Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,715)

Search Parameters:
Keywords = effective core potential

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3345 KB  
Article
Equivalent Self-Noise Suppression of DAS System Integrated with Multi-Core Fiber Based on Phase Matching Scheme
by Jiabei Wang, Hongcan Gu, Peng Wang, Wen Liu, Gaofei Yao, Yandong Pang, Jing Wu, Dan Xu, Su Wu, Junbin Huang and Canran Xu
Appl. Sci. 2025, 15(17), 9806; https://doi.org/10.3390/app15179806 (registering DOI) - 7 Sep 2025
Abstract
Multi-core fiber (MCF) has drawn increasing attention for its potential application in distributed acoustic sensing (DAS) due to the compact optical structure of integrating several fiber cores in the same cladding, which indicates an intrinsic space-division-multiplexed (SDM) capability in a single piece of [...] Read more.
Multi-core fiber (MCF) has drawn increasing attention for its potential application in distributed acoustic sensing (DAS) due to the compact optical structure of integrating several fiber cores in the same cladding, which indicates an intrinsic space-division-multiplexed (SDM) capability in a single piece of fiber. In this paper, a dual-channel DAS integrated with MCF is presented, of which the equivalent self-noise characteristic is analyzed. The equivalent self-noise of the system can be effectively suppressed by signal superposition with the phase matching method. Considering that the noise correlation among the cores is not zero, the signal-to-noise (SNR) gain after signal superposition is less than the theoretical value. The dual-channel DAS system is set up by a piece of 2 km long seven-core MCF, in which the dual-sensing channels are constructed by a four-core series and three-core series, respectively. The total noise correlation coefficient of the seven cores is 11.28, while the equivalent self-noise of the system can be suppressed by 6.32 dB with signal superposition. An equivalent self-noise suppression method based on a linear delay phase matching scheme is proposed for noise decorrelation in the DAS MCF system. After noise decorrelation, the suppression of the equivalent self-noise of the system can reach the theoretical value of 8.45 dB with a time delay of 1 ms, indicating a noise correlation among the seven cores of almost zero. The feasibility of the equivalent self-noise suppression method for the DAS system is verified for both single-frequency and broadband signals, which is of great significance for the detection of weak vibration signals based on a DAS system. Full article
Show Figures

Figure 1

17 pages, 4358 KB  
Article
Development of Real-Time Estimation of Thermal and Internal Resistance for Reused Lithium-Ion Batteries Targeted at Carbon-Neutral Greenhouse Conditions
by Muhammad Bilhaq Ashlah, Chiao-Yin Tu, Chia-Hao Wu, Yulian Fatkur Rohman, Akhmad Azhar Firdaus, Won-Jung Choi and Wu-Yang Sean
Energies 2025, 18(17), 4755; https://doi.org/10.3390/en18174755 (registering DOI) - 6 Sep 2025
Abstract
The transition toward renewable-powered greenhouse agriculture offers opportunities for reducing operational costs and environmental impacts, yet challenges remain in managing fluctuating energy loads and optimizing agricultural inputs. While second-life lithium-ion batteries provide a cost-effective energy storage option, their thermal and electrical characteristics under [...] Read more.
The transition toward renewable-powered greenhouse agriculture offers opportunities for reducing operational costs and environmental impacts, yet challenges remain in managing fluctuating energy loads and optimizing agricultural inputs. While second-life lithium-ion batteries provide a cost-effective energy storage option, their thermal and electrical characteristics under real-world greenhouse conditions are poorly documented. Similarly, although plasma-activated water (PAW) shows potential to reduce chemical fertilizer usage, its integration with renewable-powered systems requires further investigation. This study develops an adaptive monitoring and modeling framework to estimate the thermal resistances (Ru, Rc) and internal resistance (Rint) of second-life lithium-ion batteries using operational data from greenhouse applications, alongside a field trial assessing PAW effects on beefsteak tomato cultivation. The adaptive control algorithm accurately estimated surface temperature (Ts) and core temperature (Tc), achieving a root mean square error (RMSE) of 0.31 °C, a mean absolute error (MAE) of 0.25 °C, and a percentage error of 0.31%. Thermal resistance values stabilized at Ru ≈ 3.00 °C/W (surface to ambient) and Rc ≈ 2.00 °C/W (core to surface), indicating stable thermal regulation under load variations. Internal resistance (Rint) maintained a baseline of ~1.0–1.2 Ω, with peaks up to 12 Ω during load transitions, confirming the importance of continuous monitoring for performance and degradation prevention in second-life applications. The PAW treatment reduced chemical nitrogen fertilizer use by 31.2% without decreasing total nitrogen availability (69.5 mg/L). The NO3-N concentration in PAW reached 134 mg/L, with an initial pH of 3.04 neutralized before application, ensuring no adverse effects on germination or growth. Leaf nutrient analysis showed lower nitrogen (1.83% vs. 2.28%) and potassium (1.66% vs. 2.17%) compared to the control, but higher magnesium content (0.59% vs. 0.37%), meeting Japanese adequacy standards. The total yield was 7.8 kg/m2, with fruit quality comparable between the PAW and control groups. The integration of adaptive battery monitoring with PAW irrigation demonstrates a practical pathway toward energy efficient and sustainable greenhouse operations. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

