Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,398)

Search Parameters:
Keywords = dynamic positioning system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3320 KB  
Article
Three-Dimensional Trajectory Tracking for Underactuated Quadrotor-Like Autonomous Underwater Vehicles Subject to Input Saturation
by Chunchun Cheng, Xing Han, Pengfei Xu, Yi Huang, Liwei Kou and Yang Ou
J. Mar. Sci. Eng. 2025, 13(10), 1915; https://doi.org/10.3390/jmse13101915 (registering DOI) - 5 Oct 2025
Abstract
This paper focuses on the design of a three-dimensional trajectory tracking controller for underactuated quadrotor-like autonomous underwater vehicles (QAUVs) subject to actuator saturation. A hand position method with a signum function is proposed to handle the under-actuation of QAUVs, while avoiding trajectory tracking [...] Read more.
This paper focuses on the design of a three-dimensional trajectory tracking controller for underactuated quadrotor-like autonomous underwater vehicles (QAUVs) subject to actuator saturation. A hand position method with a signum function is proposed to handle the under-actuation of QAUVs, while avoiding trajectory tracking in the opposite direction. The dynamic surface control (DSC) technique is integrated to eliminates the complexity explosion problem of standard backstepping. An auxiliary dynamic system is employed to handle input saturation. By using Lyapunov stability theory and phase plane analysis, it is proved that the proposed control law ensures that the QAUVs converge to the desired position with arbitrarily small errors, while guaranteeing the uniform ultimate boundedness of the whole closed-loop system. Comparative simulation results verify the effectiveness of the proposed control law. Full article
24 pages, 4205 KB  
Article
Mechanism and Data-Driven Grain Condition Information Perception Method for Comprehensive Grain Storage Monitoring
by Yunshandan Wu, Ji Zhang, Xinze Li, Yaqiu Zhang, Wenfu Wu and Yan Xu
Foods 2025, 14(19), 3426; https://doi.org/10.3390/foods14193426 (registering DOI) - 5 Oct 2025
Abstract
Conventional grain monitoring systems often rely on isolated data points (e.g., point-based temperature measurements), limiting holistic condition assessment. This study proposes a novel Mechanism and Data Driven (MDD) framework that integrates physical mechanisms with real-time sensor data. The framework quantitatively analyzes solar radiation [...] Read more.
Conventional grain monitoring systems often rely on isolated data points (e.g., point-based temperature measurements), limiting holistic condition assessment. This study proposes a novel Mechanism and Data Driven (MDD) framework that integrates physical mechanisms with real-time sensor data. The framework quantitatively analyzes solar radiation and external air temperature effects on silo boundaries and introduces a novel interpolation-optimized model parameter initialization technique to enable comprehensive grain condition perception. Rigorous multidimensional validation confirms the method’s accuracy: The novel initialization technique achieved high precision, demonstrating only 1.89% error in Day-2 low-temperature zone predictions (27.02 m2 measured vs. 26.52 m2 simulated). Temperature fields were accurately reconstructed (≤0.5 °C deviation in YOZ planes), capturing spatiotemporal dynamics with ≤0.45 m2 maximum low-temperature zone deviation. Cloud map comparisons showed superior simulation fidelity (SSIM > 0.97). Further analysis revealed a 22.97% reduction in total low-temperature zone area (XOZ plane), with Zone 1 (near south exterior wall) declining 27.64%, Zone 2 (center) 25.30%, and Zone 3 20.35%. For dynamic evolution patterns, high-temperature zones exhibit low moisture (<14%), while low-temperature zones retain elevated moisture (>14%). A strong positive correlation between temperature and relative humidity fields; temperature homogenization drives humidity uniformity. The framework enables holistic monitoring, providing actionable insights for smart ventilation control, condensation risk warnings, and mold prevention. It establishes a robust foundation for intelligent grain storage management, ultimately reducing post-harvest losses. Full article
Show Figures

