Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (383)

Search Parameters:
Keywords = ecosystem service flow

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2680 KB  
Article
Coastal Bathing Water Evaluation Under Contrasting Tourism Pressures at Herradura Bay (S-W Mediterranean)
by Miguel María Granados-Fernández, Salvador Arijo, Andreas Reul, Francisco Guerrero, Juan Diego Gilbert, Jorge García-Márquez, Begoña Bautista and María Muñoz
Sustainability 2025, 17(21), 9792; https://doi.org/10.3390/su17219792 - 3 Nov 2025
Viewed by 159
Abstract
Coastal water quality is crucial for ecosystem services, supporting biodiversity and tourism. However, high tourist influxes often overwhelm wastewater treatment plant (WWTP) capacities, leading to untreated discharge and eutrophication, which severely impacts bathing water. Water quality monitoring is currently limited to selected points [...] Read more.
Coastal water quality is crucial for ecosystem services, supporting biodiversity and tourism. However, high tourist influxes often overwhelm wastewater treatment plant (WWTP) capacities, leading to untreated discharge and eutrophication, which severely impacts bathing water. Water quality monitoring is currently limited to selected points at the beach and oceanographic sampling, which requires depths >20 m offshore, leaving a gap of measurements between 1 and 50 m from the beach. To resolve this gap, our study proposes a low cost-effective sampling and monitoring method by using a kayak with a submersible fluorometer FlowCAM, as well as fecal bacteria detection and quantification. The kayak sampling was carried out during high- and low-tourism seasons in coastal bathing waters surrounded by Marine Protected Areas. The results show a patchy phytoplankton distribution, with chlorophyll a concentration up to 5.5 μg/L, indicating local fertilization. The observed floating organic matter patches were fecal bacteria free, while effluents of the WWTP to the Jate river and shore exceeded the legal limits for bathing water. These results suggest that wastewater treatment was overwhelmed during the high-tourism season, likely discharging wastewater into the river that flows into the shore. These findings are discussed in a sustainable development and socioeconomical context. Full article
Show Figures

Figure 1

19 pages, 650 KB  
Article
Searching for the Park Effect: An Analysis of Land Use Change and Ecosystem Service Flows in National Parks in Italy
by Davide Marino, Antonio Barone, Margherita Palmieri, Angelo Marucci, Vincenzo Giaccio and Silvia Pili
Land 2025, 14(11), 2163; https://doi.org/10.3390/land14112163 - 30 Oct 2025
Viewed by 371
Abstract
Protected areas play a fundamental role in the implementation of international environmental strategies in order to ensure effective management systems that support the conservation of biodiversity and the provision of ecosystem services. However, the actual capacity of national parks to generate a specific [...] Read more.
Protected areas play a fundamental role in the implementation of international environmental strategies in order to ensure effective management systems that support the conservation of biodiversity and the provision of ecosystem services. However, the actual capacity of national parks to generate a specific “park effect” remains an open question. This study aims to assess whether the transformations observed in Italian national parks between 1960 and 2018 can be attributed to a specific park effect or are instead the result of other territorial dynamics. We analyzed long-term changes in land use and land cover (LUMCs) and variations in ecosystem services (ES), both inside and outside park boundaries, taking into account the SNAI classification. The results show a significant expansion of forest areas (+52%) and sparse vegetation (+56%), alongside a marked decline in arable land (−60%) and permanent crops (−26%). At the same time, the overall value of ES remains stable at around EUR 4 billion per year, with regulating services—accounting for 80% of the total—increasing by 20% between 1960 and 2018 and provisioning services declining by 41%. Italy’s national parks represent strategic socioecological laboratories capable of generating benefits both locally and globally. To fully realize this potential, more integrated management is needed, enabling their transformation from mere conservation areas to drivers of territorial resilience and social cohesion. Full article
Show Figures