24 pages, 614 KB  
Review
Sports Injury Rehabilitation: A Narrative Review of Emerging Technologies and Biopsychosocial Approaches
by Peter Takáč
Appl. Sci. 2025, 15(17), 9788; https://doi.org/10.3390/app15179788 (registering DOI) - 6 Sep 2025
Abstract
The purpose of this narrative review is to critically appraise recent advances in sports injury rehabilitation—primarily focusing on biopsychosocial (BPS) approaches alongside emerging technological innovations—and identify current gaps and future directions. A literature search was conducted in PubMed, Scopus, and Web of Science [...] Read more.
The purpose of this narrative review is to critically appraise recent advances in sports injury rehabilitation—primarily focusing on biopsychosocial (BPS) approaches alongside emerging technological innovations—and identify current gaps and future directions. A literature search was conducted in PubMed, Scopus, and Web of Science for the years 2018–2024. Eligible records were English-language, human studies comprising systematic reviews, clinical trials, and translational investigations on wearable sensors, artificial intelligence (AI), virtual reality (VR), regenerative therapies (platelet-rich plasma [PRP], bone marrow aspirate concentrate [BMAC], stem cells, and prolotherapy), and BPS rehabilitation models; single-patient case reports, editorials, and non-scholarly sources were excluded. The synthesis yielded four themes: (1) BPS implementation remains underutilised owing to a lack of validated tools, variable provider readiness, and system-level barriers; (2) wearables and AI can enhance real-time monitoring and risk stratification but are limited by data heterogeneity, non-standardised pipelines, and sparse external validation; (3) VR/gamification improves engagement and task-specific practice, but evidence is dominated by pilot or laboratory studies with scarce longitudinal follow-up data; and (4) regenerative interventions show mechanistic promise, but conclusions are constrained by methodological variability and regulatory hurdles. Conclusions: BPS perspectives and emerging technologies have genuine potential to improve outcomes, but translation to practice hinges on (1) pragmatic or hybrid effectiveness–implementation trials, (2) standardisation of data and intervention protocols (including core outcome sets and effect-size reporting), and (3) integration of psychological and social assessment into routine pathways supported by provider training and interoperable digital capture. Full article
(This article belongs to the Special Issue Recent Advances in Sports Injuries and Physical Rehabilitation)
Show Figures