Figure 1

15 pages, 1797 KB  
Article
Identifying the Central Aspects of Parental Stress in Latinx Parents of Children with Disabilities via Psychological Network Analysis
by Hyeri Hong and Kristina Rios
AppliedMath 2025, 5(4), 137; https://doi.org/10.3390/appliedmath5040137 (registering DOI) - 5 Oct 2025
Abstract
This study applies psychological network analysis to explore the structure and dynamics of parental stress, offering a novel perspective beyond traditional latent variable approaches. Rather than treating parental stress as a unidimensional construct, network analysis conceptualizes it as a system of interrelated emotional, [...] Read more.
This study applies psychological network analysis to explore the structure and dynamics of parental stress, offering a novel perspective beyond traditional latent variable approaches. Rather than treating parental stress as a unidimensional construct, network analysis conceptualizes it as a system of interrelated emotional, behavioral, and contextual symptoms. Using cross-sectional data from Latinx parents of children with intellectual and developmental disabilities (IDD), we compared and identified key central and bridge stress symptoms of Latinx parents of children with autism versus other disabilities that hold influential positions within the stress network. These findings suggest that certain stressors may act as hubs, reinforcing other stress components and potentially serving as high-impact targets for intervention. Network analysis also highlights how symptom relationships vary by types of disabilities, offering insight into tailored support strategies. Overall, this approach provides a dynamic and clinically actionable framework for understanding parental stress, with implications for assessment, early intervention, and personalized mental health care for parents. Full article
Show Figures

Figure 1

27 pages, 1664 KB  
Review
Actomyosin-Based Nanodevices for Sensing and Actuation: Bridging Biology and Bioengineering
by Nicolas M. Brunet, Peng Xiong and Prescott Bryant Chase
Biosensors 2025, 15(10), 672; https://doi.org/10.3390/bios15100672 (registering DOI) - 4 Oct 2025
Abstract
The actomyosin complex—nature’s dynamic engine composed of actin filaments and myosin motors—is emerging as a versatile tool for bio-integrated nanotechnology. This review explores the growing potential of actomyosin-powered systems in biosensing and actuation applications, highlighting their compatibility with physiological conditions, responsiveness to biochemical [...] Read more.
The actomyosin complex—nature’s dynamic engine composed of actin filaments and myosin motors—is emerging as a versatile tool for bio-integrated nanotechnology. This review explores the growing potential of actomyosin-powered systems in biosensing and actuation applications, highlighting their compatibility with physiological conditions, responsiveness to biochemical and physical cues and modular adaptability. We begin with a comparative overview of natural and synthetic nanomachines, positioning actomyosin as a uniquely scalable and biocompatible platform. We then discuss experimental advances in controlling actomyosin activity through ATP, calcium, heat, light and electric fields, as well as their integration into in vitro motility assays, soft robotics and neural interface systems. Emphasis is placed on longstanding efforts to harness actomyosin as a biosensing element—capable of converting chemical or environmental signals into measurable mechanical or electrical outputs that can be used to provide valuable clinical and basic science information such as functional consequences of disease-associated genetic variants in cardiovascular genes. We also highlight engineering challenges such as stability, spatial control and upscaling, and examine speculative future directions, including emotion-responsive nanodevices. By bridging cell biology and bioengineering, actomyosin-based systems offer promising avenues for real-time sensing, diagnostics and therapeutic feedback in next-generation biosensors. Full article
(This article belongs to the Special Issue Biosensors for Personalized Treatment)
Show Figures

Figure 1

16 pages, 1669 KB  
Article
An Improved Adaptive Kalman Filter Positioning Method Based on OTFS
by Siqi Xia, Aijun Liu and Xiaohu Liang
Sensors 2025, 25(19), 6157; https://doi.org/10.3390/s25196157 (registering DOI) - 4 Oct 2025
Abstract
To mitigate the degradation of positioning accuracy in sixth-generation mobile communication systems under dynamic line-of-sight (LOS) and non-line-of-sight (NLOS) conditions, this paper proposes an improved adaptive Kalman filter positioning method based on Orthogonal Time Frequency Space (OTFS)-modulated signals. Firstly, the distance can be [...] Read more.
To mitigate the degradation of positioning accuracy in sixth-generation mobile communication systems under dynamic line-of-sight (LOS) and non-line-of-sight (NLOS) conditions, this paper proposes an improved adaptive Kalman filter positioning method based on Orthogonal Time Frequency Space (OTFS)-modulated signals. Firstly, the distance can be measured by using the OTFS-modulated signals transmitted between base stations and nodes. Secondly, the distance information is converted into the distance difference information to establish the time difference of arrival (TDOA) positioning equation, which is preliminarily solved using the Chan algorithm. Thirdly, residuals are calculated based on the preliminary positioning results, dividing the complex environment into distinct regions and adaptively determining corresponding genetic factors for each region. Finally, the selected genetic parameters are substituted into the Sage–Husa adaptive Kalman filter equations to estimate positioning results. The simulation analysis demonstrates that in complex environments featuring both line-of-sight and non-line-of-sight conditions, the vehicle motion trajectories estimated using this method more closely approximate actual trajectories. Additionally, both the accuracy and stability of positioning results show significant improvement compared to traditional methods. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

