a dual cross-linking mechanism in one of the networks. The proposed hydrogels contain entangled polymer networks of covalently cross-linked poly(ethylene glycol) methacrylate/diacrylate (PEGMA/PEGDA) and poly(vinyl alcohol) (PVA) with two types of physical cross-links—microcrystallites and tannic acid (TA). Rheological measurements demonstrate the synergistic enhancement of the elastic modulus of the single PEGMA/PEGDA network just upon the addition of PVA, since the entanglements between the two components are formed. Moreover, the mechanical properties of IPNs can be independently tuned by varying the PEGMA/PEGDA ratio and the concentration of PVA. Subsequent freezing–thawing and immersion in the TA solution of IPN hydrogels further increase the elasticity because of the formation of the microcrystallites and OH-bonds with TA in the PVA network, as evidenced by X-ray diffraction and ATR FTIR-spectroscopy, respectively. Structural analysis by cryogenic scanning electron microscopy and light microscopy reveals a microphase-separated morphology of the hydrogels. It promotes extensive contact between PVA macromolecules, but nevertheless enables the formation of a 3D network. Such structural arrangement results in the enhanced mechanical performance of the proposed hydrogels, highlighting their potential use for tissue engineering. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

18 pages, 1534 KB  
Article
Synthesis of Polyfluorinated Aromatic Selenide-Modified Polysiloxanes: Enhanced Thermal Stability, Hydrophobicity, and Noncovalent Modification Potential
by Kristina A. Lotsman, Sofia S. Filippova, Vadim Yu. Kukushkin and Regina M. Islamova
Polymers 2025, 17(20), 2729; https://doi.org/10.3390/polym17202729 - 11 Oct 2025
Viewed by 180
Abstract
Polysiloxanes are unique polymers used in medicine and materials science and are ideal for various modifications. Classic functionalization methods involve a covalent approach, but finer tuning of the properties of the final polymers can also be achieved through sub-sequent noncovalent modifications. This study [...] Read more.
Polysiloxanes are unique polymers used in medicine and materials science and are ideal for various modifications. Classic functionalization methods involve a covalent approach, but finer tuning of the properties of the final polymers can also be achieved through sub-sequent noncovalent modifications. This study introduces a fundamentally new approach to polysiloxane functionalization by incorporating cooperative noncovalent interaction centers: selenium-based chalcogen bonding donors and polyfluoroaromatic π-hole acceptors into a single polymer platform. We developed an efficient nucleophilic substitution strategy using poly((3-chloropropyl)methylsiloxane) as a platform for introducing Se-containing groups with polyfluoroaromatic substituents. Three synthetic approaches were evaluated; only direct modification of Cl-PMS-2 proved successful, avoiding catalyst poisoning and crosslinking issues. The optimized methodology utilizes mild conditions and achieved high substitution degrees (74–98%) with isolated yields of 60–79%. Comprehensive characterization using 1H, 13C, 19F, 77Se, and 29Si NMR, TGA, and contact angle measurements revealed significantly enhanced properties. Modified polysiloxanes demonstrated improved thermal stability (up to 37 °C higher decomposition temperatures, 50–60 °C shifts in DTG maxima) and increased hydrophobicity (water contact angles from 69° to 102°). These systems potentially enable chalcogen bonding and arene–perfluoroarene interactions, providing foundations for materials with applications in biomedicine, electronics, and protective coatings. This dual-functionality approach opens pathways toward adaptive materials whose properties can be tuned through supramolecular modification while maintaining the inherent advantages of polysiloxane platforms—flexibility, biocompatibility, and chemical inertness. Full article
(This article belongs to the Special Issue Post-Functionalization of Polymers)
Show Figures