Figure 1

19 pages, 11877 KB  
Article
The Impact of Sanitary Felling During Large-Scale Disturbances on Regulating Ecosystem Services in Norway Spruce-Dominated Pre-Alpine Beech Forests of Slovenia
by Anže Martin Pintar, Andreja Ferreira, Pia Höfferle and Anže Japelj
Forests 2025, 16(11), 1631; https://doi.org/10.3390/f16111631 - 25 Oct 2025
Viewed by 296
Abstract
Ecosystem services (ES) are closely linked to nature-based solutions, which can mitigate the negative impacts of climate change or provide society with direct tangible and intangible benefits. In the context of a changing climate, it is essential to preserve these services despite increasing [...] Read more.
Ecosystem services (ES) are closely linked to nature-based solutions, which can mitigate the negative impacts of climate change or provide society with direct tangible and intangible benefits. In the context of a changing climate, it is essential to preserve these services despite increasing disturbances. In this study, we analysed changes in the structure and composition of the Jelovica forest complex (NW Slovenia) over the past two decades and assessed the provision of key regulating forest ES—specifically, soil erosion control, regulation of surface and groundwater flows, and regional climate regulation. The area has historically seen the artificial promotion of Norway spruce and, in recent decades, has been increasingly affected by large-scale disturbances and bark beetle outbreaks. We examined how these climate-related disturbances have influenced the availability of regulating ES. Over the past twenty years, the share of spruce in the growing stock in the Jelovica area decreased from 67% to 62%. We compared structural and compositional changes between two periods, 2001–2009 and 2015–2023, based on available forest management data. In both periods, mature stands were the dominant developmental stage. In the northwestern part of the Jelovica plateau, where extensive sanitary felling was carried out, the proportion of sapling stands increased significantly—unlike in other parts of the plateau. Areas affected by extensive sanitary felling exhibited statistically significantly lower evapotranspiration and reduced soil erosion control capacity, as well as higher levels of groundwater recharge, compared to other areas. Full article
Show Figures

Figure 1

25 pages, 19035 KB  
Article
Revealing Multiscale Characteristics of Ecosystem Service Flows: Application to the Yangtze River Economic Belt
by Yiyang Li, Hongrui Wang, Li Zhang, Yafeng Yang, Ziyang Zhao and Xin Jiang
Land 2025, 14(10), 2076; https://doi.org/10.3390/land14102076 - 17 Oct 2025
Viewed by 342
Abstract
Assessing ecosystem service (ES) supply–demand relationships and identifying their driving forces are essential for ecological security and sustainable ecosystem development. Using ES supply–demand mismatches as a basis, this study characterized the spatiotemporal evolution of ES supply and demand from 2000 to 2023. Additionally, [...] Read more.
Assessing ecosystem service (ES) supply–demand relationships and identifying their driving forces are essential for ecological security and sustainable ecosystem development. Using ES supply–demand mismatches as a basis, this study characterized the spatiotemporal evolution of ES supply and demand from 2000 to 2023. Additionally, a SHAP-informed Stacking Bayesian optimization model was employed to identify key drivers of supply–demand imbalances. Building on this, threshold-aware spatial optimization of ecosystem service flows was performed using an improved minimum-cost algorithm within an NSGA-II multi-objective framework. The results showed that: (1) The YREB’s supply–demand balance (SDB) exhibited significant spatial heterogeneity. Water SDB declined with fluctuations, decreasing from 5.343 × 1011 m3 to 4.433 × 1011 m3, whereas carbon SDB shifted from a surplus (+1.514 × 109 t) to a deficit (−1.673 × 109 t) during the study period. Crop SDB rose from 1.361 × 108 to 1.450 × 108 t across the study period. (2) Nighttime light intensity (NLI) was the dominant factor for water SDB and carbon SDB, while cropland area was the key driver for crop SDB. (3) Over 2000–2023, water SDB flow increased from 8.5 × 109 m3 to 1.43 × 1010 m3. Carbon SDB flows more than tripled from 9.576 × 107 tons to 2.89 × 108 tons. Crop SDB flow increased nearly twelvefold over 2000–2023, from 3.3 × 105 t to 3.93 × 106 t. The findings provide scientific support for coordinating ecological conservation and high-quality development across the Yangtze River Economic Belt. Full article
Show Figures

