Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (245)

Search Parameters:
Keywords = dual-polarized antennas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 20370 KB  
Article
High Resolution Synthetic Aperture Radar Based on Multiple Reflectarray Apertures
by Min Zhou, Pasquale G. Nicolaci, David Marote, Javier Herreros, Niels Vesterdal, Michael F. Palvig, Stig B. Sørensen and Giovanni Toso
Electronics 2025, 14(19), 3832; https://doi.org/10.3390/electronics14193832 - 27 Sep 2025
Abstract
This paper presents the design, manufacturing, testing, and validation of the MASKARA (Multiple Apertures for high-resolution SAR based on Ka-band Reflectarray) Breadboard Model (BBM), a large Ka-band reflectarray antenna developed for Synthetic Aperture Radar (SAR) applications. The BBM features a dual-offset antenna configuration [...] Read more.
This paper presents the design, manufacturing, testing, and validation of the MASKARA (Multiple Apertures for high-resolution SAR based on Ka-band Reflectarray) Breadboard Model (BBM), a large Ka-band reflectarray antenna developed for Synthetic Aperture Radar (SAR) applications. The BBM features a dual-offset antenna configuration intended for a high-resolution, wide-swath SAR instrument. At the core of the system is a 1.5 m × 0.55 m reflectarray operating between 35.5–36.0 GHz in the Ka-band. To our knowledge, this is the first demonstration of a reflectarray antenna designed to support two distinct modes of operation, exploiting the inherent advantages of reflectarrays—such as reduced cost and compact stowage—over traditional solutions. The antenna provides a high-resolution mode requiring a higher-gain beam in one polarization and a low-resolution mode covering a larger swath with broader beam coverage in the orthogonal polarization. The design process follows a holistic, multidisciplinary approach, integrating RF and thermomechanical considerations through iterative and concurrent design reviews. The BBM has been successfully manufactured and experimentally tested, and the measurement results show good agreement with simulations, confirming the validity of the proposed concept and demonstrating its potential for future high-performance SAR missions. Full article
(This article belongs to the Special Issue Broadband Antennas and Antenna Arrays)
Show Figures

Figure 1

12 pages, 9031 KB  
Article
A Novel Wideband 1 × 8 Array Dual-Polarized Reconfigurable Beam-Scanning Antenna
by Jie Wu, Zihan Zhang, Yang Hong and Guoda Xie
Electronics 2025, 14(18), 3689; https://doi.org/10.3390/electronics14183689 - 18 Sep 2025
Viewed by 242
Abstract
A novel polarization-reconfigurable 1 × 8 array beam-scanning antenna based on a switchable vertically crossed balanced feed (VCBF) structure is presented. The designed VCBF structure can provide a stable 180° phase difference by utilizing spatial symmetry, enabling the synthesis of two linear polarizations [...] Read more.
A novel polarization-reconfigurable 1 × 8 array beam-scanning antenna based on a switchable vertically crossed balanced feed (VCBF) structure is presented. The designed VCBF structure can provide a stable 180° phase difference by utilizing spatial symmetry, enabling the synthesis of two linear polarizations (LP). The parasitic patch layer loaded directly above the VCBF can effectively enhance the operating frequency bandwidth of the antenna. In the array design, by controlling the amplitude and phase input at each port, scanning angles of ±45°, ±40°, and ±30° can be achieved under two LP at 3.0, 3.5, and 4.0 GHz. The simulation and measurement results indicate that the designed antenna has a wideband characteristic with a relative bandwidth of 28.6% and stable polarization reconfigurability. Benefiting from the advantages of polarization reconfigurability and beam-scanning capabilities, the antenna is highly suitable for applications in wireless communication systems that require polarization anti-interference. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