Figure 1

24 pages, 2527 KB  
Article
Three-Dimensional Printable Photocurable Elastomer Composed of Hydroxyethyl Acrylate and Hydroxy Fatty Acid Derived from Waste Cooking Oil: An Innovative Strategy for Sustainable, Highly Flexible Resin Development
by Fangping Shen, Chuanyang Tang, Yang Yang, Guangzhi Qin, Minghui Li, Haitian Jiang, Mengyao Wu and Shuoping Chen
Molecules 2025, 30(19), 4000; https://doi.org/10.3390/molecules30194000 - 6 Oct 2025
Viewed by 391
Abstract
Waste cooking oil (WCO), a significant urban waste stream, presents untapped potential for synthesizing high-value materials. This study introduces an innovative “epoxidation-hydrolysis-blending” strategy to conveniently transform WCO into a highly flexible, photocurable elastomer suitable for 3D printing. Initially, WCO is converted into WCO-based [...] Read more.
Waste cooking oil (WCO), a significant urban waste stream, presents untapped potential for synthesizing high-value materials. This study introduces an innovative “epoxidation-hydrolysis-blending” strategy to conveniently transform WCO into a highly flexible, photocurable elastomer suitable for 3D printing. Initially, WCO is converted into WCO-based hydroxy fatty acids (WHFA) via epoxidation and hydrolysis, yielding linear chains functionalized with multiple hydrogen-bonding sites. Subsequently, blending WHFA with hydroxyethyl acrylate (HEA) yields a novel photocurable WHFA/HEA elastomer. This elastomer exhibits excellent dimensional accuracy during vat photopolymerization 3D printing. Within the WHFA/HEA system, WHFA acts as a dual-functional modifier: its flexible alkyl chains enhance conformational freedom through plasticization while serving as dynamic hydrogen-bonding cross-linking sites that synergize with HEA chains to achieve unprecedented flexibility via reversible bond reconfiguration. Mechanical testing reveals that the optimized WHFA/HEA elastomer (mass ratio 1:3) exhibits ultra-high flexibility, with an elongation at break of 1184.66% (surpassing pure HEA by 360%). Furthermore, the elastomer demonstrates significant weldability (44.23% elongation retention after 12 h at 25 °C), physical reprocessability (7.60% elongation retention after two cycles), pressure-sensitive adhesion (glass interface adhesion toughness: 32.60 J/m2), and notable biodegradability (14.35% mass loss after 30-day soil burial). These properties indicate broad application potential in flexible electronics, biomedical scaffolds, and related fields. This research not only pioneers a low-cost route to multifunctional photocurable 3D printing materials but also provides a novel, sustainable solution for the high-value valorization of waste cooking oil. Full article
(This article belongs to the Section Macromolecular Chemistry)
Show Figures

Graphical abstract

18 pages, 2216 KB  
Article
Three-Dimensional Dual-Network Gel-Immobilized Mycelial Pellets: A Robust Bio-Carrier with Enhanced Shear Resistance and Biomass Retention for Sustainable Removal of SMX
by Qingyu Zhang, Haijuan Guo, Jingyan Zhang and Fang Ma
Sustainability 2025, 17(19), 8765; https://doi.org/10.3390/su17198765 - 30 Sep 2025
Viewed by 262
Abstract
Fungal mycelial pellets (MPs) exhibit high biomass-loading capacity; however, their application in wastewater treatment is constrained by structural fragility and the risk of environmental dispersion. To overcome these limitations, a dual-crosslinked polyvinyl alcohol–alginate gel (10% PVA, 2% sodium alginate) embedding strategy was developed [...] Read more.
Fungal mycelial pellets (MPs) exhibit high biomass-loading capacity; however, their application in wastewater treatment is constrained by structural fragility and the risk of environmental dispersion. To overcome these limitations, a dual-crosslinked polyvinyl alcohol–alginate gel (10% PVA, 2% sodium alginate) embedding strategy was developed and stabilized using 2% CaCl2 and saturated boric acid. This encapsulation enhanced the tensile strength of MPs by 499% (310.4 vs. 62.1 kPa) and improved their settling velocity by 2.3-fold (1.12 vs. 0.49 cm/s), which was critical for stability under turbulent bioreactor conditions. Following encapsulation, the specific oxygen uptake rates (SOURs) of three fungal strains (F557, Y3, and F507) decreased by 30.3%, 54.8%, and 48.3%, respectively, while maintaining metabolic functionality. SEM revealed tight adhesion between the gel layer and both surface and internal hyphae, with the preservation of porous channels conducive to microbial colonization. In sequential-batch reactors treating sulfamethoxazole (SMX)-contaminated wastewater, gel-encapsulated MPs combined with acclimated sludge consistently achieved 72–75% SMX removal efficiency over six cycles, outperforming uncoated MPs (efficiency decreased from 81.2% to 58.7%) and pure gel–sludge composites (34–39%). The gel coating inhibited hyphal dispersion by over 90% and resisted mechanical disintegration under 24 h agitation. This approach offers a scalable and environmentally sustainable means of enhancing MPs’ operational stability in continuous-flow systems while mitigating fungal dissemination risks. Full article
(This article belongs to the Section Pollution Prevention, Mitigation and Sustainability)
Show Figures