Figure 1

21 pages, 5696 KB  
Review
Advancing Research on Urban Ecological Corridors in the Context of Carbon Neutrality: Insights from Bibliometric and Systematic Reviews
by Jing Li, Lang Zhang, Yang Yi and Jingbo Hong
Atmosphere 2025, 16(10), 1174; https://doi.org/10.3390/atmos16101174 - 10 Oct 2025
Cited by 1 | Viewed by 387
Abstract
The construction and maintenance of ecological corridors not only facilitate species migration and gene flow but also enhance ecosystem stability and resilience, providing critical support for achieving global carbon neutrality goals. Despite their importance, research on urban ecological corridors—specifically their role in carbon [...] Read more.
The construction and maintenance of ecological corridors not only facilitate species migration and gene flow but also enhance ecosystem stability and resilience, providing critical support for achieving global carbon neutrality goals. Despite their importance, research on urban ecological corridors—specifically their role in carbon sequestration and emission reduction within urban environments—remains insufficiently explored. To address this gap, we employed bibliometric and network analysis methods, utilizing the CiteSpace6.3.1 visualization tool to systematically review existing literature from the Web of Science Core Collection database. This study examines the research progress and trends in urban ecological corridors from 2000 to 2023, focusing on their role and significance in the context of global carbon neutrality. The findings reveal the following: (1) Research attention has grown steadily from 2000 to 2023, with climate change, carbon emission dynamics, and biodiversity emerging as core themes, reflecting increasing global focus on the carbon neutrality functions of urban ecological corridors. (2) CiteSpace analysis identified key research hotspots through keywords including climate change, carbon cycle, ecosystem services, model simulation, and ecological network analysis, revealing the functional mechanisms and pathways of urban ecological corridors in carbon neutrality contexts. (3) Current scientific challenges focus on understanding three core aspects of urban ecological corridors, the compositional elements, spatial structural design, and functional capacity assessment, requiring systematic theoretical breakthroughs. (4) Future research should prioritize exploring mechanisms to enhance urban ecological corridor functions and constructing low-carbon urban ecological networks, providing theoretical guidance and practical pathways for achieving urban emission reduction and climate goals. This study contributes to integrating research on the effectiveness of urban ecological corridors and carbon sinks, offering theoretical insights and practical guidance for reducing urban emissions and achieving climate goals. Full article
Show Figures

Graphical abstract

32 pages, 9204 KB  
Article
Unveiling Hidden Green Corridors: An Agent-Based Simulation (ABS) of Urban Green Continuity for Ecosystem Services and Climate Resilience
by Tao Dong, Massimo Tadi and Solomon Tamiru Tesfaye
Smart Cities 2025, 8(5), 163; https://doi.org/10.3390/smartcities8050163 - 1 Oct 2025
Viewed by 1325
Abstract
Urban green spaces are essential for mitigating the heat island effect, supporting ecosystem services, and maintaining biodiversity. The distribution, fragmentation, and connection of the green spaces significantly impact the behavior of species in cities, serving as key indicators of environmental resilience and ecological [...] Read more.
Urban green spaces are essential for mitigating the heat island effect, supporting ecosystem services, and maintaining biodiversity. The distribution, fragmentation, and connection of the green spaces significantly impact the behavior of species in cities, serving as key indicators of environmental resilience and ecological benefits. However, current studies, as well as planning standards, often prioritize green spaces independently through their coverage or density, overlooking the importance of continuity and its impact on thermal regulation and accessibility. In this research, urban “hidden green corridors” refer to the unrecognized but functionally significant pathways that link fragmented green spaces through ecological behaviors, which enhance both biological and human habitats. This research focuses on developing an agent-based simulation (ABS) model based on the Physarealm plugin in Rhino, which can assess the effectiveness of these hidden corridors in different urban settings by integrating geographic information systems (GIS) and space syntax. Based on three case studies in Italy (Lambrate District, Bolognina, and Ispra), the simulation results are further interpreted through the AI agentic workflow “SOFIA”, developed by IMM Design Lab, Politecnico di Milano, and compared using manual analysis as well as mainstream large language models (ChatGPT 4.0 Web). The findings indicate that the “hidden green corridors” are essential for urban heat reduction, enhancement of urban biodiversity, and strengthening ecological flows. Full article
Show Figures