28 pages, 6366 KB  
Article
Integrated Ultra-Wideband Microwave System to Measure Composition Ratio Between Fat and Muscle in Multi-Species Tissue Types
by Lixiao Zhou, Van Doi Truong and Jonghun Yoon
Sensors 2025, 25(17), 5547; https://doi.org/10.3390/s25175547 - 5 Sep 2025
Viewed by 980
Abstract
Accurate and non-invasive assessment of fat and muscle composition is crucial for biomedical monitoring to track health conditions in humans and pets, as well as for classifying meats in the meat industry. This study introduces a cost-effective, multifunctional ultra-wideband microwave system operating from [...] Read more.
Accurate and non-invasive assessment of fat and muscle composition is crucial for biomedical monitoring to track health conditions in humans and pets, as well as for classifying meats in the meat industry. This study introduces a cost-effective, multifunctional ultra-wideband microwave system operating from 2.4 to 4.4 GHz, designed for rapid and non-destructive quantification of fat thickness, muscle thickness, and fat-to-muscle ratio in diverse ex vivo samples, including pork, beef, and oil–water mixtures. The compact handheld device integrates essential RF components such as a frequency synthesizer, directional coupler, logarithmic power detector, and a dual-polarized Vivaldi antenna. Bluetooth telemetry enables seamless real-time data transmission to mobile- or PC-based platforms, with each measurement completed in a few seconds. To enhance signal quality, a two-stage denoising pipeline combining low-pass filtering and Savitzky–Golay smoothing was applied, effectively suppressing noise while preserving key spectral features. Using a random forest regression model trained on resonance frequency and signal-loss features, the system demonstrates high predictive performance even under limited sample conditions. Correlation coefficients for fat thickness, muscle thickness, and fat-to-muscle ratio consistently exceeded 0.90 across all sample types, while mean absolute errors remained below 3.5 mm. The highest prediction accuracy was achieved in homogeneous oil–water samples, whereas biologically complex tissues like pork and beef introduced greater variability, particularly in muscle-related measurements. The proposed microwave system is highlighted as a highly portable and time-efficient solution, with measurements completed within seconds. Its low cost, ability to analyze multiple tissue types using a single device, and non-invasive nature without the need for sample pre-treatment or anesthesia make it well suited for applications in agri-food quality control, point-of-care diagnostics, and broader biomedical fields. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

16 pages, 5285 KB  
Article
Design of Dual-Polarized All-Dielectric Transmitarray Antenna for Ka-Band Applications
by Baixin Liu, Haixin Sun, Xujia Jiang, Jiayu Hu and Changjiang Deng
Appl. Sci. 2025, 15(17), 9560; https://doi.org/10.3390/app15179560 - 30 Aug 2025
Viewed by 486
Abstract
This paper proposes two all-dielectric transmitarrays operating at Ka-band (26.5–40 GHz), achieving dual-polarization and beam-scanning functionalities. The dual-polarized design employs a cross-shaped dielectric post transmission unit, where the lengths of the two posts can be adjusted to enable independent phase modulation in the [...] Read more.
This paper proposes two all-dielectric transmitarrays operating at Ka-band (26.5–40 GHz), achieving dual-polarization and beam-scanning functionalities. The dual-polarized design employs a cross-shaped dielectric post transmission unit, where the lengths of the two posts can be adjusted to enable independent phase modulation in the two orthogonal polarizations. Both polarizations provide 360° continuous phase coverage. To reduce the design complexity and achieve independent control of polarization, an optimized unit group with 16 states and 2-bit phase quantization is developed. A prototype of the all-dielectric transmitarray with 20 × 20 units is fabricated. The measured x/y-polarized peak gains are 25.3 dBi/25.5 dBi and the 1 dB bandwidths achieve 27% and 22%, respectively. To address feed–array integration, another all-dielectric transmitarray is further designed, which uses the same dual-polarized dielectric units, but replaces the horn feed with a dielectric rod antenna array. The feed array can generate multiple beams, enabling discrete beam-scanning within a 60° angle range. Both the dielectric transmitarray and the feed array can be fabricated by using 3D-printed technology, which greatly enhances the system integration and provides flexibility in generating multiple high-gain beams. Full article
(This article belongs to the Special Issue Millimeter-Wave Antenna Arrays: From Design to Applications)
Show Figures