Figure 1

25 pages, 9911 KB  
Article
Investigating the Mechanism of Yiqi Huoxue Jieyu Granules Against Ischemic Stroke Through Network Pharmacology, Molecular Docking and Experimental Verification
by Ying Chen, Huifen Zhou, Ting Zhang and Haitong Wan
Pharmaceuticals 2025, 18(9), 1332; https://doi.org/10.3390/ph18091332 - 5 Sep 2025
Abstract
Background: Ischemic stroke (IS) is a significant cause of global mortality and disability. Yiqi Huoxue Jieyu granules (YHJGs) show therapeutic potential for IS, but their mechanisms remain unclear. This study investigated YHJGs’ effects through network pharmacology, molecular docking, and experimental validation. Methods: Active [...] Read more.
Background: Ischemic stroke (IS) is a significant cause of global mortality and disability. Yiqi Huoxue Jieyu granules (YHJGs) show therapeutic potential for IS, but their mechanisms remain unclear. This study investigated YHJGs’ effects through network pharmacology, molecular docking, and experimental validation. Methods: Active YHJG components and IS targets were identified from TCMSP, GeneCards, and DisGeNET databases. Network analysis and molecular docking (AutoDock Vina) were performed. In vivo studies used 72 male Sprague-Dawley rats (MCAO model) divided into sham, model, nimodipine (10.8 mg/kg), and three YHJG dose groups (0.72, 1.44, 2.88 g/kg). Assessments included neurological scores, TTC staining, histopathology, and molecular analyses (qPCR/Western blot). Results: Network analysis identified 256 shared targets between YHJG and IS, with PI3K-AKT and MAPK as key pathways. Molecular docking showed strong binding between YHJG compounds (e.g., quercetin) and core targets (AKT1, ERK1/2). YHJG treatment significantly improved neurological function (p < 0.01), reduced infarct volume (p < 0.01), and attenuated neuronal damage. The expression of IL-1β, TNF-α, IL-6, AKT1, and pERK1/2/ERK1/2 significantly increased in the MCAO group (p < 0.01), while YHJG treatment significantly reduced their expression (p < 0.01). PPAR-γ expression significantly increased in the YHJG-H group (p < 0.01). Conclusions: The expression of IL-1β, TNF-α, IL-6, AKT1, and pERK1/2/ERK1/2 significantly increased in the MCAO group, while YHJG treatment significantly reduced their expression. PPAR-γ expression significantly increased in the YHJG-H group. YHJGs could treat IS through diverse ingredients, targets, and pathways by inhibiting inflammatory indices and AKT1 expression, and reducing ERK1/2 phosphorylation. Full article
19 pages, 6068 KB  
Article
Multimodal Fusion-Based Self-Calibration Method for Elevator Weighing Towards Intelligent Premature Warning
by Jiayu Luo, Xubin Yang, Qingyou Dai, Weikun Qiu, Siyu Nie, Junjun Wu and Min Zeng
Sensors 2025, 25(17), 5550; https://doi.org/10.3390/s25175550 - 5 Sep 2025
Abstract
As a high-frequency and essential type of special electromechanical equipment, a vertical elevator has a significant societal implication for their safe operation. The load-weighing module, serving as the core component for overload warning, is susceptible to precision degradation due to the nonlinear deformation [...] Read more.
As a high-frequency and essential type of special electromechanical equipment, a vertical elevator has a significant societal implication for their safe operation. The load-weighing module, serving as the core component for overload warning, is susceptible to precision degradation due to the nonlinear deformation of rubber buffers installed at the base of the elevator car. This deformation arises from the coupled effects of environmental factors such as temperature, humidity, and material aging, leading to potential safety risks including missed overload alarms and false empty status detections. To address the issue of accuracy deterioration in elevator load-weighing systems, this study proposes an online self-calibration method based on multimodal information fusion. A reference detection model is first constructed to map the relationship between applied load and the corresponding relative compression of the rubber buffers. Subsequently, displacement data from a draw-wire sensor are integrated with target detection model outputs, enabling real-time extraction of dynamic rubber buffers’ deformation characteristics under empty conditions. Based on the above, a displacement-based compensation term is derived to enhance the accuracy of load estimation. This is further supported by a dynamic error compensation mechanism and an online computation framework, allowing the system to self-calibrate without manual intervention. The proposed approach eliminates the dependency on manual tuning inherent in traditional methods and forms a highly robust solution for load monitoring. Field experiments demonstrate the effectiveness of the proposed method and the stability of the prototype system. The results confirm that the synergistic integration of multimodal perception and adaptive calibration technologies effectively resolves the challenge of load-weighing precision degradation under complex operating conditions, offering a novel technical paradigm for elevator safety monitoring. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