Figure 1

24 pages, 27143 KB  
Article
Assessing Stream Bank Erosion with a Visual Assessment Protocol in Streams Around Drama City, Greece
by Georgios Pagonis, Georgios Gkiatas, Paschalis Koutalakis, Valasia Iakovoglou and George N. Zaimes
Land 2025, 14(10), 1963; https://doi.org/10.3390/land14101963 - 29 Sep 2025
Viewed by 1256
Abstract
Stream bank erosion poses significant threats to societal well-being and ecosystem services. Despite its importance, studies in Greece have been limited. This study evaluated stream bank erosion categories using the geographic information system (GIS) and the Bank Erosion Hazard Index (BEHI). Five stream [...] Read more.
Stream bank erosion poses significant threats to societal well-being and ecosystem services. Despite its importance, studies in Greece have been limited. This study evaluated stream bank erosion categories using the geographic information system (GIS) and the Bank Erosion Hazard Index (BEHI). Five stream reaches with different characteristics were selected near Drama, Greece. The GIS was used to map the stream and riparian area characteristics and to locate the BEHI sampling plots. The BEHI was employed to classify bank erosion vulnerability. The Categorical Principal Components Analysis (CatPCA) analysis was used to determine the factors that influence erosion. The study reaches, except for one, had high, very high, and extreme stream bank erosion exceeding 28%. Two reaches had greater than 40% of the banks without erosion. Substantial differences in erosion categories (%) were detected due to different fluvio-geomorphologic and anthropogenic pressures. Based on the CatPCA, agricultural and urbanized riparian areas experienced high, very high, and extreme bank erosion. Reaches with perennial flow had limited erosion. In addition, straight reaches had many human interventions. Although mitigation measures had been taken, they have not been effective. Thus, the responsible authorities should consider adopting nature-based solutions to maintain and restore riverine and riparian areas. Full article
(This article belongs to the Special Issue Feature Papers on Land Use, Impact Assessment and Sustainability)
Show Figures

Graphical abstract

34 pages, 1833 KB  
Article
AI Ecosystem and Value Chain: A Multi-Layered Framework for Analyzing Supply, Value Creation, and Delivery Mechanisms
by Robert Kerwin C. Billones, Dan Arris S. Lauresta, Jeffrey T. Dellosa, Yang Bong, Lampros K. Stergioulas and Sharina Yunus
Technologies 2025, 13(9), 421; https://doi.org/10.3390/technologies13090421 - 19 Sep 2025
Viewed by 2562
Abstract
Despite the rapid adoption of artificial intelligence (AI) on a global scale, a comprehensive framework that maps its end-to-end value chain is missing. The presented study employed a multi-layered framework to analyze the value creation and delivery mechanism of the five core layers [...] Read more.
Despite the rapid adoption of artificial intelligence (AI) on a global scale, a comprehensive framework that maps its end-to-end value chain is missing. The presented study employed a multi-layered framework to analyze the value creation and delivery mechanism of the five core layers of an AI value chain, including (1) hardware, (2) data management, (3) foundational AI, (4) advanced AI capabilities, and (5) AI delivery. Using a qualitative–descriptive approach with a multi-faceted thematic analysis and a SWOT-based bottleneck analysis of each core layer, the study maps a sequential value flow from a globally dependent hardware foundation to the deployment of AI services. The analysis reveals that international knowledge flows shape the ecosystem, while the “last-mile” integration challenge is not merely a technical issue; instead, it highlights a significant socio-technical disconnect between technological advancements and the preparedness of the workforce. This study provides a holistic framework that frames the AI value chain as a socio-technical system, offering critical insights for stakeholders. The findings emphasize that unlocking AI’s full potential requires strategic investment in the managerial competencies and digital skills that constitute human–capital readiness. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