Figure 1

21 pages, 1677 KB  
Review
Genetics of Keratoconus: A Comprehensive Review
by Raul Hernan Barcelo-Canton, Darren S. J. Ting and Jodhbir S. Mehta
Genes 2025, 16(10), 1147; https://doi.org/10.3390/genes16101147 - 27 Sep 2025
Viewed by 551
Abstract
Keratoconus (KC) is a progressive, multifactorial corneal ectatic disorder characterized by localized stromal thinning and irregular astigmatism, with incidence and prevalence varying markedly among populations. These differences are influenced by environmental exposures, behavioral factors, and genetic predisposition. A positive family history is a [...] Read more.
Keratoconus (KC) is a progressive, multifactorial corneal ectatic disorder characterized by localized stromal thinning and irregular astigmatism, with incidence and prevalence varying markedly among populations. These differences are influenced by environmental exposures, behavioral factors, and genetic predisposition. A positive family history is a well-established high-risk factor, and KC has also been documented in association with syndromic disorders such as Down syndrome, connective tissue disorders, and certain metabolic diseases. Over the past decades, numerous candidate genes have been investigated, encompassing those involved in extracellular matrix (ECM) assembly, collagen synthesis and cross-linking, oxidative stress defense, wound healing, and transcriptional regulation. Modern genomic approaches, including genome-wide association studies (GWAS), linkage analyses, and next-generation sequencing, have identified multiple loci and variants with potential pathogenic roles. Nonetheless, several genes have also been systematically tested and found to show no association in specific populations, highlighting the genetic variability of KC and the potential influence of population-specific factors. This dual landscape of positive and negative genetic findings underscores the complexity of KC pathogenesis and the necessity for ethnically diverse cohorts. In this review, we synthesize current evidence on genes implicated in KC, integrating confirmed pathogenic variants, associations, and negative findings across diverse populations, to provide a comprehensive overview of the genetic architecture of KC and to outline priorities for future research aimed at improving diagnosis, risk stratification, and therapeutic development. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

19 pages, 1317 KB  
Article
Emulsion Systems Stabilized with Nonionic Emulsifier and Cross-Linked Polyacrylic Acid: A Promising Strategy to Enhance the Activity of Immobilized CALB
by Joanna Siódmiak, Jacek Dulęba, Dominik Mieszkowski, Piotr Bilski and Tomasz Siódmiak
Catalysts 2025, 15(10), 916; https://doi.org/10.3390/catal15100916 - 23 Sep 2025
Viewed by 479
Abstract
The application of lipases in biphasic oil–water emulsions offers an efficient and sustainable alternative to conventional chemical synthesis. However, the natural immiscibility of these phases is a substantial limitation. To address this issue, we proposed a dual-stabilized emulsion system combining a nonionic emulsifier [...] Read more.
The application of lipases in biphasic oil–water emulsions offers an efficient and sustainable alternative to conventional chemical synthesis. However, the natural immiscibility of these phases is a substantial limitation. To address this issue, we proposed a dual-stabilized emulsion system combining a nonionic emulsifier (Kolliphor® CS 20) and cross-linked polyacrylic acid (Carbopol® Ultrez 10), exceeding conventional single-stabilized systems. The activity of Candida antarctica lipase B (CALB), both in its free form and immobilized onto an IB-D152 support, was investigated in the prepared emulsion system. The olive oil emulsion stabilized with 10.0% Kolliphor® CS 20 and 0.1% Carbopol® Ultrez 10 significantly enhanced the lipolytic activity of immobilized CALB (156.27 ± 3.91 U/g of support), compared to the activity obtained in the emulsion stabilized only with 10.0% Kolliphor® CS 20 (71.11 ± 3.86 U/g of support). On the other hand, the activity of immobilized CALB in the emulsion containing 5.0% Kolliphor® CS 20 and 0.1% Carbopol® Ultrez 10 (62.22 ± 3.85 U/g of support) was lower than in the corresponding system without Carbopol® Ultrez 10 (72.03 ± 4.63 U/g of support), stabilized with only 5.0% Kolliphor® CS 20. Furthermore, immobilization onto IB-D152 led to lipase hyperactivation, with activity approximately eight-fold higher than that of free CALB. This dual emulsion stabilization strategy not only improves emulsion stability but also enhances lipase activity, offering new opportunities for scalable, high-performance biocatalysis using emulsions in industrial applications. Full article
(This article belongs to the Special Issue Enzyme and Biocatalysis Application)
Show Figures