24 pages, 1055 KB  
Article
Petrochemical Risk Assessment in Coastal China and Implications for Land-Use Dynamics
by Qiaoqiao Lin, Yahui Liang, Xue Luo, Zun Liu and Andong Guo
Land 2025, 14(9), 1811; https://doi.org/10.3390/land14091811 - 5 Sep 2025
Abstract
Land-use change and its interaction with petrochemical accident risk are critical for sustainable coastal development. This study established a multi-source data-integrated risk assessment framework, employing fuzzy C-means clustering to stratify petrochemical accident risk into six distinct levels. The analysis revealed the relationship between [...] Read more.
Land-use change and its interaction with petrochemical accident risk are critical for sustainable coastal development. This study established a multi-source data-integrated risk assessment framework, employing fuzzy C-means clustering to stratify petrochemical accident risk into six distinct levels. The analysis revealed the relationship between these risk levels and land-use type changes. Furthermore, the Takagi–Sugeno fuzzy dynamic model was applied to evaluate potential risks at representative coastal petrochemical enterprises. The findings were as follows: (1) Risk concentrates in small-to-medium private, newly established firms, primarily as explosion accidents. (2) The highest risk occurs in Bohai Bay, followed by Jiangsu, Zhejiang, and Guangdong; national policies have reduced affected zones from 352.61 km2 (2019) to 43.67 km2 (2022). (3) The total potential risk zone spans 2986.21 km2, with high-risk cores in Hebei, Zhejiang, and Fujian (36.52%) and medium-risk in Shandong Peninsula (32.01%). (4) Risk primarily affects farmland and construction land; urban expansion has increased affected built-up areas from 16.36% (2012) to 47.02% (2022), shifting effects from ecological to combined socio-ecological consequences. These findings provide critical theoretical support and actionable management recommendations for integrating coastal land-use planning, urban expansion control, and coordinated petrochemical risk governance. Full article
22 pages, 2866 KB  
Article
Metagenomic Analysis Revealed Significant Changes in the Beef Cattle Rectum Microbiome Under Fescue Toxicosis
by Gastón F. Alfaro, Yihang Zhou, Wenqi Cao, Yue Zhang, Soren P. Rodning, Russell B. Muntifering, Wilmer J. Pacheco, Sonia J. Moisá and Xu Wang
Biology 2025, 14(9), 1197; https://doi.org/10.3390/biology14091197 - 5 Sep 2025
Abstract
Tall fescue toxicosis, caused by ingestion of endophyte-infected tall fescue (Lolium arundinaceum), impairs growth and reproduction in beef cattle and results in over USD 3 billion annual loss to the U.S. livestock industry. While the effects on host metabolism and rumen [...] Read more.
Tall fescue toxicosis, caused by ingestion of endophyte-infected tall fescue (Lolium arundinaceum), impairs growth and reproduction in beef cattle and results in over USD 3 billion annual loss to the U.S. livestock industry. While the effects on host metabolism and rumen function have been described, the impact on the rectal microbiome remains poorly understood. In this study, we performed whole-genome shotgun metagenomic sequencing on fecal samples collected before and after a 30-day toxic fescue seed supplementation from eight pregnant Angus × Simmental cows and heifers. We generated 157 Gbp of sequencing data in 16 metagenomes, and assembled 13.1 Gbp de novo microbial contigs, identifying 22 million non-redundant microbial genes from the cattle rectum microbiome. Fescue toxicosis significantly reduced alpha diversity (p < 0.01) and altered beta diversity (PERMANOVA p < 0.01), indicating microbial dysbiosis. We discovered significant enrichment of 31 bacterial species post-treatment, including multiple core rumen taxa. Ruminococcaceae bacterium P7 showed an average of 16-fold increase in fecal abundance (p < 0.01), making it the top-featured species in linear discriminant analysis. Functional pathway analysis revealed a shift from energy metabolism to antimicrobial resistance and DNA replication following toxic seed consumption. Comparative analysis showed increased representation of core rumen taxa in rectal microbiota post-treatment, suggesting disrupted rumen function. These findings demonstrate that fescue toxicosis alters both the composition and functional landscape of the hindgut microbiota. Ruminococcaceae bacterium P7 emerges as a promising biomarker for monitoring fescue toxicosis through non-invasive fecal sampling, with potential applications in herd-level diagnostics and mitigation strategies. Full article
(This article belongs to the Special Issue Gut Microbiome in Health and Disease (2nd Edition))
Show Figures