Figure 1

11 pages, 3327 KB  
Article
Coupled Split-Ring Resonators for Isolation Improvement in a 1 × 2 Microstrip Patch Antenna Array
by Kam Eucharist Kedze, Wenyu Zhou, Eqab Almajali, Hojjat Jamshidi-Zarmehri, Nima Javanbakht, Gaozhi (George) Xiao, Jafer Shaker and Rony E. Amaya
Electronics 2025, 14(17), 3340; https://doi.org/10.3390/electronics14173340 - 22 Aug 2025
Viewed by 465
Abstract
In this paper, a method to reduce mutual coupling between an E-plane and H-plane coupled microstrip patch antenna is presented. Two dual differentially fed square patches are designed in a 1 × 2 antenna array configuration. To minimize mutual coupling and its effects, [...] Read more.
In this paper, a method to reduce mutual coupling between an E-plane and H-plane coupled microstrip patch antenna is presented. Two dual differentially fed square patches are designed in a 1 × 2 antenna array configuration. To minimize mutual coupling and its effects, coupled split-ring resonators (SRRs) are designed, characterized and positioned between the patches. Circular SRRs are designed and coupled to produce a band-stop response to suppress surface waves propagating within the dielectric substrate while enhancing isolation. Mutual coupling interactions and the suppression mechanism are discussed in relation to the patches and SRRs. The patch radiators are dual differentially fed to achieve polarization diversity. E- and H-planes decoupling is achieved between the two patches throughout their bandwidth while maintaining good antenna performance. A prototype of the antenna array and the SRR is fabricated and measured to validate the decoupling approach. With a separation distance of 0.49λ between the patches, the measured S-parameters show an impedance bandwidth of |S11|≤−10 dB, covering 9.27–9.46 GHz, and −38 dB and −35 dB mutual coupling for E- and H-planes, respectively, are observed throughout the antenna operating bandwidth. Full article
Show Figures

Figure 1

24 pages, 8256 KB  
Article
Dual-Element Wideband CP Slot-Integrated MIMO Antenna with X-Notch Square AMC for DSRC Applications
by Chanwit Musika, Nathapat Supreeyatitikul, Jessada Konpang, Pongsathorn Chomtong and Prayoot Akkaraekthalin
Technologies 2025, 13(8), 367; https://doi.org/10.3390/technologies13080367 - 17 Aug 2025
Viewed by 787
Abstract
This study proposes a dual-element wideband circularly polarized (CP) slot-integrated multiple-input multiple-output (MIMO) antenna with an X-notch square-shaped artificial magnetic conductor (AMC) for dedicated short-range communications (DSRC) applications. The proposed antenna design consists of two substrate layers separated by an air gap. The [...] Read more.
This study proposes a dual-element wideband circularly polarized (CP) slot-integrated multiple-input multiple-output (MIMO) antenna with an X-notch square-shaped artificial magnetic conductor (AMC) for dedicated short-range communications (DSRC) applications. The proposed antenna design consists of two substrate layers separated by an air gap. The upper layer features a dual-element coplanar waveguide-fed slot antenna and a defected ground structure decoupling isolator, while the lower layer comprises an 8 × 8 array of X-notch square-shaped elemental units, functioning as an AMC reflector. Characteristic mode analysis shows that circular polarization is produced by the dominant orthogonal mode pair (modes J5 and J6), whose modal significance exceeds 0.92 and whose characteristic angle separation is 82° around the 5.9 GHz DSRC band. An I-shaped slot embedded in the ground plane of the upper layer serves as a defected ground structure isolator to suppress mutual coupling between antenna elements. Meanwhile, the X-notch square AMC reflector enhances radiation characteristics and antenna gain. The measured return loss bandwidth and axial ratio bandwidth are 32% (4.72–6.61 GHz) and 21.18% (5.2–6.45 GHz), respectively. The dual-element antenna scheme achieves high isolation exceeding 19 dB, with a maximum gain of 8.6 dBic at 5.9 GHz. The envelop correlation coefficient remains below 0.003, while the diversity gain exceeds 9.98 dB. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

