Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = dust aerosol optical depth (DAOD)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 13755 KiB  
Article
Impact of El Niño-Southern Oscillation on Dust Variability during the Spring Season over the Arabian Peninsula
by Yazeed Alsubhi and Gohar Ali
Atmosphere 2024, 15(9), 1060; https://doi.org/10.3390/atmos15091060 - 2 Sep 2024
Cited by 2 | Viewed by 1560
Abstract
This study investigates the dust aerosol optical depth (DAOD) variability over the Arabian Peninsula (AP) in the spring season, a region profoundly affected by dust activity due to its desert terrain. Employing the MERRA-2 DAOD reanalysis dataset for the period 1981–2022, a significant [...] Read more.
This study investigates the dust aerosol optical depth (DAOD) variability over the Arabian Peninsula (AP) in the spring season, a region profoundly affected by dust activity due to its desert terrain. Employing the MERRA-2 DAOD reanalysis dataset for the period 1981–2022, a significant trend in DAOD is noted in the spring season compared to the other seasons. The leading Empirical Orthogonal Function (EOF) explains 67% of the total DAOD variance during the spring season, particularly over the central and northeastern parts of AP. The analysis reveals the strengthening of upper-level divergence over the western Pacific, favoring mid-tropospheric positive geopotential height anomalies over the AP, leading to warm and drier surface conditions and increased DAOD. A statistically significant negative relationship (correlation = −0.32, at 95% confidence level) is noted between DAOD over AP and the El Niño-Southern Oscillation (ENSO), suggesting that La Niña conditions may favor higher dust concentrations over the AP region and vice versa during El Niño phase. The high (low) DAOD over the region corresponds to mid-tropospheric positive (negative) geopotential height anomalies through strengthening (weakening) of the upper-level divergence (convergence) over the western Pacific during the La Niña (El Niño) phase. This study shows that ENSO could be a possible precursor to predicting dust variability on a seasonal time scale. Full article
Show Figures

Figure 1

28 pages, 10814 KiB  
Article
Improving Dust Aerosol Optical Depth (DAOD) Retrieval from the GEOKOMPSAT-2A (GK-2A) Satellite for Daytime and Nighttime Monitoring
by Soi Ahn, Hyeon-Su Kim, Jae-Young Byon and Hancheol Lim
Sensors 2024, 24(5), 1490; https://doi.org/10.3390/s24051490 - 25 Feb 2024
Cited by 2 | Viewed by 1522
Abstract
The Advanced Meteorological Image (AMI) onboard GEOKOMPSAT 2A (GK-2A) enables the retrieval of dust aerosol optical depth (DAOD) from geostationary satellites using infrared (IR) channels. IR observations allow the retrieval of DAOD and the dust layer altitude (24 h) over surface properties, particularly [...] Read more.
The Advanced Meteorological Image (AMI) onboard GEOKOMPSAT 2A (GK-2A) enables the retrieval of dust aerosol optical depth (DAOD) from geostationary satellites using infrared (IR) channels. IR observations allow the retrieval of DAOD and the dust layer altitude (24 h) over surface properties, particularly over deserts. In this study, dust events in northeast Asia from 2020 to 2021 were investigated using five GK-2A thermal IR bands (8.7, 10.5, 11.4, 12.3, and 13.3 μm). For the dust cloud, the brightness temperature differences (BTDs) of 10.5 and 12.3 μm were consistently negative, while the BTD of 8.7 and 10.5 μm varied based on the dust intensity. This study exploited these optical properties to develop a physical approach for DAOD lookup tables (LUTs) using IR channels to retrieve the DAOD. To this end, the characteristics of thermal radiation transfer were simulated using the forward model; dust aerosols were explained by BTD (10.5, 12.3 μm)—an intrinsic characteristic of dust aerosol. The DAOD and dust properties were gained from a brightness temperature (BT) of 10.5 μm and BTD of 10.5, 12.3 μm. Additionally, the cumulative distribution function (CDF) was employed to strengthen the continuity of 24-h DAOD. The CDF was applied to the algorithm by calculating the conversion value coefficient for the DAOD error correction of the IR, with daytime visible aerosol optical depth as the true value. The results show that the DAOD product can be successfully applied during the daytime and nighttime to continuously monitor the flow of yellow dust from the GK-2A satellite in northeast Asia. In particular, the validation results for IR DAOD were similar to the active satellite product (CALIPSO/CALIOP) results, which exhibited a tendency similar to that for IR DAOD at night. Full article
Show Figures