Figure 1

18 pages, 2700 KB  
Review
Anti-Oxidant, Anti-Inflammatory and Antiviral Properties of Luteolin Against SARS-CoV-2: Based on Network Pharmacology
by Xin Li, Yunmei Fu, Tong Yu, Ruizhe Song, Hongguang Nie and Yan Ding
Pharmaceuticals 2025, 18(9), 1329; https://doi.org/10.3390/ph18091329 - 4 Sep 2025
Viewed by 142
Abstract
Luteolin is a natural flavonoid compound with multifaceted pharmacological properties, including anti-oxidant, anti-inflammatory, antiviral, and anti-tumor activities. Network pharmacology analysis has been utilized to decipher the underlying mechanisms and multitargets of luteolin against coronavirus disease 2019 (COVID-19). This review aims to provide a [...] Read more.
Luteolin is a natural flavonoid compound with multifaceted pharmacological properties, including anti-oxidant, anti-inflammatory, antiviral, and anti-tumor activities. Network pharmacology analysis has been utilized to decipher the underlying mechanisms and multitargets of luteolin against coronavirus disease 2019 (COVID-19). This review aims to provide a systematic and comprehensive summary of luteolin, as a potential novel remedy with anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) activity, as well as its anti-oxidant mechanisms. We systematically delineate the epidemiological profile, genomic architecture, and replicative dynamics of SARS-CoV-2, thereby constructing a multiscale framework to decode its pathogenic mechanisms. Employing a multi-level network pharmacology analytical strategy, we identify 46 core targets through protein interaction network construction, followed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis. Molecular investigations reveal luteolin’s dual antiviral mechanisms, including direct targeting of SARS-CoV-2 proteins and host-directed intervention through suppression of angiotensin-converting enzyme 2 receptor engagement/transmembrane protease serine 2-mediated viral priming. The polypharmacological profile of luteolin demonstrates synergistic effects in blocking viral entry, replication, and host inflammatory cascades. This phytochemical repurposing study of luteolin provides a novel mechanistic paradigm for developing multitarget antiviral agents, highlighting the translational value of natural compounds in combating emerging viral variants. Full article
Show Figures

Graphical abstract

11 pages, 3600 KB  
Article
Effect of High-Current Field on Corrosion Behavior of Copper Wire in Simulated Atmospheric Environment
by Zhibin Fan, Baoshuai Du, Bo Jiang, Zhiyue Gao, Yaping Wu and Qian Wang
Coatings 2025, 15(9), 1036; https://doi.org/10.3390/coatings15091036 - 4 Sep 2025
Viewed by 143
Abstract
Copper is the core conductive material of power equipment, which has excellent conductivity and ductility. However, in actual operation, a copper conductor is often subjected to both atmospheric corrosion and a high-current field, and its stability is very important for equipment safety. At [...] Read more.
Copper is the core conductive material of power equipment, which has excellent conductivity and ductility. However, in actual operation, a copper conductor is often subjected to both atmospheric corrosion and a high-current field, and its stability is very important for equipment safety. At present, there are fewer systematic studies on the corrosion behavior of copper conductors under the coupling of high current field and atmospheric environment. In this paper, the corrosion behavior of copper conductor materials in the current field environment was studied through immersion and electrochemical experiments. The immersion tests showed that copper undergoes primarily pitting corrosion in 3.5 wt% NaCl solution, with the corrosion products identified as Cu2O, CuO, and Cu2Cl(OH)3. As the applied current density increases, the pits deepen, and the corrosion rate increases significantly with an increasing applied current, rising from 3.88 mm·y−1 at 0 A to 832.82 mm·y−1 at 40 A. This is because the current causes the electrode potential to deviate from its equilibrium state and accelerates ion migration, promoting corrosion. The electrochemical tests indicated that at the same current, charge transfer resistance (Rct) first increases, and then decreases with the immersion time, while the corrosion current density first decreases, and then increases. This reflects that the corrosion product film provides protective effects in the initial stage, but is gradually damaged over time. Full article
(This article belongs to the Special Issue Microstructure and Corrosion Behavior of Metallic Materials)
Show Figures