19 pages, 12156 KB  
Article
Dual-Port Butterfly Slot Antenna for Biosensing Applications
by Marija Milijic, Branka Jokanovic, Miodrag Tasic, Sinisa Jovanovic, Olga Boric-Lubecke and Victor Lubecke
Sensors 2025, 25(16), 4980; https://doi.org/10.3390/s25164980 - 12 Aug 2025
Viewed by 377
Abstract
This paper presents the novel design of a printed, low-cost, dual-port, and dual-polarized slot antenna for microwave biomedical radars. The butterfly shape of the radiating element, with orthogonally positioned arms, enables simultaneous radiation of both vertically and horizontally polarized waves. The antenna is [...] Read more.
This paper presents the novel design of a printed, low-cost, dual-port, and dual-polarized slot antenna for microwave biomedical radars. The butterfly shape of the radiating element, with orthogonally positioned arms, enables simultaneous radiation of both vertically and horizontally polarized waves. The antenna is intended for full-duplex in-band applications using two mutually isolated antenna ports, with the CPW port on the same side of the substrate as the slot antenna and the microstrip port positioned orthogonally on the other side of the substrate. Those two ports can be used as transmit and receive ports in a radar transceiver, with a port isolation of 25 dB. Thanks to the bow-tie shape of the slots and an additional coupling region between the butterfly arms, there is more flexibility in simultaneous optimization of the resonant frequency and input impedance at both ports, avoiding the need for a complicated matching network that introduces the attenuation and increases antenna dimensions. The advantage of this design is demonstrated through the modeling of an eight-element dual-port linear array with an extremely simple feed network for high-gain biosensing applications. To validate the simulation results, prototypes of the proposed antenna were fabricated and tested. The measured operating band of the antennas spans from 2.35 GHz to 2.55 GHz, with reflection coefficients of less than—10 dB, a maximum gain of 8.5 dBi, and a front-to-back gain ratio that is greater than 15 dB, which is comparable with other published single dual-port slot antennas. This is the simplest proposed dual-port, dual-polarization antenna that enables straightforward scaling to other frequency bands. Full article
(This article belongs to the Special Issue Design and Application of Millimeter-Wave/Microwave Antenna Array)
Show Figures

Figure 1

16 pages, 8452 KB  
Article
Self-Diplexing SIW Rectangular Cavity-Backed Antenna Featuring TE210 and TE220 Modes with a Modified Inverted Z-Shaped Radiating Slot
by Ravindiran Asaithambi and Rajkishor Kumar
Electronics 2025, 14(16), 3198; https://doi.org/10.3390/electronics14163198 - 11 Aug 2025
Viewed by 341
Abstract
A self-diplexing, full-mode, substrate-integrated waveguide (SIW) rectangular cavity-backed antenna based on an inverted Z-shaped radiating slot with filtering characteristics is investigated in this work. The proposed design allows for individual control through the loading of four different slots, namely, a combination of [...] Read more.
A self-diplexing, full-mode, substrate-integrated waveguide (SIW) rectangular cavity-backed antenna based on an inverted Z-shaped radiating slot with filtering characteristics is investigated in this work. The proposed design allows for individual control through the loading of four different slots, namely, a combination of horizontal and diagonal slots, called inverted Z-shaped slots. The two diagonal slots make 45° angles between them, and this flexible rotation gives the design flexibility regarding control of the bands. By combining these slots into a modified inverted Z-shaped slot, a SIW rectangular cavity is configured and energized with two separate 50 Ω microstrip feed lines to resonate at two different frequencies—11.63 GHz and 13.27 GHz—and TE210 and TE220 modes are obtained for X- and Ku-band wireless purposes. In an experimental analysis, reflection coefficients of S11 < −10 dB were noted for both operating frequencies of 7.4% (11.23–12.09 GHz) and 3.0% (13.15–13.55 GHz), respectively. The average gain of the proposed antenna design in the two different operating conditions is 6.14 and 6.16 dBi, respectively. In addition, the proposed self-diplexing antenna attained high isolation, greater than 28 dB between both operating channels, and showed overall measured efficiency of 87.32%. Moreover, it features a single-layer structure, operates in dual bands, provides broadside linear polarization, and exhibits filtering capabilities. Full article
(This article belongs to the Special Issue Advanced Antennas and Propagation for Next-Gen Wireless)
Show Figures