28 pages, 2172 KB  
Article
Bioinspired Stimulus Selection Under Multisensory Overload in Social Robots Using Reinforcement Learning
by Jesús García-Martínez, Marcos Maroto-Gómez, Arecia Segura-Bencomo, Álvaro Castro-González and José Carlos Castillo
Sensors 2025, 25(19), 6152; https://doi.org/10.3390/s25196152 (registering DOI) - 4 Oct 2025
Abstract
Autonomous social robots aim to reduce human supervision by performing various tasks. To achieve this, they are equipped with multiple perceptual channels to interpret and respond to environmental cues in real time. However, multimodal perception often leads to sensory overload, as robots may [...] Read more.
Autonomous social robots aim to reduce human supervision by performing various tasks. To achieve this, they are equipped with multiple perceptual channels to interpret and respond to environmental cues in real time. However, multimodal perception often leads to sensory overload, as robots may receive numerous simultaneous stimuli with varying durations or persistent activations across different sensory modalities. Sensor overstimulation and false positives can compromise a robot’s ability to prioritise relevant inputs, sometimes resulting in repeated or inaccurate behavioural responses that reduce the quality and coherence of the interaction. This paper presents a Bioinspired Attentional System that uses Reinforcement Learning to manage stimulus prioritisation in real time. The system draws inspiration from the following two neurocognitive mechanisms: Inhibition of Return, which progressively reduces the importance of previously attended stimuli that remain active over time, and Attentional Fatigue, which penalises stimuli of the same perception modality when they appear repeatedly or simultaneously. These mechanisms define the algorithm’s reward function to dynamically adjust the weights assigned to each stimulus, enabling the system to select the most relevant one at each moment. The system has been integrated into a social robot and tested in three representative case studies that show how it modulates sensory signals, reduces the impact of redundant inputs, and improves stimulus selection in overstimulating scenarios. Additionally, we compare the proposed method with a baseline where the robot executes expressions as soon as it receives them using a queue. The results show the system’s significant improvement in expression management, reducing the number of expressions in the queue and the delay in performing them. Full article
Show Figures