Figure 1

22 pages, 8381 KiB  
Article
Long-Term Spatiotemporal Characteristics and Influencing Factors of Dust Aerosols in East Asia (2000–2022)
by Yanjiao Wang, Jiakui Tang, Wuhua Wang, Zhao Wang, Jiru Wang, Shunbo Liang and Bowen Chu
Remote Sens. 2024, 16(2), 318; https://doi.org/10.3390/rs16020318 - 12 Jan 2024
Cited by 6 | Viewed by 1878
Abstract
The Taklamakan Desert Region (TDR) and the Gobi Desert Region (GDR) in East Asia significantly impact air quality, human health, and climate through dust aerosols. Utilizing the MERRA-2 dataset’s long-term dust aerosol optical depth (DAOD) at 550 nm from 2000 to 2022, we [...] Read more.
The Taklamakan Desert Region (TDR) and the Gobi Desert Region (GDR) in East Asia significantly impact air quality, human health, and climate through dust aerosols. Utilizing the MERRA-2 dataset’s long-term dust aerosol optical depth (DAOD) at 550 nm from 2000 to 2022, we systematically monitored the spatiotemporal dynamics of DAOD. Our analysis covered annual, seasonal, and monthly scales, employing geographical detector analyses to investigate the impact of eight factors on DAOD distribution. Over the 23-year period, the interannual variability in DAOD across East Asia was not pronounced, but a discernible decreasing trend was observed, averaging an annual decrease of −0.0002. The TDR had higher DAOD values (0.337) than the GDR (0.103). The TDR showed an average annual increase of 0.004, while the GDR exhibited an average annual decrease of −0.0003. The spatial distribution displayed significant seasonal variations, with peak values in spring, although the peak months varied between the TDR and GDR. The driving factor analysis revealed that relative humidity and soil moisture significantly impacted the DAOD spatial distribution in East Asia, which were identified as common driving factors for both the region and the major dust sources. Complex mechanisms influenced the variation in DAOD, with interactions between variables having a greater impact than individual effects. The geodetector-derived interaction q-value identified the collective impact of soil temperature and relative humidity (0.896) as having the highest impact on the spatial and temporal DAOD distribution. The overall spatial pattern exhibited a nonlinear enhancement trend, with the TDR and GDR showing bilinear enhancement patterns. These findings contribute to a better understanding of the factors influencing DAOD, offering a theoretical basis for atmospheric pollution control in East Asia. Full article
(This article belongs to the Special Issue Advances and Challenges in Remote Sensing of Atmospheric Mineral Dust)
Show Figures

Graphical abstract

15 pages, 2744 KiB  
Article
Long-Term MERRA-2 Reanalysis Data Indicate Atmospheric Environmental Changes for Three Major Concentrating-Solar-Power-Plant Project Areas in Xinjiang, China
by Zengli Dai, Dongxiang Wang, Renbao Wang, Xiupeng Song, Iwona S. Stachlewska, Zhaohui Han and Xiaoquan Song
Atmosphere 2023, 14(11), 1700; https://doi.org/10.3390/atmos14111700 - 18 Nov 2023
Cited by 1 | Viewed by 1547
Abstract
The characteristics, distributions, and trends of the aerosol optical depth (AOD) and dust aerosol optical depth (DAOD) of three major concentrating solar power (CSP)-plant project areas (Hami, Turpan, and Ruoqiang) in Xinjiang, China were investigated and analyzed during 1980–2022 using the Modern-Era Retrospective [...] Read more.
The characteristics, distributions, and trends of the aerosol optical depth (AOD) and dust aerosol optical depth (DAOD) of three major concentrating solar power (CSP)-plant project areas (Hami, Turpan, and Ruoqiang) in Xinjiang, China were investigated and analyzed during 1980–2022 using the Modern-Era Retrospective analysis for Research and Applications Version 2 (MERRA-2) reanalysis products. The monthly variation, seasonal variation, inter-annual variation, distributions of AOD and DAOD, and proportions of dust in the aerosols in these three CSP-plant project areas were computed and analyzed. Overall, the annual mean AOD at 550 nm in the Turpan project area was the highest (0.20–0.36), while Ruoqiang had the lowest annual mean AOD at 550 nm (0.13–0.30), and the annual mean AOD at 550 nm in Hami was distributed between 0.17 and 0.33. After 2010, the change in the rate of the annual mean AOD showed an overall downward trend in Hami and Ruoqiang, indicating that the atmospheric environmental changes in both areas were more favorable for the operation of CSP plants. In the project areas of Hami, Turpan, and Ruoqiang, more than 90% of the AOD values were mainly in ranges 0.10–0.30, 0.10–0.35, and 0.05–0.30, respectively. As expected, the AOD values in spring and summer were significantly higher than those in autumn and winter in the three study areas. In spring, the dust contents (i.e., ratios of DAOD to AOD) were the highest, accounting for 64% (Hami), 67% (Turpan), and 69% (Ruoqiang) of the total aerosol contents. In all three areas, the proportions of dust in aerosols in spring have shown an increasing trend since 2000, suggesting that the negative impact of the dust on the power generation efficiency in these areas has gradually been increasing. Therefore, it is recommended that the CSP plants in Hami, Turpan, and Ruoqiang develop a strategy for cleaning heliostats, especially in spring, to reduce the impact of dust adhesion on the efficiency of the CSP plants. Full article
(This article belongs to the Special Issue Climate Change and the Potential Impacts on Wind/Solar Power Systems)
Show Figures