Figure 1

16 pages, 3042 KB  
Article
A Dual-Circularly Polarized Antenna Array for Space Surveillance: From Design to Experimental Validation
by Chiara Scarselli, Guido Nenna and Agostino Monorchio
Appl. Sci. 2025, 15(15), 8439; https://doi.org/10.3390/app15158439 - 30 Jul 2025
Viewed by 719
Abstract
This paper presents the design, simulation, and experimental validation of a dual-Circularly Polarized (CP) array antenna to be used as single element for a bistatic radar system, aimed at detecting and tracking objects in Low Earth Orbit (LEO). The antenna operates at 412 [...] Read more.
This paper presents the design, simulation, and experimental validation of a dual-Circularly Polarized (CP) array antenna to be used as single element for a bistatic radar system, aimed at detecting and tracking objects in Low Earth Orbit (LEO). The antenna operates at 412 MHz in reception mode and consists of an array of 19 slotted-patch radiating elements with a cavity-based metallic superstrate, designed to support dual circular polarization. These elements are arranged in a hexagonal configuration, enabling the array structure to achieve a maximum realized gain of 17 dBi and a Side Lobe Level (SLL) below −17 dB while maintaining high polarization purity. Two identical analog feeding networks enable the precise control of phase and amplitude, allowing the independent reception of Right-Hand and Left-Hand Circularly Polarized (RHCP and LHCP) signals. Full-wave simulations and experimental measurements confirm the high performance and robustness of the system, demonstrating its suitability for integration into large-scale Space Situational Awareness (SSA) sensor networks. Full article
(This article belongs to the Special Issue Antennas for Next-Generation Electromagnetic Applications)
Show Figures

Figure 1

24 pages, 4549 KB  
Review
Research on Tbps and Kilometer-Range Transmission of Terahertz Signals
by Jianjun Yu and Jiali Chen
Micromachines 2025, 16(7), 828; https://doi.org/10.3390/mi16070828 - 20 Jul 2025
Viewed by 1016
Abstract
THz communication stands as a pivotal technology for 6G networks, designed to address the critical challenge of data demands surpassing current microwave and millimeter-wave (mmWave) capabilities. However, realizing Tbps and kilometer-range transmission confronts the “dual attenuation dilemma” comprising severe free-space path loss (FSPL) [...] Read more.
THz communication stands as a pivotal technology for 6G networks, designed to address the critical challenge of data demands surpassing current microwave and millimeter-wave (mmWave) capabilities. However, realizing Tbps and kilometer-range transmission confronts the “dual attenuation dilemma” comprising severe free-space path loss (FSPL) (>120 dB/km) and atmospheric absorption. This review comprehensively summarizes our group′s advancements in overcoming fundamental challenges of long-distance THz communication. Through systematic photonic–electronic co-optimization, we report key enabling technologies including photonically assisted THz signal generation, polarization-multiplexed multiple-input multiple-output (MIMO) systems with maximal ratio combining (MRC), high-gain antenna–lens configurations, and InP amplifier systems for complex weather resilience. Critical experimental milestones encompass record-breaking 1.0488 Tbps throughput using probabilistically shaped 64QAM (PS-64QAM) in the 330–500 GHz band; 30.2 km D-band transmission (18 Gbps with 543.6 Gbps·km capacity–distance product); a 3 km fog-penetrating link at 312 GHz; and high-sensitivity SIMO-validated 100 Gbps satellite-terrestrial communication beyond 36,000 km. These findings demonstrate THz communication′s viability for 6G networks requiring extreme-capacity backhaul and ultra-long-haul connectivity. Full article
Show Figures

Figure 1

23 pages, 5970 KB  
Article
Miniaturized and Circularly Polarized Dual-Port Metasurface-Based Leaky-Wave MIMO Antenna for CubeSat Communications
by Tale Saeidi, Sahar Saleh and Saeid Karamzadeh
Electronics 2025, 14(14), 2764; https://doi.org/10.3390/electronics14142764 - 9 Jul 2025
Viewed by 729
Abstract
This paper presents a compact, high-performance metasurface-based leaky-wave MIMO antenna with dimensions of 40 × 30 mm2, achieving a gain of 12.5 dBi and a radiation efficiency of 85%. The antenna enables precise control of electromagnetic waves, featuring a flower-like metasurface [...] Read more.
This paper presents a compact, high-performance metasurface-based leaky-wave MIMO antenna with dimensions of 40 × 30 mm2, achieving a gain of 12.5 dBi and a radiation efficiency of 85%. The antenna enables precise control of electromagnetic waves, featuring a flower-like metasurface (MTS) with coffee bean-shaped arrays on substrates of varying permittivity, separated by a cavity layer to enhance coupling. Its dual-port MIMO design boosts data throughput operating in three bands (3.75–5.25 GHz, 6.4–15.4 GHz, and 22.5–30 GHz), while the leaky-wave mechanism supports frequency- or phase-dependent beamsteering without mechanical parts. Ideal for CubeSat communications, its compact size meets CubeSat constraints, and its high gain and efficiency ensure reliable long-distance communication with low power consumption, which is crucial for low Earth orbit operations. Circular polarization (CP) maintains signal integrity despite orientation changes, and MIMO capability supports high data rates for applications such as Earth observations or inter-satellite links. The beamsteering feature allows for dynamic tracking of ground stations or satellites, enhancing mission flexibility and reducing interference. This lightweight, efficient antenna addresses modern CubeSat challenges, providing a robust solution for advanced space communication systems with significant potential to enhance satellite connectivity and data transmission in complex space environments. Full article
(This article belongs to the Special Issue Recent Advancements of Millimeter-Wave Antennas and Antenna Arrays)
Show Figures