Figure 1

18 pages, 5588 KB  
Article
Double-Crosslinked H-PAN/MoS2/PEI Composite Nanofiltration Membrane for Ethanol Systems: Fabrication and Dye Separation Performance
by Yixin Zhang, Chunli Liu, Lei Zhu, Xin Zhou, Miaona Wang and Yongqian Shen
Membranes 2025, 15(10), 286; https://doi.org/10.3390/membranes15100286 - 23 Sep 2025
Viewed by 443
Abstract
Organic solvent nanofiltration (OSN) is a promising technology for solute removal from organic media, yet developing membranes with stable separation performance remains challenging. This study presents a solvent-resistant double-crosslinked nanofiltration membrane fabricated via a two-step strategy: preparation of the membrane by the polyion [...] Read more.
Organic solvent nanofiltration (OSN) is a promising technology for solute removal from organic media, yet developing membranes with stable separation performance remains challenging. This study presents a solvent-resistant double-crosslinked nanofiltration membrane fabricated via a two-step strategy: preparation of the membrane by the polyion complexion reaction-assisted non-solvent-induced phase inversion (PIC-assisted NIPS) method and then post-crosslinking with hydrothermal treatment followed by quaternization with 1,3,5-tris(bromomethyl)benzene (TBB). To enhance solvent stability, molybdenum sulfide (MoS2) nanosheets were incorporated into a hydrolyzed polyacrylonitrile (H-PAN) substrate. The H-PAN/MoS2/PEI base membrane was fabricated by PIC-assisted NIPS with a polyethylenimine (PEI) aqueous solution as the coagulation bath. The membrane subsequently underwent dual crosslinking comprising hydrothermal treatment and 1,3,5-tris(bromomethyl)benzene (TBB)-mediated quaternization crosslinking, ultimately yielding the H-PAN/MoS2/PEI (Ther.+TBB QCL) composite membrane. These crosslinking procedures reduced the membrane’s separation skin layer thickness from 64 nm (uncrosslinked) to 41 nm. The resultant membrane effectively separated dyes from ethanol, achieving a rejection rate of 97.0 ± 0.9% for anionic dyes (e.g., Congo Red) and a permeance flux of 23.6 ± 0.2 L·m−2·h−1·bar−1 at 0.4 MPa. Furthermore, after 30 days of immersion in ethanol at 25 °C, its flux decay rate was markedly lower than that of a non-crosslinked control membrane. The enhanced separation performance and stability are attributed to the thermal crosslinking promoting amide bond formation and the TBB crosslinking introducing quaternary ammonium groups. This double-crosslinking strategy offers a promising approach for preparing high-performance OSN membranes. Full article
Show Figures