Figure 1

18 pages, 4234 KiB  
Article
Characteristics of Dust Weather in the Tarim Basin from 1989 to 2021 and Its Impact on the Atmospheric Environment
by Yongchao Zhou, Xin Gao and Jiaqiang Lei
Remote Sens. 2023, 15(7), 1804; https://doi.org/10.3390/rs15071804 - 28 Mar 2023
Cited by 12 | Viewed by 2885
Abstract
Dust emission is a common catastrophic weather phenomenon in Northern China. This phenomenon not only causes environmental problems, such as air pollution, but also has an important impact on the global dust cycle and climate change. On the basis of the dust weather [...] Read more.
Dust emission is a common catastrophic weather phenomenon in Northern China. This phenomenon not only causes environmental problems, such as air pollution, but also has an important impact on the global dust cycle and climate change. On the basis of the dust weather observation data of 44 surface meteorological stations in the Tarim Basin from 1989 to 2021, combined with the dust aerosol optical depth (DAOD), dust surface mass concentration (DUSMASS) and wind speed data, this paper analyses the spatial and temporal dust weather characteristics in the Tarim Basin over the past 33 years. Results show that the frequency of dust weather in the Tarim Basin has declined in the past 33 years. Dust weather mainly consisted of floating dust, followed by blowing dust and dust storm. This weather had a significant seasonal change, with more dust in spring and summer and less in autumn and winter. The dust weather was mainly distributed along the south edge of the Tarim Basin and the desert hinterland of Tazhong. The spatial distribution of the dust intensity (DI) index was basically consistent with the dust weather days. Moreover, the DAOD was obviously affected by dust weather and had a significant positive correlation with the number of dust weather days and the DI, suggesting the vertical concentration of dust particles to a certain extent. Wind is also one of the most important factors affecting the release of dust. The frequency of strong wind weather decreases from the northeast to the southwest, which corresponds to the distribution of the DUSMASS. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