Figure 1

23 pages, 3480 KB  
Article
Research and Development of a CO2-Responsive TMPDA–SDS–SiO2 Gel System for Profile Control and Enhanced Oil Recovery
by Guojun Li, Meilong Fu, Jun Chen and Yuhao Zhu
Gels 2025, 11(9), 709; https://doi.org/10.3390/gels11090709 - 3 Sep 2025
Viewed by 160
Abstract
A CO2-responsive TMPDA–SDS–SiO2 gel system was developed and evaluated through formulation optimization, structural characterization, rheological testing, and core flooding experiments. The optimal formulation was identified as 7.39 wt% SDS, 1.69 wt% TMPDA, and 0.1 wt% SiO2, achieving post-CO [...] Read more.
A CO2-responsive TMPDA–SDS–SiO2 gel system was developed and evaluated through formulation optimization, structural characterization, rheological testing, and core flooding experiments. The optimal formulation was identified as 7.39 wt% SDS, 1.69 wt% TMPDA, and 0.1 wt% SiO2, achieving post-CO2 viscosities above 103–104 mPa·s. Spectroscopic and microscopic analyses confirmed that CO2 protonates TMPDA amine groups to form carbamate/bicarbonate species, which drive the micellar transformation into a wormlike network, thereby enhancing gelation and viscosity. Rheological tests showed severe shear-thinning behavior, excellent shear recovery, and reversible viscosity changes under alternating CO2/N2 injection. The gel demonstrated rapid responsiveness, reaching stable viscosities within 8 min, and maintained good performance after 60 days of thermal aging at 90 °C and in high-salinity brines. Plugging tests in sand-packed tubes revealed that a permeability reduction of 98.9% could be achieved at 0.15 PV injection. In heterogeneous parallel core flooding experiments, the gel preferentially reduced high-permeability channel conductivity, improved sweep efficiency in low-permeability zones, and increased incremental oil recovery by 14.28–34.38% depending on the permeability contrast. These findings indicate that the CO2-responsive TMPDA–SDS–SiO2 gel system offers promising potential as a novel smart blocking gel system for improving the effectiveness of CO2 flooding in heterogeneous reservoirs. Full article
Show Figures

Figure 1

20 pages, 9688 KB  
Article
Hypolipidemic Effects of Alpinia japonica Extracts: Modulation of PPAR Signaling, Gut Microbiota, and Intestinal Barrier Function in Hyperlipidemic Rats
by Liqing Zhou, Cong Fang, Hongwei Li, Yifan Lin, Huiqing Que, Hongxu Liu, Lihong Ma and Wenjin Lin
Pharmaceuticals 2025, 18(9), 1320; https://doi.org/10.3390/ph18091320 - 3 Sep 2025
Viewed by 252
Abstract
Objectives: Alpinia japonica (A. japonica) is traditionally used for digestive disorders, but its hypolipidemic mechanisms remain unclear. This study investigated the lipid-lowering effects of its fruit (SJGS), rhizome (SJGJ), and leaf (SJY) extracts, exploring their bioactive constituents and organ-specific mechanisms. [...] Read more.
Objectives: Alpinia japonica (A. japonica) is traditionally used for digestive disorders, but its hypolipidemic mechanisms remain unclear. This study investigated the lipid-lowering effects of its fruit (SJGS), rhizome (SJGJ), and leaf (SJY) extracts, exploring their bioactive constituents and organ-specific mechanisms. Methods: Sprague Dawley rats (n = 8/group) fed a high-fat diet received SJGS, SJGJ, or SJY (200 mg/kg/day) for 4 weeks. Serum lipids (TC, TG), liver enzymes (AST, ALT), and intestinal barrier markers (DAO) were measured. Gut microbiota (16S rDNA sequencing), hepatic histopathology, and ileal tight junction proteins were analyzed. Transcriptomics and qPCR assessed ileal gene expression. LC-MS identified chemical constituents, while network pharmacology predicted compound-target interactions. Results: All extracts significantly reduced serum TC (↓ 27–33%), TG (↓ 29–38%), AST/ALT (↓ 22–30%), and DAO (↓ 35–42%) versus controls (p < 0.05). They improved hepatic steatosis, enhanced intestinal barrier function, and modulated gut microbiota (↑ α-diversity, ↓ Firmicutes/Bacteroidetes ratio). Transcriptomics revealed PPAR signaling as the core pathway: SJGS/SJGJ downregulated fatty acid oxidation genes (ACSL1, ACOX1, ACADM), while SJY upregulated APOA1 (2.3-fold). LC-MS identified 33–48 compounds/part, with seven shared constituents. Network analysis prioritized three flavonoids (pinocembrin, luteolin, galangin) targeting TNF, AKT1, and PPAR pathways. Conclusions: The findings suggest A. japonica extracts ameliorate hyperlipidemia through distinct mechanisms—SJGS/SJGJ may inhibit fatty acid oxidation, while SJY potentially enhances APOA1-mediated clearance. Shared flavonoids likely contribute to these effects via PPAR signaling, supporting its traditional use. This study provides a scientific basis for the sustainable utilization of A. japonica resources. Full article
Show Figures