Figure 1

14 pages, 4125 KB  
Article
Highly Entangled, Mechanically Robust Hydrogel Thin Films for Passive Cooling Materials via Open-Vessel Fabrication
by Lihan Rong, Jiajiang Xie, Shigao Zhou, Tianqi Guan, Xinyi Fan, Wenjie Zhi, Rui Zhou, Feng Li, Yuyan Liu, Tingting Tang, Xiang Chen and Liyuan Zhang
Gels 2025, 11(9), 734; https://doi.org/10.3390/gels11090734 - 12 Sep 2025
Viewed by 483
Abstract
The scalable fabrication of hydrogels with high toughness and low hysteresis is critically hindered by oxygen inhibition, which typically produces brittle, highly crosslinked (HC) networks. This study presents an oxygen-tolerant photoinduced electron transfer–reversible addition–fragmentation chain transfer (PET-RAFT) strategy for synthesizing highly entangled (HE) [...] Read more.
The scalable fabrication of hydrogels with high toughness and low hysteresis is critically hindered by oxygen inhibition, which typically produces brittle, highly crosslinked (HC) networks. This study presents an oxygen-tolerant photoinduced electron transfer–reversible addition–fragmentation chain transfer (PET-RAFT) strategy for synthesizing highly entangled (HE) polyacrylamide hydrogels under open-vessel conditions. By optimizing the water-to-monomer ratio (W = 3.9) and introducing lithium chloride (LiCl) for spatial confinement, we achieved a fundamental shift in mechanical performance. The optimized HE hydrogel exhibited a fracture energy of 1.39 MJ/m3 and a fracture strain of ~900%, starkly contrasting the brittle failure of the HC control (W = 20, C = 10−2) at ~50% strain. This represents an order-of-magnitude improvement in deformability. Furthermore, the incorporation of 15 wt% LiCl amplified the HE hydrogel’s fracture energy to 2.17 MJ/m3 while maintaining its low hysteresis. This method enables the rapid, scalable production of robust, transparent thin films that exhibit dual passive cooling via radiative emission (>89% emissivity) and evaporation, rapid self-healing, and reliable strain sensing at temperatures as low as −20 °C. The synergy of entanglement design and confinement engineering establishes a versatile platform for manufacturing multifunctional hydrogels that vastly outperform their crosslink-dominated predecessors. Full article
(This article belongs to the Special Issue Physical and Mechanical Properties of Polymer Gels (3rd Edition))
Show Figures

Figure 1

18 pages, 3556 KB  
Article
Development of Double Crosslinked Nano Microspheres and Study on CO2 Drive Blocking Mechanism
by Ping Guo, Yong Li, Yanbao Liu and Yunlong Zou
Processes 2025, 13(9), 2903; https://doi.org/10.3390/pr13092903 - 11 Sep 2025
Viewed by 354
Abstract
In this study, a new type of double crosslinked nanospheres (DCNPM-A) was developed to solve the problem of gas channeling caused by fracture development in the process of CO2 oil displacement, and the microsphere system with delayed swelling was successfully synthesized by [...] Read more.
In this study, a new type of double crosslinked nanospheres (DCNPM-A) was developed to solve the problem of gas channeling caused by fracture development in the process of CO2 oil displacement, and the microsphere system with delayed swelling was successfully synthesized by inverse micro lotion polymerization. The microsphere adopts a dual crosslinking structure of stable crosslinking agent (MBA) and unstable crosslinking agent (UCA), achieving intelligent sealing function of shallow low expansion and deep high temperature triggered secondary expansion. The successful preparation of microspheres was verified by characterization methods such as Zeta potential and SEM, and the effects of reaction temperature, time, initiator and crosslinking agent dosage on microsphere properties were systematically studied. The experimental results show that DCNPM-A microspheres exhibit excellent expansion performance, thermal stability, and acid resistance in acidic, high-temperature, and high mineralization environments. Their expansion ratio can reach 13.5 times, and they can maintain stability for more than 60 days in supercritical CO2 environments. Core displacement experiments have confirmed that the microspheres have the best sealing performance in matrices with a permeability of 10 × 10−3 μm2 and fractures with a width of 0.03 mm. The combination of 0.8 PV injection volume, 0.5 mL·min−1 injection rate, and continuous injection method significantly improved the plugging rate and recovery rate of CO2 flooding. This study provides new technical support for the efficient development of low-permeability fractured reservoirs. Full article
(This article belongs to the Special Issue Flow Mechanisms and Enhanced Oil Recovery)
Show Figures