15 pages, 1630 KB  
Article
Sustainability Under Deforestation and Climate Variability in Tropical Savannas: Water Yield in the Urucuia River Basin, Brazil
by Thomas Rieth Corrêa, Eraldo Aparecido Trondoli Matricardi, Solange Filoso, Juscelina Arcanjo dos Santos, Aldicir Osni Scariot, Carlos Moreira Miquelino Eleto Torres, Lucietta Guerreiro Martorano and Eder Miguel Pereira
Sustainability 2025, 17(18), 8169; https://doi.org/10.3390/su17188169 - 11 Sep 2025
Viewed by 589
Abstract
By 2023, deforestation in the Cerrado biome surpassed 50% of its original area, primarily due to the conversion of native vegetation to pasture and agricultural land. In addition to anthropogenic pressure, climate change has intensified hydrological stress by reducing precipitation and decreasing river [...] Read more.
By 2023, deforestation in the Cerrado biome surpassed 50% of its original area, primarily due to the conversion of native vegetation to pasture and agricultural land. In addition to anthropogenic pressure, climate change has intensified hydrological stress by reducing precipitation and decreasing river flows, thereby threatening water security, quality, and availability in that biome. The Annual Water Yield (AWY) model from the InVEST platform provides a tool to assess ecosystem services by estimating the balance between precipitation and evapotranspiration (ET). In this study, we applied the AWY model to the Urucuia River Basin, analyzing water yield trends from 1991 to 2020. We evaluated climate variables, land use dynamics, and river discharge data and validated the model validation using observed stream flow data. Although the model exhibited low performance in simulating observed streamflow (NSE = −0.14), scenario analyses under reduced precipitation and increased evapotranspiration (ET) revealed consistent water yield responses to climatic variability, supporting the model’s heuristic value for assessing the relative impacts of land use and climate change. The effects of deforestation on estimated water yield were limited, as land use changes resulted in only moderate shifts in basin-wide ET. This was primarily due to the offsetting effects of land conversion: while the replacement of savannas with pasture reduced ET, the expansion of agricultural areas increased it, leading to a net balancing effect. Nevertheless, other ecosystem services—such as water quality, soil erosion, and hydrological regulation—may have been affected, threatening long-term regional sustainability. Trend analysis showed a significant decline in river discharge, likely driven by the expansion of irrigated agriculture, particularly center pivot systems, despite the absence of significant trends in precipitation or ET. Full article
Show Figures