Figure 1

19 pages, 827 KB  
Article
Optimized Hybrid Ensemble Intrusion Detection for VANET-Based Autonomous Vehicle Security
by Ahmad Aloqaily, Emad E. Abdallah, Aladdin Baarah, Mohammad Alnabhan, Esra’a Alshdaifat and Hind Milhem
Network 2025, 5(4), 43; https://doi.org/10.3390/network5040043 - 3 Oct 2025
Abstract
Connected and Autonomous Vehicles are promising for advancing traffic safety and efficiency. However, the increased connectivity makes these vehicles vulnerable to a broad array of cyber threats. This paper presents a novel hybrid approach for intrusion detection in in-vehicle networks, specifically focusing on [...] Read more.
Connected and Autonomous Vehicles are promising for advancing traffic safety and efficiency. However, the increased connectivity makes these vehicles vulnerable to a broad array of cyber threats. This paper presents a novel hybrid approach for intrusion detection in in-vehicle networks, specifically focusing on the Controller Area Network bus. Ensemble learning techniques are combined with sophisticated optimization techniques and dynamic adaptation mechanisms to develop a robust, accurate, and computationally efficient intrusion detection system. The proposed system is evaluated on real-world automotive network datasets that include various attack types (e.g., Denial of Service, fuzzy, and spoofing attacks). With these results, the proposed hybrid adaptive system achieves an unprecedented accuracy of 99.995% with a 0.00001% false positive rate, which is significantly more accurate than traditional methods. In addition, the system is very robust to novel attack patterns and is tolerant to varying computational constraints and is suitable for deployment on a real-time basis in various automotive platforms. As this research represents a significant advancement in automotive cybersecurity, a scalable and proactive defense mechanism is necessary to safely operate next-generation vehicles. Full article
(This article belongs to the Special Issue Emerging Trends and Applications in Vehicular Ad Hoc Networks)
26 pages, 2586 KB  
Article
Equilibrium Dynamics in the CR3BP with Radiating Primary and Oblate Secondary Using the Rotating Mass Dipole Model
by Angela E. Perdiou, Aguda Ekele Vincent, Jagadish Singh and Vassilis S. Kalantonis
Mathematics 2025, 13(19), 3179; https://doi.org/10.3390/math13193179 - 3 Oct 2025
Abstract
In this study, we numerically investigate the equilibrium dynamics of a rotating system consisting of two masses connected by a massless rod within the framework of the circular restricted three-body problem. The larger primary is modeled as a radiating body and the smaller [...] Read more.
In this study, we numerically investigate the equilibrium dynamics of a rotating system consisting of two masses connected by a massless rod within the framework of the circular restricted three-body problem. The larger primary is modeled as a radiating body and the smaller as an oblate spheroid. We explore the influence of the involved parameters, i.e., mass ratio (μ), force ratio (k), radiation pressure factor (q1), and oblateness coefficient (A2), on the number, positions, and linear stability of equilibrium points. Zero velocity curves are presented in the equatorial plane for varying values of the Jacobi constant. Up to five equilibrium points are identified of which three are collinear (L1, L2, L3) and two are non-collinear (L4, L5). The positions of all equilibria shift under variations in the perturbing parameters. While the collinear points are generally unstable, L1 can exhibit stability for certain combinations of μ, k, and q1. The non-collinear points may also be stable under specific conditions with stability zones expanding with increased parameter values. The model is applied to the irregular, elongated asteroid 951 Gaspra, for which five equilibrium points are found. Despite positional dependence on oblateness and radiation, the perturbations do not significantly affect the equilibrium points’ stability and the motion near them remains linearly unstable. The Lyapunov families of periodic orbits emanating from the collinear equilibria of this particular system are also investigated. Full article
(This article belongs to the Section C2: Dynamical Systems)
Show Figures

Figure 1

58 pages, 3568 KB  
Article
Investigation of Corporate Sustainability Performance Data and Developing an Innovation-Oriented Novel Analysis Method with Multi-Criteria Decision Making Approach
by Huseyin Haliloglu, Ahmet Feyzioglu, Leonardo Piccinetti, Trevor Omoruyi, Muzeyyen Burcu Hidimoglu and Akin Emrecan Gok
Sustainability 2025, 17(19), 8860; https://doi.org/10.3390/su17198860 - 3 Oct 2025
Abstract
This study addresses the growing importance of integrating innovation into corporate sustainability strategies by examining the financial and environmental performance of ten firms listed on the Borsa Istanbul Sustainability Index over a five-year period. The main objective is to develop and test a [...] Read more.
This study addresses the growing importance of integrating innovation into corporate sustainability strategies by examining the financial and environmental performance of ten firms listed on the Borsa Istanbul Sustainability Index over a five-year period. The main objective is to develop and test a novel, data-driven analytical framework that reduces reliance on subjective expert judgments while providing actionable insights for sustainability-oriented decision-making. Within this framework, the entropy method from the Multi-Criteria Decision Making (MCDM) approach is first applied to calculate the objective weights of sustainability criteria, ensuring that the analysis is grounded in real performance data. Building on these weights, an innovative reverse Decision-Making Trial and Evaluation Laboratory (DEMATEL) model, implemented through a custom artificial neural network-based software, is introduced to estimate direct influence matrices and reveal the causal relationships among criteria. This methodological advance makes it possible to explore how environmental and financial factors interact with R&D expenditures and to simulate their systemic interdependencies. The findings demonstrate that R&D serves as a central driver of both environmental and financial sustainability, highlighting its dual role in fostering corporate innovation and long-term resilience. By positioning R&D as both an enabler and outcome of sustainability dynamics, the proposed framework contributes a novel tool for aligning innovation with strategic sustainability goals, offering broader implications for corporate managers, policymakers, and researchers. Full article
Show Figures