Figure 1

43 pages, 2154 KB  
Review
Click Chemistry-Based Hydrogels for Tissue Engineering
by Soheil Sojdeh, Amirhosein Panjipour, Amal Yaghmour, Zohreh Arabpour and Ali R. Djalilian
Gels 2025, 11(9), 724; https://doi.org/10.3390/gels11090724 - 11 Sep 2025
Viewed by 1429
Abstract
Click chemistry has become a powerful and flexible approach for designing hydrogels used in tissue engineering thanks to its high specificity, fast reaction rates, and compatibility with biological systems. In this review, we introduce the core principles of click chemistry, including efficiency, orthogonality, [...] Read more.
Click chemistry has become a powerful and flexible approach for designing hydrogels used in tissue engineering thanks to its high specificity, fast reaction rates, and compatibility with biological systems. In this review, we introduce the core principles of click chemistry, including efficiency, orthogonality, and modularity, and highlight the main types of reactions commonly used in hydrogel formation, such as azide-alkyne c-cloadditions, thiol-ene/yne reactions, Diels–Alder cycloadditions, and tetrazine–norbornene couplings. These chemistries allow researchers to create covalently crosslinked hydrogels that are injectable, responsive to environmental stimuli, biodegradable, or multifunctional. We also explore strategies to enhance bioactivity, such as incorporating peptides, growth factors, or extracellular matrix components, and enabling precise spatial and temporal control over biological cues. Click-based hydrogels have shown promise across a wide range of tissue engineering applications, from cartilage and skin repair to neural regeneration, corneal healing, and cardiovascular scaffolds, as well as in 3D bioprinting technologies. Despite the many advantages of click chemistry such as mild reaction conditions and customizable material properties, some challenges remain, including concerns around copper toxicity, the cost of specialized reagents, and scalability. Finally, we discuss the status of clinical translation, regulatory considerations, and future directions, including integration with advanced bio fabrication methods, the design of dual-click systems, and the emerging role of in vivo click chemistry in creating next-generation biomaterials. Full article
Show Figures

Figure 1

22 pages, 7241 KB  
Article
Osteogenic Differentiation in Chitosan-Based Scaffolds via P28 and VEGF Delivery
by Keran Zhou, Bianca Simonassi-Paiva, Robert Pogue, Emma Murphy, Zhi Cao, Margaret Brennan Fournet and Declan M. Devine
Molecules 2025, 30(17), 3645; https://doi.org/10.3390/molecules30173645 - 7 Sep 2025
Viewed by 1786
Abstract
Repairing large bone defects remains a significant clinical challenge due to the limitations of current treatments, including infection risk, donor site morbidity, and insufficient vascularization. The autograft is still the gold standard for large bone defects. In this study, we developed chitosan-based (CS-based) [...] Read more.
Repairing large bone defects remains a significant clinical challenge due to the limitations of current treatments, including infection risk, donor site morbidity, and insufficient vascularization. The autograft is still the gold standard for large bone defects. In this study, we developed chitosan-based (CS-based) scaffolds, incorporating with hydroxyapatite (HAp) and fluorapatite (FAp) ceramics, fabricated by UV crosslinking and freeze-drying, and loaded with P28 peptide, alone or in combination with vascular endothelial growth factor (VEGF), to evaluate the effect of dual bioactive factor delivery. We hypothesized that CS-based scaffolds would optimize ceramic composition and co-delivery of P28 and VEGF, and can enhance early-stage osteogenic differentiation and support bone regeneration. The CS-based scaffolds were characterized by their physicochemical properties, including swelling behavior, mechanical strength, porosity, and in vitro degradation. Biological evaluations were performed including cell proliferation assays, ALP activity, ARS staining, and RT-qPCR, to assess osteogenic differentiation. The results showed that the scaffolds had high porosity, excellent swelling behavior, and degraded within 8 weeks. Dual delivery of P28 and VEGF significantly enhanced early osteogenic markers, indicating a complementary effect. These findings demonstrated that CS-based scaffolds with an optimized ceramic ratio and bioactive factor incorporation have the potential to facilitate bone regeneration. Full article
Show Figures