Figure 1

29 pages, 3506 KB  
Article
Assessment and Mapping of Water-Related Regulating Ecosystem Services in Armenia as a Component of National Ecosystem Accounting
by Elena Bukvareva, Eduard Kazakov, Aleksandr Arakelyan and Vardan Asatryan
Sustainability 2025, 17(17), 8044; https://doi.org/10.3390/su17178044 - 6 Sep 2025
Viewed by 1247
Abstract
To promote sustainable development and guide the responsible use of natural ecosystems, the United Nations introduced the concept of ecosystem accounting. Ecosystem services are key components of ecosystem accounting. Water-related ecosystem services (ES) are of primary importance for Armenia due to relatively dry [...] Read more.
To promote sustainable development and guide the responsible use of natural ecosystems, the United Nations introduced the concept of ecosystem accounting. Ecosystem services are key components of ecosystem accounting. Water-related ecosystem services (ES) are of primary importance for Armenia due to relatively dry climate, and dependence on irrigation water for agriculture. This study aims to conduct a pilot-level quantitative scoping assessment and mapping of key water-related regulating ES in accordance with the SEEA-EA guidelines, and to offer recommendations to initiate their accounting in Armenia. We used three Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) models—Seasonal Water Yield, Sediment Delivery Ratio, and Urban Flood Risk Mitigation. Input data for these models were sourced from global and national databases, as well as ESRI land cover datasets for 2017 and 2023. Government-reported data on river flow and water consumption were used to assess the ES supply–use balance. The results show that natural ecosystems contribute between 11% and 96% of the modeled ES, with the strongest impact on baseflow supply and erosion prevention. The average current erosion is estimated at 2.3 t/ha/year, and avoided erosion at 46.4 t/ha/year. Ecosystems provide 93% of baseflow, with an average baseflow index of 34%, while on bare ground it is only 3%. Changes in land cover from 2017 to 2023 have resulted in alterations across all assessed ES. Comparison of total water flow and baseflow with water consumption revealed water-deficient provinces. InVEST models show their general operability at the scoping phase of ecosystem accounting planning. Advancing ES accounting in Armenia requires model calibration and validation using local data, along with the integration of InVEST and hydrological and meteorological models to account for the high diversity of natural conditions in Armenia, including terrain, geological structure, soil types, and regional climatic differences. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

16 pages, 820 KB  
Article
Impact of Farmland Use Transition on Grain Carbon Sink Transfer in Karst Mountainous Areas
by Yuandong Zou, Xuejing Li, Xuhai Zhao, Zhao Yu, Xiaoyu Hu, Hai Wang, Yanzhi Luo, Yi Zheng, Yingying Li and Liangen Zeng
Land 2025, 14(9), 1734; https://doi.org/10.3390/land14091734 - 27 Aug 2025
Viewed by 703
Abstract
Farmland use transition (FUT) not only reshapes agricultural production systems but also significantly impacts cross-regional carbon sink transfers in the grain trade. However, comprehensive studies exploring connections between FUT and grain carbon sink transfer (GCST) are limited. We constructed an indicator system and [...] Read more.
Farmland use transition (FUT) not only reshapes agricultural production systems but also significantly impacts cross-regional carbon sink transfers in the grain trade. However, comprehensive studies exploring connections between FUT and grain carbon sink transfer (GCST) are limited. We constructed an indicator system and transformation framework for FUT by considering dominant and recessive dimensions. Moreover, we estimate GCST based on grain supply–demand balance and fixed carbon coefficients. Fixed effects and threshold models are employed to identify both linear and nonlinear relationships between FUT and GCST. Results show that FUT significantly reshapes carbon sink flows. In terms of dominant FUT indicators, cultivation land rate (CLR) and grain planting area proportion (GPAP) positively drive GCST by expanding the carbon sink supply and exporting ecological services. Regarding recessive FUT indicators, both grain yield per unit area (GYield) and pesticide-fertilizer intensity (PFI) promote GCST, highlighting the role of efficiency and inputs, while rural per capita disposable income (RPCDI) suppresses GCST due to agricultural marginalization. A grain yield threshold of 2.092 t/ha is identified. Below this value, FUT exerts substantial positive effects on GCST. Above it, the effects weaken. This study explains the relationship between FUT and ecosystem carbon sinks, providing a scientific basis for advancing green agriculture in karst mountainous areas. Full article
Show Figures