Figure 1

43 pages, 89605 KB  
Article
Mesoscale Convective Systems over Ecuador: Climatology, Trends and Teleconnections
by Leandro Robaina, Lenin Campozano, Marcos Villacís and Amanda Rehbein
Atmosphere 2025, 16(10), 1157; https://doi.org/10.3390/atmos16101157 - 3 Oct 2025
Abstract
Research on Mesoscale Convective Systems (MCSs) in Ecuador has focused on regional studies. However, it lacks a thorough and general examination of their relationship with the nation’s diverse orography and large-scale phenomena. This study conducts a climatological analysis of MCS occurrence throughout Ecuador’s [...] Read more.
Research on Mesoscale Convective Systems (MCSs) in Ecuador has focused on regional studies. However, it lacks a thorough and general examination of their relationship with the nation’s diverse orography and large-scale phenomena. This study conducts a climatological analysis of MCS occurrence throughout Ecuador’s natural regions. We perform this study using Sen’s Slope and the Mann–Kendall test. Teleconnections from the Pacific and Atlantic Oceans are studied through wavelet decomposition between time series and Pacific and Atlantic oceanic indices. The main factors that control MCS formation depend on the region. The Intertropical Convergence Zone (ITCZ) at the large scale affects the entire territory. In western Ecuador, MCS formation is mostly related to the El Niño current and the Chocó Low-Level Jet (CLLJ). The Orinoco Low-Level Jet (OLLJ) and evapotranspiration and nocturnal convection display the largest roles in the east. A progressive intensification of activity from Highlands-North in SON is detected (0.143 MCSs per year). MCSs contribute 26% of total precipitation on average, with regional variations from Coast-South (16.41%) to Amazon-North (44.13%). The research confirms existing knowledge about El Niño’s strong relationship (ρ = 0.7) with MCS occurrence in coastal areas while uncovering new complex patterns. The Trans-Nino Index (TNI) functions as a critical two-sided modulator that conventional analysis methods fail to detect. It produces null correlations over conventional time series of MCS occurrence yet emerges as a primary driver of low-frequency variability in the proposed six natural zones of Ecuador. Wavelet decomposition reveals contrasting TNI responses: Amazon-North shows positive correlation (0.73) while Amazon-South exhibits negative correlation (−0.70) at low frequencies. This affects Walker circulations dynamics over the Pacific Ocean. This research establishes fundamental knowledge about MCSs in Ecuador. It builds on a database with strong methodology as a backbone. The research provides essential information about the factors leading to convection in the country. This will help improve seasonal forecast accuracy and risk management effectiveness. Full article
(This article belongs to the Section Meteorology)
Show Figures

Graphical abstract

19 pages, 3076 KB  
Article
Air Pollutant Traceability Based on Federated Learning of Edge Intelligent Perception Agents
by Jinping Xue, Xin Hu, Qiang Liu, Congbo Yin, Peitao Ni and Xinyu Bo
Sensors 2025, 25(19), 6119; https://doi.org/10.3390/s25196119 - 3 Oct 2025
Abstract
Tracing the source of air pollution presents a significant challenge, especially in densely populated urban areas, because of the unpredictable and complex nature of aerodynamics. To address this issue, intelligent lamp posts have been developed with smart sensors and edge computing capabilities. These [...] Read more.
Tracing the source of air pollution presents a significant challenge, especially in densely populated urban areas, because of the unpredictable and complex nature of aerodynamics. To address this issue, intelligent lamp posts have been developed with smart sensors and edge computing capabilities. These lamp posts serve as nodes in the EIPA (Edge Intelligent Perception Agent) network within urban campuses. These lamp posts aim to track air pollutants by employing a tracking algorithm that utilizes big data learning and Gaussian diffusion models. This approach focuses on monitoring the quality of urban air and identifying pollution sources, rather than relying solely on traditional CFD simulations for air pollution dispersion. The algorithm comprises three primary components: (1) the Federated Learning framework built on the EIPA system; (2) the LSTM model implemented on the edge nodes of the EIPA system; and (3) a genetic algorithm utilized for optimizing the model parameters. By using CFD simulations in a simulated city park, training data on air dynamic movements is gathered. The usefulness of the method for tracing air pollutants based on federated learning of edge intelligent perception agents is demonstrated by the outcomes of algorithm training. Experimental results show that, compared to the traditional genetic algorithm (GA) and LSTM + genetic algorithm, the proposed FL + LSTM + GA method significantly improves the pollution source positioning accuracy to 99.5% and reduces the average absolute error (MAE) of Gaussian model parameter estimation to 0.20. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