Figure 1

15 pages, 2814 KB  
Article
Functionalized Graphene Quantum Dots for Thin-Film Illuminator and Cell Dyeing Applications
by Ruey-Shin Juang, Yi-Ru Li, Chun-Chieh Fu and Chien-Te Hsieh
Inventions 2025, 10(5), 81; https://doi.org/10.3390/inventions10050081 - 3 Sep 2025
Viewed by 184
Abstract
Graphene quantum dots (GQDs) have emerged as promising nanomaterials due to their unique optical properties, high biocompatibility, and tunable surface functionalities. In this work, GQDs were synthesized via a one-pot hydrothermal method and further functionalized using polyethylene glycol (PEG) of various molecular weights [...] Read more.
Graphene quantum dots (GQDs) have emerged as promising nanomaterials due to their unique optical properties, high biocompatibility, and tunable surface functionalities. In this work, GQDs were synthesized via a one-pot hydrothermal method and further functionalized using polyethylene glycol (PEG) of various molecular weights and sodium hydroxide to tailor their photoluminescence (PL) behavior and enhance their applicability in thin-film illumination and biological staining. PEG-modified GQDs exhibited a pronounced red-shift and intensified fluorescence response due to aggregation-induced emission, with GQD-PEG (molecular weight: 300,000) achieving up to eight-fold enhancement in PL intensity compared to pristine GQDs. The influence of solvent environments on PL behavior was studied, revealing solvent-dependent shifts and emission intensities. Transmission electron microscopy confirmed the formation of core–shell GQD clusters, while Raman spectroscopy suggested improved structural ordering upon modification. The prepared GQD thin films demonstrated robust fluorescence stability under prolonged water immersion, indicating strong adhesion to glass substrates. Furthermore, the modified GQDs effectively labeled E. coli, Gram-positive, and Gram-negative bacteria, with GQD-PEG and GQD-NaOH displaying red and green emissions, respectively, at optimal concentrations. This study highlights the potential of surface-functionalized GQDs as versatile materials for optoelectronic devices and fluorescence-based bioimaging. Full article
Show Figures

Figure 1

22 pages, 3112 KB  
Article
Health Assessment of Zoned Earth Dams by Multi-Epoch In Situ Investigations and Laboratory Tests
by Ernesto Ausilio, Maria Giovanna Durante, Roberto Cairo and Paolo Zimmaro
Geotechnics 2025, 5(3), 60; https://doi.org/10.3390/geotechnics5030060 - 3 Sep 2025
Viewed by 193
Abstract
The long-term safety and operational reliability of zoned earth dams depend on the structural integrity of their internal components, including core, filters, and shell zones. This is particularly relevant for old dams which have been operational for a long period of time. Such [...] Read more.
The long-term safety and operational reliability of zoned earth dams depend on the structural integrity of their internal components, including core, filters, and shell zones. This is particularly relevant for old dams which have been operational for a long period of time. Such existing infrastructure systems are exposed to various loading types over time, including environmental, seepage-related, extreme event, and climate change effects. As a result, even when they look intact externally, changes might affect their internal structure, composition, and possibly functionality. Thus, it is important to delineate a comprehensive and cost-effective strategy to identify potential issues and derive the health status of existing earth dams. This paper outlines a systematic approach for conducting a comprehensive health check of these structures through the implementation of a multi-epoch geotechnical approach based on a variety of standard measured and monitored quantities. The goal is to compare current properties with baseline data obtained during pre-, during-, and post-construction site investigation and laboratory tests. Guidance is provided on how to judge such multi-epoch comparisons, identifying potential outcomes and scenarios. The proposed approach is tested on a well-documented case study in Southern Italy, an area prone to climate change and subjected to very high seismic hazard. The case study demonstrates how the integration of historical and contemporary geotechnical data allows for the identification of critical zones requiring attention, the validation of numerical models, and the proactive formulation of targeted maintenance and rehabilitation strategies. This comprehensive, multi-epoch-based approach provides a robust and reliable assessment of dams’ health, enabling better-informed decision-making workflows and processes for asset management and risk mitigation strategies. Full article
(This article belongs to the Special Issue Recent Advances in Geotechnical Engineering (3rd Edition))
Show Figures