Graphical abstract

24 pages, 48856 KB  
Article
Dynamic Supply–Demand Relationships of Food Provision in China: A Supply–Demand–Flow Perspective
by Chen Ying and Ruolin Meng
Land 2025, 14(9), 1724; https://doi.org/10.3390/land14091724 - 25 Aug 2025
Viewed by 1334
Abstract
Understanding food production (FP) supply–demand relationships is crucial for achieving Sustainable Development Goal 2 (SDG 2). Previous studies often assessed these relationships by overlaying supply and demand without considering food production flow (FPF). This study developed a framework from the perspectives of supply, [...] Read more.
Understanding food production (FP) supply–demand relationships is crucial for achieving Sustainable Development Goal 2 (SDG 2). Previous studies often assessed these relationships by overlaying supply and demand without considering food production flow (FPF). This study developed a framework from the perspectives of supply, demand, and flow to analyze the Agrifood System (AFS) of four major urban agglomerations in China: Beijing–Tianjin–Hebei, the Yangtze River Delta, the Pearl River Delta, and Chengdu–Chongqing. It applied the enhanced two-step floating catchment area model to simulate the magnitude and direction of four types of FPF—grains, vegetables, fruits, and meat—under three scenarios: intra-city flow, intra-provincial flow, and free flow. Results revealed mismatches in the FP supply–demand, and incorporating FPF improved these relationships. As flow restrictions eased, intra-city flows decreased, cross-regional flows expanded, and supply–demand imbalances were alleviated. Enhancing regional cooperation plays a key role in addressing the spatial mismatch between food supply and demand. These findings provide useful insights for addressing food supply–demand mismatches through more proper agricultural land allocation, better alignment of consumption patterns, and improvements in the flow system. Full article
Show Figures

Figure 1

21 pages, 3151 KB  
Article
Optimizing Cross-Regional Mobility Contributes to the Metacoupling Between Urbanization and the Environment for Regional Sustainability
by Ying Huang, Lan Ye, Qingyang Jiang, Yufeng Wang, Guo Wan, Peiyun He and Bo Zhou
Land 2025, 14(8), 1682; https://doi.org/10.3390/land14081682 - 20 Aug 2025
Viewed by 641
Abstract
As a result of rapid urbanization, ecological and environmental problems have become increasingly severe. Sustainable regional development requires a balance between urbanization and the environment. With the intensification of economic globalization and technological innovation, the flow of various elements such as population, capital, [...] Read more.
As a result of rapid urbanization, ecological and environmental problems have become increasingly severe. Sustainable regional development requires a balance between urbanization and the environment. With the intensification of economic globalization and technological innovation, the flow of various elements such as population, capital, information, and resources has gradually blurred administrative boundaries, leading to new cross-scale evolutionary characteristics in this relationship. However, existing studies have primarily been conducted at the local scale and have failed to capture the impact of cross-regional element flows on the relationship between urbanization and the environment. Under the metacoupling framework, this study improves the existing methodological framework by integrating the flows of production factors and ecosystem service (ES) to characterize the metacoupling between urbanization and the environment in the Chengdu-Chongqing urban agglomeration (CCUA). A new comprehensive index system for urbanization and environment was constructed, considering the cross-regional flow of multiple factors. The Coupling Coordination Degree model was employed to calculate the degree of intracoupling, pericoupling, and telecoupling between urbanization and the environment. The Geodetector model was used to determine the effects of local, adjacent, and distant flows of production and ES factors on these degrees. The results show that the intracoupling between urbanization and the environment was low, while the pericoupling and telecoupling increased from local to distant scales. Production factor and ES flows were the common factors affecting the metacoupling between urbanization and the environment, but population flows and capital flows were more strongly explained at the local scale, and ES flow was more strongly explained at the adjacent and distant scales. Based on these results, a systematic understanding of the complex relationship between urbanization and environment is provided, which in turn provides a basis for decision making regarding the coordinated and sustainable development of urban and ecological management in the CCUA as well as other urban agglomerations. Full article
(This article belongs to the Special Issue Coupled Man-Land Relationship for Regional Sustainability)
Show Figures