Figure 1

11 pages, 681 KB  
Communication
Compact Four-Port MIMO Antenna Using Dual-Polarized Patch and Defected Ground Structure for IoT Devices
by Dat Tran-Huy, Cuong Do-Manh, Hung Pham-Duy, Nguyen Tran-Viet-Duc, Hung Tran, Dat Nguyen-Tien and Niamat Hussain
Sensors 2025, 25(14), 4254; https://doi.org/10.3390/s25144254 - 8 Jul 2025
Viewed by 546
Abstract
This paper presents a compact four-port multiple-input multiple-output (MIMO) antenna for Internet-of-Things (IoT) devices. As electronic IoT devices become smaller, MIMO antennas should also be compact for ease of integration and multi-port operation for a high channel capacity. Instead of using a single-polarized [...] Read more.
This paper presents a compact four-port multiple-input multiple-output (MIMO) antenna for Internet-of-Things (IoT) devices. As electronic IoT devices become smaller, MIMO antennas should also be compact for ease of integration and multi-port operation for a high channel capacity. Instead of using a single-polarized radiator, which increases the antenna size when scaling to a multi-port MIMO array, a dual-polarized radiator is utilized. This helps to achieve multi-port operation with compact size features. To reduce the mutual coupling between the MIMO elements, an I-shaped defected ground structure is inserted into the ground plane. The measured results indicate that the final four-port MIMO antenna with overall dimensions of 0.92 λ× 0.73 λ× 0.03 λ at 5.5 GHz can achieve an operating bandwidth of about 2.2% with isolation better than 20 dB and a gain higher than 6.0 dBi. Additionally, the proposed method is also applicable to a large-scale MIMO array. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

16 pages, 5068 KB  
Technical Note
VGOS Dual Linear Polarization Data Processing Techniques Applied to Differential Observation of Satellites
by Jiangying Gan, Fengchun Shu, Xuan He, Yidan Huang, Fengxian Tong and Yan Sun
Remote Sens. 2025, 17(13), 2319; https://doi.org/10.3390/rs17132319 - 7 Jul 2025
Viewed by 443
Abstract
The Very Long Baseline Interferometry Global Observing System (VGOS), a global network of stations equipped with small-diameter, fast-slewing antennas and broadband receivers, is primarily utilized for geodesy and astrometry. In China, the Shanghai and Urumqi VGOS stations have been developed to perform radio [...] Read more.
The Very Long Baseline Interferometry Global Observing System (VGOS), a global network of stations equipped with small-diameter, fast-slewing antennas and broadband receivers, is primarily utilized for geodesy and astrometry. In China, the Shanghai and Urumqi VGOS stations have been developed to perform radio source observation regularly. However, these VGOS stations have not yet been used to observe Earth satellites or deep-space probes. In addition, suitable systems for processing VGOS satellite data are unavailable. In this study, we explored a data processing pipeline and method suitable for VGOS data observed in the dual linear polarization mode and applied to the differential observation of satellites. We present the VGOS observations of the Chang’e 5 lunar orbiter as a pilot experiment for VGOS observations of Earth satellites to verify our processing pipeline. The interferometric fringes were obtained by the cross-correlation of Chang’e 5 lunar orbiter signals. The data analysis yielded a median delay precision of 0.16 ns with 30 s single-channel integration and a baseline closure delay standard deviation of 0.14 ns. The developed data processing pipeline can serve as a foundation for future Earth-orbiting satellite observations, potentially supporting space-tie satellite missions aimed at constructing the terrestrial reference frame (TRF). Full article
(This article belongs to the Special Issue Space Geodesy and Time Transfer: From Satellite to Science)
Show Figures