Figure 1

21 pages, 6632 KB  
Article
Delineating Functional Metropolitan Areas in China: A Method Based on the Tri-Dimensional PET Coupling Model
by Jiawei Zheng, Yaping Huang, Shiwei Lu, Yueheng Huang and Leizhou Zhu
Land 2025, 14(9), 1789; https://doi.org/10.3390/land14091789 - 2 Sep 2025
Viewed by 288
Abstract
Metropolitan areas have become the primary spatial form for China’s new-era urbanization. However, these boundaries have traditionally been delineated based on administrative factors, resulting in a notable discrepancy with the actual functional connections. To tackle this challenge, this study aims to devise and [...] Read more.
Metropolitan areas have become the primary spatial form for China’s new-era urbanization. However, these boundaries have traditionally been delineated based on administrative factors, resulting in a notable discrepancy with the actual functional connections. To tackle this challenge, this study aims to devise and implement an innovative ‘PET’ tri-dimensional coupling model, leveraging the principles of integrated urban subsystems to scientifically delineate functional metropolitan boundaries. The proposed method integrates Population flow (P), Economic density (E), and Transportation accessibility (T) on a fine-grained 1 km raster grid. To enhance accuracy, the crucial population flow component is simulated using a gravity model calibrated with real-world Baidu Migration data. Applying this model to 35 potential metropolitan areas, our findings reveal two key points. First, a comparative analysis with five officially approved plans reveals a significant spatial alignment in core functional zones, which corroborates the model’s accuracy. effectiveness. Secondly, these delineations clearly quantify the notable difference between the ‘functional space’ influenced by socioeconomic factors and the ‘administrative space’ delineated by jurisdictional boundaries. In summary, this research presents a replicable methodology for delineating functional metropolitan areas. It offers vital technical support and policy guidance for optimizing regional planning, enhancing inter-city coordination, and promoting China’s national strategy for regional development. Full article
Show Figures

Figure 1

12 pages, 1498 KB  
Article
A Genome-Wide Association Study of Sugarcane Smut Resistance
by Xinglong Chen, Xuhui Li, Enping Cai, Xiaomin Feng, Junteng Fang, Jiayun Wu and Nannan Zhang
Agronomy 2025, 15(9), 2111; https://doi.org/10.3390/agronomy15092111 - 2 Sep 2025
Viewed by 212
Abstract
Sugarcane smut, caused by Sporisorium scitamineum, is a globally prevalent disease that severely impacts sugarcane yield and quality. The most cost-effective and sustainable approach to disease control is breeding for smut-resistant varieties. In this study, we conducted a genome-wide association study (GWAS) [...] Read more.
Sugarcane smut, caused by Sporisorium scitamineum, is a globally prevalent disease that severely impacts sugarcane yield and quality. The most cost-effective and sustainable approach to disease control is breeding for smut-resistant varieties. In this study, we conducted a genome-wide association study (GWAS) using a panel of core sugarcane parents and their derived lines to elucidate the genetic basis of smut resistance across seven different environments. We identified 68 new loci significantly associated with smut resistance across all the chromosomes. Based on functional annotations and genomic positions, 164 candidate genes were identified, many of which are related to enzymatic systems, resistance genes, transcription factors, and other pathways implicated in smut defense. Using resistance ratings and associated SNPs, we further selected ten elite parents and derivatives as potential donors for marker-assisted selection (MAS). This study provides a valuable reservoir of genetic resources for improving smut resistance in sugarcane. Full article
(This article belongs to the Special Issue Research Progress on Pathogenicity of Fungi in Crops—2nd Edition)
Show Figures

Figure 1

Back to TopTop