Figure 1

26 pages, 10493 KB  
Article
Assessing the Climate and Land Use Impacts on Water Yield in the Upper Yellow River Basin: A Forest-Urbanizing Ecological Hotspot
by Li Gong and Kang Liang
Forests 2025, 16(8), 1304; https://doi.org/10.3390/f16081304 - 11 Aug 2025
Viewed by 619
Abstract
Understanding the drivers of water yield (WY) changes in ecologically sensitive, data-scarce watersheds is crucial for sustainable management, particularly in the context of accelerating forest expansion and urbanization. This study focuses on the upper Yellow River Basin (UYRB), a critical headwater region that [...] Read more.
Understanding the drivers of water yield (WY) changes in ecologically sensitive, data-scarce watersheds is crucial for sustainable management, particularly in the context of accelerating forest expansion and urbanization. This study focuses on the upper Yellow River Basin (UYRB), a critical headwater region that supplies 60% of the Yellow River’s flow and is undergoing rapid land use transitions from 1990 to 2100. Using the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model and the Future Land-Use Simulation (FLUS) model, we quantify historical (1990–2020) and projected (2025–2100) WY dynamics under three SSP scenarios (SSP126, SSP370, and SSP585). InVEST, a spatially explicit ecohydrological model based on the Budyko framework, estimates WY by balancing precipitation and evapotranspiration. The FLUS model combines cellular automata (CA) with an artificial neural network (ANN)-based suitability evaluation and Markov chain-derived transition probabilities to simulate land-use change under multiple scenarios. Results show that WY increased significantly during the historical period (1990–2020), primarily driven by increased precipitation, with climate change accounting for 94% and land-use change for 6% of the total variation in WY. Under future scenarios (SSP126, SSP370, and SSP585), WY is projected to increase to 217 mm, 206 mm, and 201 mm, respectively. Meanwhile, the influence of land-use change is expected to diminish, with its contribution decreasing to 9.1%, 5.7%, and 3.1% under SSP126, SSP370, and SSP585, respectively. This decrease reflects the increasing strength of climate signals (especially extreme precipitation and evaporative demand), which masks the hydrological impacts of land-use transitions. These findings highlight the dominant role of climate change, the scenario-dependent effects of land-use change, and the urgent need for integrated climate–land management strategies in forest-urbanizing watersheds. Full article
(This article belongs to the Section Forest Hydrology)
Show Figures

Figure 1

19 pages, 4491 KB  
Article
Incorporating Natural Capital Damage from Major Wildfire Events in Headwaters Management and Resource Allocation
by Jared Soares, David Batker, Yung-Hsin Sun, Aaron Batker-Pritzker and Rebecca Guo
Water 2025, 17(16), 2368; https://doi.org/10.3390/w17162368 - 9 Aug 2025
Viewed by 747
Abstract
Conventional reports on wildfire damage focus on damage to built structures and life loss without capturing the long-term loss of many environmental benefits provided by natural capital. The assessment of the full cost of a wildfire event can be very challenging and time-consuming [...] Read more.
Conventional reports on wildfire damage focus on damage to built structures and life loss without capturing the long-term loss of many environmental benefits provided by natural capital. The assessment of the full cost of a wildfire event can be very challenging and time-consuming due to its broad range of impacts traversing decades. Two major wildfires, the 2021 Caldor Fire and 2022 Mosquito Fire, impacted rural communities and burned nearly 30 percent of the approximately 1 million acres of forests and private timber lands in the Upper American River Watershed (UARW) in California’s Sierra Nevada headwaters. The UARW provides a stock of natural capital that provides a flow of environmental benefits, or ecosystem goods and services, including California statewide water supply that was not recognized in the conventional reporting to properly inform decisions and investments for mitigation and recovery. Leveraging new tools available through the recent valuation of the UARW’s ecosystem goods and services, this study provides a first look at the magnitude of damage to the headwaters’ ecosystem from wildfires and, thus, informs proactive, adaptive management actions and post-disaster recovery and restoration. Using burn severity data and per-acre estimates of ecosystem goods and services, we estimate natural capital damage of over USD 14.8 billion across an optimistically estimated period of 20 years. Several recovery time horizons are used to evaluate the sensitivity of the analysis. These findings provide important benchmarks and a viable approach for all levels of government and private entities responsible for allocating resources, mitigating wildfire risks, and improving watershed health. Full article
Show Figures

Figure 1

Back to TopTop