32 pages, 4829 KB  
Article
Dynamic Energy-Aware Anchor Optimization for Contact-Based Indoor Localization in MANETs
by Manuel Jesús-Azabal, Meichun Zheng and Vasco N. G. J. Soares
Information 2025, 16(10), 855; https://doi.org/10.3390/info16100855 - 3 Oct 2025
Abstract
Indoor positioning remains a recurrent and significant challenge in research. Unlike outdoor environments, where the Global Positioning System (GPS) provides reliable location information, indoor scenarios lack direct line-of-sight to satellites or cellular towers, rendering GPS inoperative and requiring alternative positioning techniques. Despite numerous [...] Read more.
Indoor positioning remains a recurrent and significant challenge in research. Unlike outdoor environments, where the Global Positioning System (GPS) provides reliable location information, indoor scenarios lack direct line-of-sight to satellites or cellular towers, rendering GPS inoperative and requiring alternative positioning techniques. Despite numerous approaches, indoor contexts with resource limitations, energy constraints, or physical restrictions continue to suffer from unreliable localization. Many existing methods employ a fixed number of reference anchors, which sets a hard balance between localization accuracy and energy consumption, forcing designers to choose between precise location data and battery life. As a response to this challenge, this paper proposes an energy-aware indoor positioning strategy based on Mobile Ad Hoc Networks (MANETs). The core principle is a self-adaptive control loop that continuously monitors the network’s positioning accuracy. Based on this real-time feedback, the system dynamically adjusts the number of active anchors, increasing them only when accuracy degrades and reducing them to save energy once stability is achieved. The method dynamically estimates relative coordinates by analyzing node encounters and contact durations, from which relative distances are inferred. Generalized Multidimensional Scaling (GMDS) is applied to construct a relative spatial map of the network, which is then transformed into absolute coordinates using reference nodes, known as anchors. The proposal is evaluated in a realistic simulated indoor MANET, assessing positioning accuracy, adaptation dynamics, anchor sensitivity, and energy usage. Results show that the adaptive mechanism achieves higher accuracy than fixed-anchor configurations in most cases, while significantly reducing the average number of required anchors and their associated energy footprint. This makes it suitable for infrastructure-poor, resource-constrained indoor environments where both accuracy and energy efficiency are critical. Full article
27 pages, 19149 KB  
Article
Efficient Autonomy: Autonomous Driving of Retrofitted Electric Vehicles via Enhanced Transformer Modeling
by Kai Wang, Xi Zheng, Zi-Jie Peng, Cong-Chun Zhang, Jun-Jie Tang and Kuan-Min Mao
Energies 2025, 18(19), 5247; https://doi.org/10.3390/en18195247 - 2 Oct 2025
Abstract
In low-risk and open environments, such as farms and mining sites, efficient cargo transportation is essential. Despite the suitability of autonomous driving for these environments, its high deployment and maintenance costs limit large-scale adoption. To address this issue, a modular unmanned ground vehicle [...] Read more.
In low-risk and open environments, such as farms and mining sites, efficient cargo transportation is essential. Despite the suitability of autonomous driving for these environments, its high deployment and maintenance costs limit large-scale adoption. To address this issue, a modular unmanned ground vehicle (UGV) system is proposed, which is adapted from existing platforms and supports both autonomous and manual control modes. The autonomous mode uses environmental perception and trajectory planning algorithms for efficient transport in structured scenarios, while the manual mode allows human oversight and flexible task management. To mitigate the control latency and execution delays caused by platform modifications, an enhanced transformer-based general dynamics model is introduced. Specifically, the model is trained on a custom-built dataset and optimized within a bicycle kinematic framework to improve control accuracy and system stability. In road tests allowing a positional error of up to 0.5 m, the transformer-based trajectory estimation method achieved 94.8% accuracy, significantly outperforming non-transformer baselines (54.6%). Notably, the test vehicle successfully passed all functional validations in autonomous driving trials, demonstrating the system’s reliability and robustness. The above results demonstrate the system’s stability and cost-effectiveness, providing a potential solution for scalable deployment of autonomous transport in low-risk environments. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