18 pages, 6437 KiB  
Article
Characteristics of Optical Properties and Heating Rates of Dust Aerosol over Taklimakan Desert and Tibetan Plateau in China Based on CALIPSO and SBDART
by Xiaofeng Xu, Shixian Pan, Tianyang Luo, Yudi Yang and Zixu Xiong
Remote Sens. 2023, 15(3), 607; https://doi.org/10.3390/rs15030607 - 19 Jan 2023
Cited by 4 | Viewed by 2441
Abstract
The spatial and temporal distributions of dust aerosol and its radiative heating effect over Taklimakan Desert (TD) and Tibetan Plateau (TP) were analyzed using the CALIPSO aerosol products and the SBDART model during 2007–2020. The annual dust aerosol optical depths (DAOD at 532 [...] Read more.
The spatial and temporal distributions of dust aerosol and its radiative heating effect over Taklimakan Desert (TD) and Tibetan Plateau (TP) were analyzed using the CALIPSO aerosol products and the SBDART model during 2007–2020. The annual dust aerosol optical depths (DAOD at 532 nm) ranged from 0.266 to 0.318 over TD and 0.086 to 0.108 over TP, with means of 0.286 ± 0.015 and 0.097 ± 0.006, respectively. The regional mean DAODs of TD (TP) from spring to winter were 0.375 ± 0.020 (0.107 ± 0.010), 0.334 ± 0.028 (0.110 ± 0.010), 0.235 ± 0.026 (0.071 ± 0.008), and 0.212 ± 0.045 (0.083 ± 0.011), respectively. The maximal (minimal) seasonal DAOD of TD appeared in spring (winter), while that of TP appeared in summer (autumn). Although neither the annual nor the seasonal DAODs showed a statistically significant trend over both TD and TP, their yearly fluctuations were apparent, showing coefficients of variation of 0.053 and 0.065 over TD and TP, respectively. The profile of dust extinction coefficient (σD) showed the maximum in spring and summer over TD and TP, respectively. It showed a weak increasing trend of σD over both TD and TP in spring, but a decreasing trend in autumn. The dust of TD is concentrated within 1–4 km, where the annual averaged shortwave (SW) dust heating rates (DHRs) were larger than 2 K·day−1 from March to September. Over TP, the dust heating layer with SW DHR > 2 K·day−1 ranged from 3 to 4 km during March to June. The SW DHR was much larger in spring and summer than in the other two seasons over both regions, with the maximum in spring. A relatively strong dust heating layer with top >5 km appeared along the north slope of the TP, indicating an important energy transport channel from TD to TP, especially in spring and summer. It showed an increasing trend of the SW DHR over both TD and TP in spring and winter, but a decreasing trend in summer and autumn. Over TD, the most powerful heating appeared within 2–4 km, but the strength and the area of high-value DHR reduced from spring to winter. The highest SW DHR of TP appeared over the Qaidam Basin, acting as an important transmission channel of dust and its heating. For the columnar mean of lower than 10 km, the annual mean DHRs of TD and TP were 0.93 and 0.48 K⋅day−1, respectively. Although the DAOD and DHR of TP were both lower, its shortwave dust heating efficiency (DHE) was 1.7 times that of TD, which suggested that the same amount of dust imported to TP could generate a stronger heating effect than it did at the source. Full article
(This article belongs to the Special Issue Air Quality Mapping via Satellite Remote Sensing)
Show Figures

Figure 1

15 pages, 2778 KiB  
Article
Seasonal Variation of Dust Aerosol Vertical Distribution in Arctic Based on Polarized Micropulse Lidar Measurement
by Hailing Xie, Zhien Wang, Tao Luo, Kang Yang, Damao Zhang, Tian Zhou, Xueling Yang, Xiaohong Liu and Qiang Fu
Remote Sens. 2022, 14(21), 5581; https://doi.org/10.3390/rs14215581 - 4 Nov 2022
Cited by 4 | Viewed by 2665
Abstract
This study investigates the seasonal variation of dust aerosol vertical distribution using polarized Micropulse lidar (MPL) measurements at the Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) observatory from January 2013 to September 2017. For the first time, multi-year aerosol backscatter coefficients [...] Read more.
This study investigates the seasonal variation of dust aerosol vertical distribution using polarized Micropulse lidar (MPL) measurements at the Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) observatory from January 2013 to September 2017. For the first time, multi-year aerosol backscatter coefficients are retrieved at the ARM NSA site from MPL measurements and are consistent with co-located high spectral resolution lidar (HSRL) measurements. The high-quality aerosol backscatter coefficient retrievals are used to derive the particle depolarization ratio (PDR) at the wavelength of 532 nm, which is used to identify the presence of dust aerosols. The annual cycles of the vertical distributions of dust backscatter coefficient and PDR and dust aerosol optical depth (DAOD) show that aerosol loading has a maximum in late winter and early spring but a minimum in late summer and early autumn. Vertically, dust aerosol occurs in the entire troposphere in spring and winter and in the low and middle troposphere in summer and autumn. Because dust aerosols are effective ice nuclei, the seasonality of dust aerosol vertical distribution has important implications for the Arctic climate through aerosol–cloud–radiation interactions, primarily through impacting mixed-phase cloud processes. Full article
Show Figures

Figure 1

Back to TopTop