Figure 1

16 pages, 34384 KB  
Article
A Low-Profile Dual-Polarized High-Gain Low Cross-Polarization Phased Array for Ku-Band Satellite Communications
by Yuhan Huang, Jie Zhang, Xiuping Li, Zihang Qi, Fan Lu, Hua Jiang, Xin Xue, Hua Zhu and Xiaobin Guo
Sensors 2025, 25(13), 3986; https://doi.org/10.3390/s25133986 - 26 Jun 2025
Viewed by 676
Abstract
A low-profile dual-polarized shared-aperture phased array antenna is proposed for Ku-band satellite communications in this paper. The stacked octagonal patches loaded with Via-rings are proposed as dual-polarized shared-aperture radiation elements, with the characteristics of wide impedance bandwidth, high gain, and weak coupling. Furthermore, [...] Read more.
A low-profile dual-polarized shared-aperture phased array antenna is proposed for Ku-band satellite communications in this paper. The stacked octagonal patches loaded with Via-rings are proposed as dual-polarized shared-aperture radiation elements, with the characteristics of wide impedance bandwidth, high gain, and weak coupling. Furthermore, innovative minimized three-port ring couplers are utilized for the differential-fed antenna array, further suppressing the cross-polarization component. Substrate integrated coaxial line (SICL) and microstrip line (MS) feed networks are employed for the excitation of transmitting band (Tx) horizontal polarization and receiving band (Rx) vertical polarization, respectively. The non-uniform subarray architecture is optimized to minimize the sidelobe levels with the reduced number of transmitter and receiver (T/R) radio frequency phase-shifting modules. As proof-of-concept examples, 16 × 24 and 32 × 24 array antennas are demonstrated and fabricated. The measured impedance bandwidths of the proposed phased array antennas are around 21.1%, while the in-band isolations are above 36.7 dB. Gains up to 29 dBi and 32.4 dBi are performed by two prototypes separately. In addition, the T/R phase-shifting modules are utilized to validate the beam-scanning characteristic, which is of value for dynamic satellite communications. Full article
(This article belongs to the Special Issue Design and Measurement of Millimeter-Wave Antennas)
Show Figures

Figure 1

17 pages, 9122 KB  
Article
A Printed Hybrid-Mode Antenna for Dual-Band Circular Polarization with Flexible Frequency Ratio
by Takafumi Fujimoto and Chai-Eu Guan
Electronics 2025, 14(13), 2504; https://doi.org/10.3390/electronics14132504 - 20 Jun 2025
Cited by 1 | Viewed by 481
Abstract
In this paper, a printed hybrid-mode antenna for dual-band circular polarization (CP) is proposed. In the proposed antenna, one T-shaped element is fed by a coplanar waveguide and one L-shaped element is loaded to the ground plane. The relationship between the antenna’s geometric [...] Read more.
In this paper, a printed hybrid-mode antenna for dual-band circular polarization (CP) is proposed. In the proposed antenna, one T-shaped element is fed by a coplanar waveguide and one L-shaped element is loaded to the ground plane. The relationship between the antenna’s geometric parameters and the circular polarization characteristic (axial ratio) is examined through electric current distribution and radiation field components. In addition, the antenna’s resonant modes are investigated through characteristic mode analysis (CMA). Through parametric studies, the range of two frequency ratios is explored, revealing that the antenna operates as a dual-band single-sense CP antenna, even in ranges where the two frequency ratios (the ratio of high frequency to low frequency) are smaller compared to antennas in other studies. The proposed antenna has a frequency ratio of less than 1.5 between the two frequencies and can be flexibly designed. The proposed antenna is designed for the 2.5 GHz band and 3.5 GHz band. The measured bandwidths of 10 dB impedance with a 3 dB axial ratio are 2.35–2.52 GHz and 3.36–3.71 GHz, respectively. Full article
Show Figures

Figure 1

Back to TopTop