Figure 1

15 pages, 6693 KB  
Article
Double-Network Hydrogels via Hybrid Strategies: Potential in Large-Scale Manufacturing for Colorimetric Indicator
by Ningli An, Jiwen Liu, Wentao Zhou, Qing He, Jianan Li and Yali Xiong
Gels 2025, 11(9), 697; https://doi.org/10.3390/gels11090697 - 2 Sep 2025
Viewed by 510
Abstract
Biological hydrogels are widely available in terms of raw material sources and can be processed and molded using relatively simple techniques. Hydrogels can offer abundant three-dimensional, water-containing channels that facilitate the reaction between gases and dye, making them the preferred choice for the [...] Read more.
Biological hydrogels are widely available in terms of raw material sources and can be processed and molded using relatively simple techniques. Hydrogels can offer abundant three-dimensional, water-containing channels that facilitate the reaction between gases and dye, making them the preferred choice for the solid support layer in colorimetric indicators. However, biomass hydrogels exhibit inferior mechanical properties, making them unsuitable for large-scale manufacturing processes. In this study, four dual-network composite hydrogels Agar/Gelatin, Sodium Alginate/Agar, Sodium Alginate/Poly (vinyl alcohol), Sodium Alginate/Gelatin (AG/Gel, SA/AG, SA/PVA and SA/Gel) prepared through hybrid strategies. Furthermore, the influence of the dual-network structure on the mechanical properties and ammonia response was systematically investigated, using microscopy and Fourier transform infrared spectroscopy (FTIR) characterization method. The experimental results demonstrate that the incorporation of SA into original hydrogel matrices can significantly enhance both the mechanical and ammonia response performance due to the secondary topological network structure. The interpenetrating double network structure was effectively regulated through the calcium ion cross-linking process. The color difference threshold of SA/PVA’s response to ammonia gas is 10, it holds promise for rapid detection applications. The SA/Gel composite hydrogel exhibits excellent mechanical robustness and toughness. The tensile strength of the SA/Gel sample is 11 times that of a single gel, and the toughness is 80 times greater, suggesting its suitability for large-scale manufacturing of colorimetric indicator. Full article
(This article belongs to the Section Gel Processing and Engineering)
Show Figures

Figure 1

25 pages, 6013 KB  
Article
Development and Application of a Novel pH-Responsive Bilayer Indicator Film for Yellowfin Seabream Preservation and Freshness Monitoring
by Shan Xue, Zhi Lin and Jia Liu
Foods 2025, 14(17), 3019; https://doi.org/10.3390/foods14173019 - 28 Aug 2025
Viewed by 777
Abstract
A pH-responsive bilayer film was developed for real-time freshness monitoring and preservation of yellowfin seabream. The emulsified layer contained chitosan (CS) and flaxseed oil (FO), while the indicator layer comprised carrageenan (CAR), gelatin (GEL), grape seed anthocyanins (GSA), and curcumin (CUR). Optimization via [...] Read more.
A pH-responsive bilayer film was developed for real-time freshness monitoring and preservation of yellowfin seabream. The emulsified layer contained chitosan (CS) and flaxseed oil (FO), while the indicator layer comprised carrageenan (CAR), gelatin (GEL), grape seed anthocyanins (GSA), and curcumin (CUR). Optimization via response surface methodology determined the ideal formulation: CAR/GEL mass ratio 1.11:1, CS concentration 1.70%, and GSA/CUR dosage 53.99 mg/100 mL. The optimized film demonstrated superior mechanical properties (TS = 12.74 MPa, EAB = 68.24%), enhanced hydrophobicity (WVP = 1.21 × 10−11 g·m−1·s−1·Pa−1), and potent antioxidant activity (HRC = 92.35%). FTIR and SEM confirmed stable cross-linking and bilayer compatibility. Distinct color transitions (yellow → reddish-brown) occurred at different pH levels, correlating with fish spoilage indicators. During 25°C storage, the film effectively inhibited quality deterioration (TVB-N, TBARS, moisture loss, lipid oxidation) while extending shelf-life. Strong correlations were observed among TVB-N, TBARS, moisture (|r| > 0.97), and PUFAs’ spoilage contribution (r ≈ −0.99). This intelligent film enables dual-functionality: active preservation and visual freshness monitoring. Full article
(This article belongs to the Special Issue Biosynthesis Technology and Future Functional Foods)
Show Figures