18 pages, 716 KB  
Article
Metacognitive Modulation of Cognitive-Emotional Dynamics Under Social-Evaluative Stress: An Integrated Behavioural–EEG Study
by Katia Rovelli, Angelica Daffinà and Michela Balconi
Appl. Sci. 2025, 15(19), 10678; https://doi.org/10.3390/app151910678 - 2 Oct 2025
Abstract
Background/Objectives: Decision-making under socially evaluative stress engages a dynamic interplay between cognitive control, emotional appraisal, and motivational systems. Contemporary models of multi-level co-regulation posit that these systems operate in reciprocal modulation, redistributing processing resources to prioritise either rapid socio-emotional alignment or deliberate evaluation [...] Read more.
Background/Objectives: Decision-making under socially evaluative stress engages a dynamic interplay between cognitive control, emotional appraisal, and motivational systems. Contemporary models of multi-level co-regulation posit that these systems operate in reciprocal modulation, redistributing processing resources to prioritise either rapid socio-emotional alignment or deliberate evaluation depending on situational demands. Methods: Adopting a neurofunctional approach, a novel dual-task protocol combining the MetaCognition–Stress Convergence Paradigm (MSCP) and the Social Stress Test Neuro-Evaluation (SST-NeuroEval), a simulated social–evaluative speech task calibrated across progressive emotional intensities, was implemented. Twenty professionals from an HR consultancy firm participated in the study, with concurrent recording of frontal-temporoparietal electroencephalography (EEG) and bespoke psychometric indices: the MetaStress-Insight Index and the TimeSense Scale. Results: Findings revealed that decision contexts with higher socio-emotional salience elicited faster, emotionally guided choices (mean RT difference emotional vs. cognitive: −220 ms, p = 0.026), accompanied by oscillatory signatures (frontal delta: F(1,19) = 13.30, p = 0.002; gamma: F(3,57) = 14.93, p ≤ 0.001) consistent with intensified socio-emotional integration and contextual reconstruction. Under evaluative stress, oscillatory activity shifted across phases, reflecting the transition from anticipatory regulation to reactive engagement, in line with models of phase-dependent stress adaptation. Across paradigms, convergences emerged between decision orientation, subjective stress, and oscillatory patterns, supporting the view that cognitive–emotional regulation operates as a coordinated, multi-level system. Conclusions: These results underscore the importance of integrating behavioural, experiential, and neural indices to characterise how individuals adaptively regulate decision-making under socially evaluative stress and highlight the potential of dual-paradigm designs for advancing theory and application in cognitive–affective neuroscience. Full article
(This article belongs to the Special Issue Brain Functional Connectivity: Prediction, Dynamics, and Modeling)
Show Figures

Figure 1

14 pages, 1081 KB  
Article
Hybrid Deep Learning Approach for Secure Electric Vehicle Communications in Smart Urban Mobility
by Abdullah Alsaleh
Vehicles 2025, 7(4), 112; https://doi.org/10.3390/vehicles7040112 - 2 Oct 2025
Abstract
The increasing adoption of electric vehicles (EVs) within intelligent transportation systems (ITSs) has elevated the importance of cybersecurity, especially with the rise in Vehicle-to-Everything (V2X) communications. Traditional intrusion detection systems (IDSs) struggle to address the evolving and complex nature of cyberattacks in such [...] Read more.
The increasing adoption of electric vehicles (EVs) within intelligent transportation systems (ITSs) has elevated the importance of cybersecurity, especially with the rise in Vehicle-to-Everything (V2X) communications. Traditional intrusion detection systems (IDSs) struggle to address the evolving and complex nature of cyberattacks in such dynamic environments. To address these challenges, this study introduces a novel deep learning-based IDS designed specifically for EV communication networks. We present a hybrid model that integrates convolutional neural networks (CNNs), long short-term memory (LSTM) layers, and adaptive learning strategies. The model was trained and validated using the VeReMi dataset, which simulates a wide range of attack scenarios in V2X networks. Additionally, an ablation study was conducted to isolate the contribution of each of its modules. The model demonstrated strong performance with 98.73% accuracy, 97.88% precision, 98.91% sensitivity, and 98.55% specificity, as well as an F1-score of 98.39%, an MCC of 0.964, a false-positive rate of 1.45%, and a false-negative rate of 1.09%, with a detection latency of 28 ms and an AUC-ROC of 0.994. Specifically, this work fills a clear gap in the existing V2X intrusion detection literature—namely, the lack of scalable, adaptive, and low-latency IDS solutions for hardware-constrained EV platforms—by proposing a hybrid CNN–LSTM architecture coupled with an elastic weight consolidation (EWC)-based adaptive learning module that enables online updates without full retraining. The proposed model provides a real-time, adaptive, and high-precision IDS for EV networks, supporting safer and more resilient ITS infrastructures. Full article
Show Figures

Figure 1

Back to TopTop