Figure 1

22 pages, 4366 KB  
Article
Controlled Fabrication of pH-Visualised Silk Fibroin–Sericin Dual-Network Hydrogels for Urine Detection in Diapers
by Yuxi Liu, Kejing Zhan, Jiacheng Chen, Yu Dong, Tao Yan, Xin Zhang and Zhijuan Pan
Gels 2025, 11(8), 671; https://doi.org/10.3390/gels11080671 - 21 Aug 2025
Viewed by 661
Abstract
Urine pH serves as an indicator of systemic acid–base balance and helps detect early-stage urinary and renal disorders. However, conventional monitoring methods rely on instruments or manual procedures, limiting their use among vulnerable groups such as infants and bedridden elderly individuals. In this [...] Read more.
Urine pH serves as an indicator of systemic acid–base balance and helps detect early-stage urinary and renal disorders. However, conventional monitoring methods rely on instruments or manual procedures, limiting their use among vulnerable groups such as infants and bedridden elderly individuals. In this study, a pH-responsive smart hydrogel was developed and integrated into diapers to enable real-time, equipment-free, and visually interpretable urine pH monitoring. An optimised degumming process enabled one-step preparation of a silk fibroin–sericin aqueous solution. We employed a visible light-induced photo-crosslinking strategy to fabricate a dual-network hydrogel with enhanced strength and stability. Increasing sericin content accelerated gelation (≤15 min) and improved performance, achieving a maximum stress of 54 kPa, strain of 168%, and water absorption of 566%. We incorporated natural anthocyanins and fine-tuned them to produce four distinct colour changes in response to urine pH, with significantly improved colour differentiation (ΔE). Upon contact with urine, the hydrogel displays green within the normal pH range, indicating a healthy state. At the same time, a reddish-purple or blue colour serves as a visual warning of abnormal acidity or alkalinity. This intelligent hydrogel system combines rapid gelation, excellent mechanical properties, and a sensitive visual response, offering a promising platform for body fluid monitoring. Full article
Show Figures

Figure 1

17 pages, 2566 KB  
Article
Synergistic Epichlorohydrin-Crosslinked Carboxymethyl Xylan for Enhanced Thermal Stability and Filtration Control in Water-Based Drilling Fluids
by Yutong Li, Fan Zhang, Bo Wang, Jiaming Liu, Yu Wang, Zhengli Shi, Leyao Du, Kaiwen Wang, Wangyuan Zhang, Zonglun Wang and Liangbin Dou
Gels 2025, 11(8), 666; https://doi.org/10.3390/gels11080666 - 20 Aug 2025
Viewed by 443
Abstract
Polymers derived from renewable polysaccharides offer promising avenues for the development of high-temperature, environmentally friendly drilling fluids. However, their industrial application remains limited by inadequate thermal stability and poor colloidal compatibility in complex mud systems. In this study, we report the rational design [...] Read more.
Polymers derived from renewable polysaccharides offer promising avenues for the development of high-temperature, environmentally friendly drilling fluids. However, their industrial application remains limited by inadequate thermal stability and poor colloidal compatibility in complex mud systems. In this study, we report the rational design and synthesis of epichlorohydrin-crosslinked carboxymethyl xylan (ECX), developed through a synergistic strategy combining covalent crosslinking with hydrophilic functionalization. When incorporated into water-based drilling fluid base slurries, ECX facilitates the formation of a robust gel suspension. Comprehensive structural analyses (FT-IR, XRD, TGA/DSC) reveal that dual carboxymethylation and ether crosslinking impart a 10 °C increase in glass transition temperature and a 15% boost in crystallinity, forming a rigid–flexible three-dimensional network. ECX-modified drilling fluids demonstrate excellent colloidal stability, as evidenced by an enhancement in zeta potential from −25 mV to −52 mV, which significantly improves dispersion and interparticle electrostatic repulsion. In practical formulation (1.0 wt%), ECX achieves a 620% rise in yield point and a 71.6% reduction in fluid loss at room temperature, maintaining 70% of rheological performance and 57.5% of filtration control following dynamic aging at 150 °C. Tribological tests show friction reduction up to 68.2%, efficiently retained after thermal treatment. SEM analysis further confirms the formation of dense and uniform polymer–clay composite filter cakes, elucidating the mechanism behind its high-temperature resilience and effective sealing performance. Furthermore, ECX demonstrates high biodegradability (BOD5/COD = 21.3%) and low aquatic toxicity (EC50 = 14 mg/L), aligning with sustainable development goals. This work elucidates the correlation between molecular engineering, gel microstructure, and macroscopic function, underscoring the great potential of eco-friendly polysaccharide-based crosslinked polymers for industrial gel-based fluid design in harsh environments. Full article
(This article belongs to the Section Gel Chemistry and Physics)
Show Figures

Graphical abstract

Back to TopTop